Buscar

Continue navegando


Prévia do material em texto

3. MESO E INFRAESTRUTURAS DE PONTES 
 
3.1. Considerações iniciais 
 
A meso e infraestruturas das pontes são as responsáveis pelo suporte da superestrutura 
e pela sua fixação ao terreno, transmitindo a ele os esforços correspondentes a essa fixação. 
Pode-se dizer que enquanto a super é essencialmente responsável pelo transporte horizontal 
das cargas, está a cargo da meso o transporte vertical das mesmas e da infra, sua transmissão 
ao terreno. 
 
3.2. Nomenclatura 
 
O esquema abaixo fixa a nomenclatura usualmente adotada para descrever cada um 
desses elementos. 
APARELHO
DE APOIO
FUNDAÇÃO 
RASA
(SAPATA)
FUNDAÇÃO 
PROFUNDA
(BLOCO C/ ESTACAS)
SUPER
MESO
INFRA
Pilares
Encontros
Ap. Apoio
Fundações
Tabuleiro
PILARENCONTRO
Vigas
Fig.1 Nomenclatura dos elementos das pontes 
3.3. Tipos estruturais 
 
3.3.1. Tipos de aparelhos de apoio – vinculação super x meso 
 
Nó de pórtico
MONOLÍTICA FIXA MÓVEL
Unidirecional Multidirecional
Teflon sobre inox
LIGAÇÃO ARTICULAÇÃOARTICULAÇÃO
 
Fig.2 Tipos de aparelhos de apoio 
Essas articulações podem ser metálicas, de concreto e até mesmo de borracha, como 
veremos mais adiante. 
Rótulas podem ser obtidas com superfícies esféricas no lugar das cilíndricas. 
 
3.3.2. Pilares 
 
Pilar
Pilar
Pilar
PilarAp. apoio
Ap. apoio
Ap. apoioAp. apoio
Transversina
Transversina
Travessa
Travessa
Grelha Caixão
Caixão
V
Mt
V
Mt
V
Mt
V
Transversina
Usual
Transversina
Obrigatória
Fig.3 
Seções: Maciças
Paredes finas
Constantes ou variáveis
TransversalLongitudinal
 
Fig.4 
3.3.3. Encontros 
 
Fig.5 Encontros 
 
Fig.6 Encontro aliviado (bastante comum) 
 
 
Fig.7 Encontro na super 
 
Fig.8 Encontro na super 
 
3.3.4. Fundações 
 
Os tipos estruturais das fundações não fazem parte do objetivo desta disciplina. Para 
tanto, ver cursos específicos. 
 
3.4. Métodos construtivos 
3.4.1. Fundações 
 
Quando as fundações estão localizadas no seco, como nos viadutos por exemplo, os 
métodos construtivos a aplicar na sua execução são os convencionais. Quando, no entanto, as 
fundações estão dentro d’água, tais métodos devem ser revisados. 
As novas soluções podem ser divididas em 2 grupos: 
 
� Caso 1 – Lâmina d’água pequena. 
Nesse caso as fundações diretas ainda são possíveis, devendo ser executadas em 
ensecadeiras. Essas ensecadeiras podem ser construídas com estacas prancha ou barragens de 
terra. Em ambos os casos, elas se assemelham a valas a céu aberto onde a estrutura de 
contenção suporta empuxos de água em lugar de empuxos de terra. 
VALA ESCORADA
ENSECADEIRA DE
ESTACAS PRANCHA
Estronca
Estronca
Estaca prancha
ENSECADEIRA DE TERRA
VALA ATALUDADA
Estaca prancha Barragem de terra
Barragem de terra
 
Fig.9 Ensecadeiras 
 
Quando a lâmina d’água é pequena e as fundações a executar profundas, é em geral 
possível construir uma plataforma estaqueada provisória, onde se executam as fundações 
definitivas, sejam estacas (pré-moldadas, Franki ou escavadas), sejam tubulões (a ar 
comprimido, escavados mecanicamente ou mistos), sejam caixões (a céu aberto ou a ar 
comprimido). 
Os tubulões escavados mecanicamente (tipo Wirth), os mistos e os caixões, serão 
descritos a seguir, por não serem usuais, senão nas fundações das pontes. 
 
