Buscar

conjuntos numericos aula 1

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 3, do total de 45 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 6, do total de 45 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 9, do total de 45 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Prévia do material em texto

Cálculo: Conceitos
Aula 01 
Ricardo Zanardini
 
 
Conversa Inicial 
Olá! Seja bem-vindo à nossa primeira aula de Pré-Cálculo! 
Nessa disciplina iremos abordar importantes conteúdos de 
Matemática que serão necessários para a resolução de problemas do 
nosso cotidiano e também servirão de base para que possamos ter 
um bom aproveitamento em outras disciplinas do nosso curso. Além 
dos aspectos teóricos, abordaremos diversos problemas práticos para 
que possamos entender melhor onde os conteúdos que vamos 
estudar podem ser aplicados. 
Nesta aula, estudaremos os conjuntos numéricos e como a criação 
desses conjuntos foi acontecendo com o passar do tempo. Em 
seguida, estudaremos os intervalos numéricos na reta dos números 
reais. Ainda veremos as propriedades algébricas dos números reais. 
Para finalizar, estudaremos conceitos e problemas relacionados à 
potenciação e à radiciação. 
Para iniciarmos os nossos estudos, é importante que tenhamos uma 
visão geral do que é a Matemática e de quais temas estaremos 
abordando no decorrer das nossas aulas. 
No material on-line, o professor Ricardo Zanardini apresentará os 
temas que serão trabalhados nesta disciplina. Não deixe de conferir! 
 
Contextualizando 
Quando trabalhamos com programação de computadores, é muito 
comum precisarmos, em algum momento, fazer a declaração das 
variáveis que serão utilizadas no programa. 
Uma variável é uma posição de memória que assume um 
determinado conteúdo e que ocupa. 
 
Por exemplo, na linguagem C, as variáveis são: 
 char para letras e símbolos; 
 int para números inteiros de -32767 a 32767; 
 float para números reais que, nesse caso, podem conter 
casas decimais com seis dígitos de precisão e que vão de -
3,4x1038 a 3,4x1038; 
 double com números reais que podem conter casas decimais 
com dez dígitos de precisão e que vão de -1,7x10308 a 
1,7x10308. 
As variáveis ocupam um determinado espaço na memória e por isso é 
importante que a declaração seja feita corretamente. 
 Se precisarmos trabalhar, por exemplo, com uma variável 
que irá armazenar a quantidade de fornecedores de uma 
indústria, a variável a ser utilizada é do tipo int. 
 Para armazenarmos o preço de um determinado produto ou 
a porcentagem de lucro sobre a venda desse produto, a 
variável deve ser float. 
Há uma relação entre as variáveis e os conjuntos numéricos que 
veremos no decorrer da aula. Uma variável int está associada a 
números pertencentes ao conjunto dos inteiros e uma variável float ou 
double está associada a elementos pertencentes ao conjunto dos 
números reais. 
 
 
 
Conjuntos Numéricos 
O que é matemática? 
 
A matemática é uma antiga ciência de origem remota e cuja história e 
áreas de atuação são tão vastas que, mesmo após anos e anos de 
estudos, é praticamente impossível aprender tudo o que está 
relacionado a essa importante ciência. 
 
O significado da palavra matemática tem origem na Grécia e é oriundo 
da palavra mathema, que significa estudo, conhecimento, 
aprendizagem. Durante muitos séculos, os matemáticos também 
estudavam filosofia, física, engenharia, economia, astronomia entre 
muitos outros temas relacionados a situações do cotidiano. 
 
Podemos afirmar que a matemática é uma ciência que está presente 
em todas as outras. Com o uso da matemática, é possível fazer 
contagens, calcular custos e lucros, estudar o crescimento de 
populações, determinar a quantidade ideal de ingestão de um 
medicamento, calcular o valor de uma ação trabalhista, planejar a 
produção de uma indústria, determinar a rota ótima de um veículo que 
precisa fazer entregas, projetar moradias, realizar processamento 
digital de sinais e de imagens, desenvolver sistemas cada vez mais 
modernos que permitem a comunicação entre as pessoas, além de 
muitas outras aplicações importantes. 
 
O funcionamento de um computador, de um telefone celular ou de 
uma máquina de tomografia computadorizada, por exemplo, baseia-se 
em importantes temas da matemática tais como sistemas de 
equações, funções trigonométricas e em números complexos e muitos 
outros. 
 