 
 
 
� Caso 2 – Lâmina d’água grande. 
Nesse caso nenhuma das duas soluções anteriores são utilizadas, ambas ficam muito 
dificultadas pela altura da lâmina d’água. A solução usual corresponde a execultar fundações 
profundas a partir de barcaças ou flutuantes. 
Essas barcaças, muitas vezes feitas de concreto, são suficientemente grandes para 
suportar, além de equipamentos de perfuração, guindastes, betoneiras e depósito de materiais 
(brita, areia, cimento, aço, etc.). Elas são fixadas às margens através de cabos de forma a 
garantir uma maior precisão nas locações em planta. Em rios mais largos, elas podem ser 
ancoradas no fundo e, quando a velocidade da água for baixa (caso do mar), podem ter pernas 
retráteis. 
 
3.4.2. Fundações especiais 
 
� Tubulões mistos 
Solução a usar no lugar de tubulões a ar comprimido, quando a pressão superar 3 atms 
ou 30 mca. 
 
 
Fig.10 Seqüência construtiva de tubulões com estacas metálicas (Pfeil, 1983). 
 
1. Escavação e descida da camisa a ar comprimido (camisa de concreto); 
2. Desativada a compressão, cravação das estacas por dentro da camisa, com 
suplemento; 
3. Concretagem submersa. 
� Tubulões Mecanizados tipo Bade Wirth 
Solução alternativa pode ser usada com Camisa Perdida 
 
 
Fig.11 
NOTA – 
1. Conforme Pfeil 1983 
2. É possível substituir o tubo Bade e a camisa permanente (pequena espessura) por uma 
única camisa perdida (de espessura maior). 
 
� Caixões a Céu Aberto ou Ar Comprimido 
 
 
 
Fig.12 
Notas: 
1. Conforme Pfeil 1983 
 
2. Escavação mecânica, “a céu aberto”, mas em presença de água. Para solos 
suficientemente impermeáveis e escavações suficientemente profundas essa água 
pode ser esgotada e a escavação executada de fato a céu aberto. 
 
 
 
 
 
 
 
 
 
Fig.13 Caixões – Formas – conforme Pfeil 1983 
 
 
3.4.3. Pilares 
 
Além das formas convencionais é preciso, no caso de pilares de pontes, relembrar as 
fôrmas saltantes e as fôrmas deslizantes abaixo esquematizadas. 
 
 
 
Fig.14 Formas 
 
Atualmente se usam formas saltantes (isto é, que andam aos saltos) com sistema de 
sustentação por barras internas ao concreto como nas formas deslizantes. 
 
3.5. Concepção dos apoios da ponte (da vinculação super x mesoestrutura) 
3.5.1. Tipos de aparelho de apoio 
 
A. Aparelhos de vinculação rígida 
 
Nestes casos, a super é rigidamente vinculada à mesoestrutura relativamente a alguns 
movimentos e a outros são praticamente livres. 
Numa articulação fixa, por exemplo, são impedidas translações e rotações, a menos 
daquela liberada pela articulação. Numa móvel, uma translação também foi liberada. 
 
� Aparelhos metálicos 
 
As articulações mais antigas se baseavam num cilindro metálico para liberar rotações 
(articulação fixa) e deslocamentos unidirecionais (articulação móvel). Ver figura 15. 
As articulações mais modernas usam apenas uma parte do cilindro para liberar 
rotações e contato, teflon x inox, para liberar deslocamento unidirecional ou multidirecional. 
Em lugar do rolamento do cilindro, liberam-se os deslocamentos por escorregamento teflon x 
inox. 
 
 
Fig.15 Detalhe de articulação 
Rótulas podem ser obtidas de forma análoga substituindo-se as superfícies cilíndricas 
por superfícies esféricas. 
Esses movimentos não são completamente livres devido ao atrito teflon x inox. O 
coeficiente de atrito correspondente é da ordem de 5%. 
Exemplos: 
Articulação fixa 
 
 
Fig.16 Articulação móvel unidirecional 
 
Fig.17 Articulação móvel multidirecional 
 
Fig.18 Articulação móvel multidirecional 
 
Antigamente era difícil obter uma articulação deste tipo. 
 
� Aparelhos de elastômero 
Esses aparelhos são constituídos por uma “panela” de aço espessa, cheia de elastômero 
e tampada. 
 
Fig.19 Nota – Conforme Leonhardt – 1979 
 
O princípio de funcionamento do aparelho de apoio de borracha em panela: a capacidade de 
rotação em todas as direções é proporcionada pela deformação por cisalhamento da massa de 
borracha incompressível dentro da panela. 
 
As translações são liberadas de forma análoga aos aparelhos metálicos. 
 
Fig.20 
 
 
� Articulação Freyssinet ou fixa de concreto 
 
Freyssinet criou uma articulação de concreto liberando as rotações através de um 
estrangulamentoda seção onde as altas tensões, em estado múltiplo de compressão, 
plastificam o concreto, permitindo rotações significativas. A área da seção estrangulada deve 
satisfazer 2 limites: 
( )
( )α,,
,,
2
1
mínckmáx
máxckmín
VffA
daVffA
=
=
, Rotação≡α 
 
Fig.21 Articulação Freyssinet 
Para maiores detalhes ver construções de concreto de F. Leonhardt, vol. 2. 
Esse aparelho só se aplica para esforços horizontais baixos ( 8VH ≤ ). Se 8VH > é 
preciso armar conforme sugere Mesnager (figura 22). 
 
 
Fig.22 Articulação Mesnager 
 
 
B. Aparelhos de vinculação flexível 
 
Nestes casos a superestrutura é vinculada elasticamente à mesoestrutura, em todas as 
direções, até na vertical. Essa flexibilidade de corre do fato desses aparelhos serem feitos de 
borracha. 
A utilização da borracha cria, conforme dito, uma ligação flexível, por outro lado, gera 
também um problema delicado, o da durabilidade. Foi preciso encontrar uma borracha que 
apresentasse durabilidade compatível com as obras civis, algo em torno de 50 anos. 
Como é difícil garantir essa durabilidade, bastante variável com a agressividade do 
meio, a qualidade da fabricação e, sobretudo hoje em dia, a qualidade da montagem, é preciso 
prever a troca desses aparelhos. Com isso, devem ser previstos nichos entre meso e super, 
onde possam ser colocados macacos capazes de aliviar os aparelhos existentes, permitindo a 
sua substituição. 
A borracha especial utilizada na fabricação desses aparelhos é um elastômero, mais 
precisamente o policloroprene, um polímero sintético. O nome neoprene normalmente usado 
no lugar de elastômero é o nome dado pela DuPont ao policloroprene que ela fabrica. 
Esse material tem basicamente as seguintes propriedades: 
2
2
2
m120
m 10
5,0
m 30
kgffc
kgfG
kgfE
≥
≅
≅
≅
ν
 
O elastômero é bastante flexível, apresentando grandes deformações e deslocamentos 
mesmo para as cargas de serviço. Não valem, portanto a Teoria da Elasticidade e a 
Resistência dos Materiais para esse material! 
A fretagem foi criada para melhorar a resistência e rigidez desses aparelhos. De fato: 
numa placa de elastômero não fretada as deformações transversais provocadas por efeito de 
Poisson são quase livres, permitindo grandes abatimentos ∆t. Mesmo reduzindo o atrito com 
os pratos da prensa, há um aumento pequeno na rigidez e na resistência em relação às placas 
não fretadas (figura 23, item a). 
 