 
 
Por outro lado, para muitos, a matemática é apresentada como uma 
disciplina difícil, extremamente abstrata e totalmente fora da realidade. 
Esse fato é no mínimo contraditório, pois praticamente todos os temas 
estudados na matemática surgiram da necessidade do ser humano de 
resolver problemas reais cotidianos. 
 
É claro que, principalmente a partir do Século XVIII, houve um grande 
avanço dos estudos relacionados à matemática e com esse avanço, 
muitos matemáticos desenvolveram teorias que, na época, 
aparentavam não ter aplicações. Um exemplo foi uma álgebra binária 
desenvolvida por George Boole, um matemático inglês, e 
apresentada, pela primeira vez, em 1847. 
 
Situações envolvendo os números 0 e 1 já existiam há mais de 2.000 
anos, mas Boole desenvolveu uma estrutura algébrica binária. Na 
época ninguém via utilidade para um estudo baseado em operações e 
propriedades relacionadas a apenas esses dois números. No entanto, 
atualmente, o funcionamento de qualquer computador é baseado na 
álgebra de Boole. 
 
Se hoje é possível escrever textos, enviar e-mails, ouvir música, 
assistir a vídeos, produzir animações gráficas, além de muitas outras 
funções, devemos isso a vários pesquisadores que, com o passar do 
tempo, foram aprimorando ideias, mas, sobretudo, devemos isso ao 
estudo desenvolvido por Boole no Século XIX. 
 
Vamos assistir a um vídeo que nos mostra o desenvolvimento dos 
computadores e a relação com os números. 
https://www.youtube.com/watch?v=9E4sesvzT1M&list=UUWhuro_dMp
3wVDloVCbapDQ 
 
Mas se a matemática é tão importante e presente em nossas vidas, 
por que muitas pessoas têm dificuldades em estudar e aprender 
matemática? 
Recentemente um pesquisador inglês chamado Keith Devlin 
desenvolveu um importante estudo sobre isso e, como conseqüência, 
escreveu um livro intitulado O Gene da Matemática. Nesse livro Devlin 
afirma que todas as pessoas possuem um instinto para a matemática 
e são capazes de aprender matemática. O que facilita ou dificulta a 
aprendizagem de algumas pessoas é a capacidade de abstração. 
 
Como exemplo, muitas pessoas resolveram facilmente problemas 
onde uma situação concreta era apresentada. No entanto, quando os 
mesmos problemas eram apresentados, mas de uma forma abstrata, 
envolvendo variáveis do tipo x, y, z, as pessoas apresentavam 
dificuldades em compreender e em resolver esses problemas. 
Segundo Devlin, as pessoas conseguem aprender melhor quando o 
que é estudado tem um significado para elas. 
 
Sabemos que a matemática está presente em praticamente todos os 
eventos do nosso cotidiano. A sua história está diretamente 
relacionada com a história da humanidade. 
Vamos fazer a leitura do texto que nos conta sobre o desenvolvimento 
da contagem e sobre a criação dos conjuntos numéricos que são a 
base de toda a matemática. 
http://www.ifba.edu.br/dca/Corpo_Docente/MAT/EJS/SOBRE_A_HIST
ORIA_DOS_NUMEROS.pdf 
 
Para concluir esse tema assista uma animação da Disney onde o 
famoso personagem Donald faz uma viagem pelo fantástico mundo da 
MATEMÁGICA. 
http://www.youtube.com/watch?v=wbftu093Yqk 
 
 
 
Vamos agora aprender um pouco sobre a evolução dos números que 
está diretamente relacionada com a evolução da humanidade! 
A origem da matemática está ligada à origem da humanidade. 
Segundo a história, os primeiros indícios da vida humana na terra são 
encontrados na idade da pedra, período compreendido entre 
5.000.000 e 3.000 a.C.No início, os seres humanos estavam organizados em grupos de 
características nômades. A necessidade era buscar novos lugares 
para se proteger das variações climáticas e também na busca de 
alimentos. De acordo com os estudos feitos, era um mundo difícil e 
hostil. Os principais alimentos eram pequenos animais, frutas, 
castanhas e raízes. As pessoas habitavam espaços nas savanas. Os 
locais do planeta com maior número de habitantes eram as regiões 
conhecidas, atualmente, como África, sul da Europa, sul da Ásia e 
América Central. 
 