Fig.23 Detalhe dos aparelhos com e sem Fretagem 
As chapas de fretagem inibem muito as deformações transversais, reduzindo bastante 
∆h, isto é, aumentam muito a rigidez e a resistência dos aparelhos fretados (figura 23, item b). 
Para isso, é preciso dispor de uma boa ligação aço x elastômero decorrente de atrito mais 
adesão (obtida na fabricação, por ocasião da vulcanização). 
Esses aparelhos fretados apresentam rigidez e resistência bastante variáveis com a 
geometria do aparelho e com as chapas de fretagem, da ordem de: 
Módulo de elasticidade: 2m 5000 2000 kgfaE f ≅ 
Resistência à compressão fretada: 2m 008 600 kgfaf cf ≅ 
A tensão admissível nesses aparelhos é da ordem de 150 kgf/m². 
Num ensaio desses aparelhos em laboratório é obtida a seguinte curva tensão x 
deformação. 
 
Fig.24 Curva tensão deformação 
O valor ε0 é da ordem de 0,03. 
hn é a altura total de elastômero. 
A é a área da seção transversal à direção do carregamento. 
 
Como se pode observar, a fretagem só começa a trabalhar a partir de uma deformação 
considerável. De forma simples, o aparelho pode ser admitido infinitamente flexível para 
00 εε ≤≤ e fretado a partir desse valor. 
 
� Comportamento dos aparelhos de elastômero fretado 
(Observado experimentalmente, já que não vale a Teoria da Elasticidade) 
a) Sob carga vertical 
 
Fig.25 Comportamento dos aparelhos de elastomêro fretado 
Devido à placa de elastômero estar submetida à compressão tridimensional (figura 
25), há aumento de rigidez e resistência. 
Os diagramas de s e t da placa de elastômero na região de contato com a placa de aço 
está indicada na figura 25. 
 
b) Sob momento 
 
c) Sob carga horizontal 
 
 
O projeto desses aparelhos exige uma série de verificações que são: 
i. Verificação da ligação aço x elastômero (limita V, H, M); 
ii. Verificação do escorregamento (limita H); 
iii. Verificação do bordo menos comprimido (limita relação M/V); 
iv. Verificação da estabilidade (limita altura/largura); 
v. Verificação das espessuras de aço (define a espessura da chapa). 
 
Ver publicação do IPT sobre o projeto dos aparelhos de elastômero fretado. 
 
A execução de obras com aparelhos desse tipo requer alguns cuidados especiais: 
i. Ensaio para verificação da qualidade de fabricação; 
ii. Cuidado na instalação de forma a não impor ao aparelho deformações imprevistas. 
Superfícies não planas ou não paralelas podem romper o aparelho mesmo que só 
sob carga permanente; 
iii. Prever a troca dos aparelhos. 
 
3.5.2. Concepção da vinculação 
 
A. Aparelhos de vinculação rígida 
 
Exatamente por causa da rigidez da vinculação promovida por esses aparelhos é 
preciso ter cuidado para não impedir deformações inevitáveis como as decorrentes de 
temperatura, retração e deformações imediatas e progressivas devido à protensão. 
Assim, para uma obra contínua com 4 apoios teríamos: 
BA
Articulação fixa
Articulação multidirecional
Articulação móvel unidirecional
 
Fig.26 Vinculação 
 
Note-se que tanto no sentido do comprimento quanto da largura não se deve fixar mais 
que um ponto numa dada direção. Note-se também que quase todo o esforço longitudinal 
aplicado à obra vai para o apoio A (não é todo o esforço por causa do atrito mobilizado nos 
outros apoios). 
 
� Modelo de cálculo para esforços horizontais 
 
 
B. Aparelhos de vinculação flexível 
Neste caso, como podemos dosar a rigidez dos aparelhos através das suas geometrias, 
podemos direcionar os esforços aos apoios e na proporção que se deseja. 
A liberdade de concepção ao utilizar aparelhos de apoio flexíveis é muito maior! 
Considere a obra contínua sobre 4 apoios da figura 27. 
 
Fig.27 Obra sobre 4 apoios 
 
Como os pilares dessa obra são altos em B e C, é conveniente reduzir ao máximo os 
esforços horizontais nesses apoios. Isso é possível prevendo para B e C aparelhos 
suficientemente flexíveis em relação a A e D. 
A escolha dos aparelhos A e D deve ainda levar em conta outro aspecto. Esses 
aparelhos devem ser suficientemente flexíveis para que as deformações decorrentes de 
temperatura, retração e protensão não gerem esforços exagerados nos encontros A e D. 
É após definir esses aparelhos de apoio A e D que se devem definir aqueles para B e 
C, tal que tais apoios resultem mais flexíveis que A e D. 
 
3.5.3. Comentários 
 
i. Os aparelhos de apoio mais econômicos e, portanto, os mais usados são os de 
elastômero fretado e as articulações Freyssinet; 
ii. Os aparelhos mais caros e sofisticados como os metálicos e os de panela são 
normalmente usados para cargas importantes; 
iii. A troca de aparelhos de apoio deve ser prevista para todos casos com exceção do 
Freyssinet. Elas são especialmente necessárias no caso dos elastômeros fretados 
que são os menos duráveis; 
iv. Qualquer que seja o tipo de aparelho de apoio, as cargas são por eles suportadas 
são transmitidas aos pilares ou encontros em regiões reduzidas, o que exige a 
verificação do efeito de bloco parcialmente carregado e a previsão de uma 
armadura de fretagem. 
 
3.6. Cálculo da meso e infraestrutura 
 
No caso das pontes em arco ou pórtico, ou mesmo daquelas suportadas por cabos, o 
cálculo não pode em geral, ser dividido em dois: super de um lado, meso e infra de outro. 
Nesse caso a estrutura deve sercalculada como um todo. 
Nas pontes em viga, que constituem a grande maioria das obras executadas, isso é 
usualmente feito, o que simplifica bastante o projeto. 
A super é assimilada a uma continua articulada nos apoios através dos aparelhos de 
apoio. Essas articulações são admitidas móveis com exceção de uma, ou seja, é assumida uma 
vinculação isostática (na direção horizontal). 
Esse modelo é usado para os efeitos das cargas verticais (permanentes – g1 e g2 e 
variáveis – q e Q) na super e as reações de apoio delas decorrentes. 
Para o efeito das cargas horizontais esse modelo não serve, devendo ser substituído. 
Admite-se usualmente, para esse caso, que a super seja representada por um bloco rígido 
sobre apoios elásticos correspondentes a cada um dos conjuntos de apoio (fundação, pilar e 
aparelho de apoio). 
 
Fig.28 
 
1. Modelo de viga contínua para o cálculo dos esforços devido às cargas verticais na super 
(esforços solicitantes e reações de apoio). 
 
 
 
2. Modelo de bloco rígido sem apoios elásticos para o cálculo dos efeitos das cargas 
horizontais. 
 
 
3. Modelo de conjunto de apoio isolado (aparelho de apoio, pilar e fundação) sob cargas 
provenientes da super. 
 
Fig.29 Modelo conjunto de apoio pilar isolado 
� Cargas verticais 
 
V, Mt (= V.e) 
Mt é o momento decorrente da excentricidade transversal de V 
 
� Cargas verticais 
 
Hl - Longitudinal 
Ht - Transversal 
 
No dimensionamento da meso e infra, as seguintes combinações de esforços devem 
ser consideradas: 
 
( )
( )
( )tesconcomitan , , ,
tesconcomitan , , ,
tesconcomitan , , ,
 , tlmáxt
tltmín
tltmáx
HHVM
HHMV
HHMV
 
 
Notas: 
i. As deformações impostas no cálculo longitudinal são as que decorrem de 
temperatura, retração e protensão (deformação imediata e lenta); 
ii. kap é a rigidez do aparelho de apoio, kenc é a rigidez do encontro e k1l é a rigidez 
longitudinal do apoio 1; 
iii. Observe que para as cargas verticais que solicitam especialmente a super à flexão, 
esta deve ser considerada deformável para se obter uma solução aceitável (modelo 
de viga contínua). Ao contrário, para as cargas horizontais que solicitam 
especialmente meso e infra à flexão, a super pode ser considerada como rígida → 
modelo de bloco rígido. Para efeito das cargas transversais em obras longas é 
preciso cuidado. A deformabilidade do tabuleiro à flexão horizontal pode não ser 
desprezível; 
iv. O modelo de bloco rígido sobre apoios elásticos já aparecem algumas vezes: bloco 
de fundações sobre estacas e modelo Courbon/Engesser para solução de grelhas. 
3.6.1. Rigidez do conjunto meso-infra 
Para calcular esses modelos de bloco rígido sobre apoios elásticos é preciso calcular as 
rigidezes desses apoios. 
 
Fig.30 
 
Por definição rigidez é o esforço que provoca deslocamento unitário. Assim, como a 
força F provoca o deslocamento δ, a rigidez k do apoio é dada por F/δ. 
 
� Rigidez do neoprene 
 
Fig.31 Neoprene 
nnkF δ⋅= 
kn é a rigidez do neoprene 
 
Neoprene: 
nn
n
n
n
h
GAFk
hGA
F
G
tg ⋅==∴≅
⋅
== δ
δτγ 
 
Neoprene + Teflon (despreza-se o atrito no teflon): 
000 =∴=∴≠ kFδ 
 
Fixo (articulação fixa qualquer): 
∞→∴≠∴= kF 00δ 
 
� Rigidez do pilar 
3
3 3
3 h
IEFk
IE
hF
p
pp
⋅⋅
==⇒
⋅⋅
⋅
= δδ (seção constante) 
 
� Rigidez da fundação 
 
Fundação direta: 
 
Hipóteses: 
� A sapata é rígida e indeslocável; 
� O solo tem resposta linear que satisfaz à hipótese de Winckler, isto é: 
 
( )
( )



=
=
=
⋅=
3
2
/ solo do reação de ecoeficientk
todeslocameny
/ 
 
mtf
mtfpressãop
ykp 
 
 
 Fig.32 
xθkykp ⋅⋅=⋅= 
sap
a
a
a
a
a
a
IkdxxbkdxxbkdxxbphFM ⋅⋅=⋅⋅⋅=⋅⋅⋅⋅=⋅⋅⋅=⋅= ∫∫∫
−−−
θθθ 22 
sapIk
Mk ⋅==
θθ
 (rigidez a rotação da sapata) 
f
f
Fk δ= (rigidez da sapata em relação ao deslocamento do topo do pilar) 
22 h
Ik
h
Ik
k
h
Ik
F
h
sapsap
fsap
f
⋅
=
⋅
⋅⋅
=





⋅⋅
=
⋅≅
θ
θ
θ
θδ
 
 
 
 
Fundação profunda: 
Aqui, não é mais possível admitir a fundação indeslocável, é preciso compor os efeitos 
de δ e θ ao nível da fundação para se obter o δf no topo do pilar. 
Adote-se como exemplo um pilar sobre 2 tubulões. Os modelos de cálculo transversal 
e longitudinal seriam: 
 
Fig.33 Modelo de cálculo dos tubulões 
Considerando o pórtico longitudinal tem-se: 
 
Fig.34 
( ) hFMFMf ⋅+++= θθδδδ 
f
f
Fk δ= 
Note-se que aqui M e F estão acoplados, isto é, provocam ambos θ e δ. Assim: 
FF
MM
F
M
θδ
θδ
∴→
∴→
 
Matricialmente teríamos: 






⋅





=





δ
θ
δθδ
δθθ
kk
kk
F
M
 
Logo, não é possível substituir 1 tubulão ou uma estaca por 2 “molas” kθ e kδ (kθδ = 
kδθ ≠ 0). 
As estacas devem ser estudadas como vigas sobre apoio elástico para determinar os 3 
coeficientes kq, kd e kdq = kqd (simetria!). 
Viga sobre apoio elástico: 
EI
p
dx
yd
EI
M
dx
yd
=⇒−= 4
4
2
2
, (EI constante) 
 
 
y
k σ= 










≡ 3
2
m
tf
m
m
tf
 
k depende: do solo 





iaconsistênc
e oucompacidad
tipo
 
das dimensões b, l 
da direção { horizvert kk ≠ 
0 , =⋅⋅−=⋅⋅−= ppara bykbykpp 
04
4
=+ kyb
dx
ydEI 
0=p , porque as estacas só recebem cargas externas no topo. 
 
Equação diferencial linear homogênea de 4ª ordem 
Solução geral: 
( ) ( )[ ] ( ) ( )[ ]xsenDxCexsenBxAey xx ⋅⋅+⋅⋅+⋅⋅+⋅⋅= ⋅−⋅ ββββ ββ coscos 
4
4 IE
bk
⋅⋅
⋅
=β , 1/b é medido em m, representando o comprimento elástico. l ≥ 1,5/β 
equivale a l = 1,5/β, isto é, o comprimento além é inútil, não afetando o que ocorre no topo. 
 
Com 4 condições de contorno é possível definir y, exemplo: 
 
Fig.35 
 
EI
V
dx
yd
e
EI
M
dx
ydlx
yeyx
−=−=⇒=
==⇒=
3
3
2
2
 
0' 00
 
 
A solução dessa equação para várias condições de extremidade encontra-se tabelada. 
Ver dissertação R. Teramoto (outros – Shenf, Whiften, Heteny,...). 
� Rigidez da fundação 
 
 Fig.36 Rigidez do conjunto 
hpf
conclusão
hpf
hpf
kkkkk
F
k
F
k
F
k
F
kF
1111
++=→++=⇒



⋅=
++=
δ
δδδδ
 
 
3.6.2. Distribuição longitudinal de esforços 
 
� Caso de força longitudinal 
Como a estrutura tem apenas 1 grau de liberdade δ tem-se que: 
 
∑
∑∑∑ =∴=⋅== n
j
n
j
n
jj
n
j
k
FkFkFF
1
111
δδ 
onde n é o numero de apoios. 
i
k
k
FkkF i
j
i
iiii ∀=∴=⋅=⋅= ∑
 ,δδδδ 
 
Fig.37 
Como não poderia deixar de ser, cada apoio i suporta uma parcela de F dada pela 
relação entre sua rigidez e a rigidez total (princípio da rigidez). 
 
� Caso de deformações impostas 
Consideremos os efeitos de temperatura, retração e protensão reunidos numa única 
variação de temperatura equivalente: 
ϕ=∆ eqt (temperatura, retração e protensão) 
A solução desse problema se obtém facilmente superpondo 2 soluções: uma em que se 
aplica ∆teq à super com extremidade fixa e outra em que se desenvolve à estrutura o esforço 
para fixar essa extremidade. 
De fato: 
a. Efeito ∆teq com δ01 = 0 
 
 
Fig.38 Efeito da variação de temperatura 
Do equilíbrio: ∑=
n
iFF
1
00 
 
b. Efeito da devolução de F0 à estrutura 
 
Fig.39 Efeito da devolução do F0 à estrutura 
∑
=∆
j
i
i k
k
FF 0 
 
c. Superposição 








−∆⋅⋅=∆−=
∑ j
eqiiiii k
F
tCkFFF 00 α 
Essa expressão vale inclusive para i =i, pois C1 = 0. 
 
� Caso de empuxo de terra 
Se o empuxo de terra se aplicar diretamente à super, vale a mesma solução de força 
longitudinal. Se se aplica ao encontro é preciso rever aquela solução: 
 
 
Fig.40 Caso do empuxo de terra 
∑
+
=
n
i
ap
eq
k
k
k
2
11
1
 
eqenc
enc
tenc kk
k
EF
+
= 
encter FEF −=sup 
 
A força Fsuper vai para a super, mas deve ser distribuída apenas entre os apoios 2 a n. 
 
� Distribuição de esforços transversais 
Quando for possível admitir a super rígida o problema é idêntico ao de Coubon-
Engesser. 
Quando isso não for possível é necessário calcular uma viga contínua sobre apoios 
elásticos. Nesse caso super e meso-infra seriam deformáveis. 
Quando a super é muito flexível, é possível calcular os esforços transversais nos 
apoios por área de influência.