Nessa época surgiram os primeiros relatos da existência de sistemas 
primitivos de contagem. Alguns registros históricos mostram que há 
aproximadamente 50.000 anos os sistemas de contagem eram 
baseados em uma relação biunívoca, ou seja, para cada objeto a ser 
contado, era feito uma ranhura em um pedaço de barro. Também era 
comum o uso de nós em cordas ou entalhes em pedaços de madeira. 
 
Acredita-se que antes mesmo da fala, os primeiros sons vocais eram 
utilizados para o registro verbal de números. A contagem envolvia, 
desde a quantidade de membros de um grupo de pessoas até a 
quantidade de carneiros em um rebanho. O uso dos dedos também 
era feito para pequenas contagens, onde as pessoas dobravam ou 
esticavam dedos para cada unidade contada. 
 
 
O detalhe é que essas técnicas funcionavam muito bem para 
pequenas quantidades, mas no caso de contagens mais extensas, 
esse processo teve que ser sistematizado. Dentre diversas formas 
possíveis, a forma de sistematização mais utilizada é o que chamamos 
de sistema posicional. Nesse sistema temos um conjunto limitado de 
símbolos para que possamos representar uma quantidade infinita de 
números. 
 
Nesse sistema, escolhe-se um número b como base. Todos os 
números maiores ou iguais a b são combinações dos números 
menores do que b. O nosso sistema de numeração é um sistema 
posicional de base 10. A escolha do número 10 é feita de forma 
conveniente, pois corresponde ao número de dedos das mãos de uma 
pessoa. Os números maiores do que 10 são combinações dos 
números menores do que 10. O próprio 10 é uma combinação de 0 e 
1, ambos menores do que 10. Nesse caso, com os algarismos 0, 1, 2, 
3, 4, 5, 6, 7, 8 e 9 é possível gerar uma quantidade infinita de 
números. 
 
Números Naturais (N) 
O primeiro conjunto numérico surgiu da necessidade do ser humano 
de realizar contagens. Esse conjunto numérico é conhecido como 
conjunto dos números naturais e é formado pelos números 1, 2, 3... E 
representado pela letra N. Por isso podemos escrever: 
 
N = {1, 2, 3, 4,...} 
 
Alguns autores consideram o número zero como um elemento 
pertencente ao conjunto dos naturais. Neste caso, o conjunto fica 
assim: 
N = {0, 1, 2, 3, 4,...} 
 
 
 
Durante muito tempo esses números foram utilizados, não só nas 
contagens, mas também na realização de operações tais como 
adição, subtração, multiplicação e divisão. A limitação do conjunto 
ficou cada vez mais evidente em situações onde era necessário 
subtrair uma quantidade maior do que a existente, 7-10, por exemplo. 
 
Números Inteiros (Z) 
 
Atualmente sabemos que 7-10=-3, mas se considerarmos o conjunto 
dos números naturais, essa operação não é possível. Em decorrência 
da necessidade, foi criado o conjunto dos números inteiros, formado 
pelos números naturais e os respectivos simétricos, além, é claro, do 
número 0. 
 
Assim o número 1 tem o seu simétrico representado por -1, o número 
2 tem como simétrico o número -2 e assim por diante. O número 5, por 
exemplo, indica a existência de 5 unidades enquanto que o número -5 
indica a falta de 5 unidades. A representação do conjunto dos inteiros 
é feita pela letra Z: 
 
Z = {...,-4, -3, -2, -1, 0, 1, 2, 3, 4,...} 
 
Números Racionais (Q) 
 
Com o conjunto dos números inteiros, muitos problemas eram 
resolvidos. No entanto, em relação às divisões, o conjunto dos inteiros 
apresentava limitações. Sabemos que 10/2, por exemplo, é igual a 5. 
Mas como era possível representar divisões cujo resultado não era um 
número inteiro, tais como 3/4 ou 10/3? Com o conjunto dos inteiros, 
isso não era possível! 
 
Por isso foi criado um conjunto contendo todos os números que 
podem ser escritos sob a forma de uma razão (divisão). Esse conjunto 
recebeu o nome de conjunto dos racionais e é representado pela letra 
Q. Um número racional é um número da forma a/b onde a e b são 
números inteiros. A condição é que b seja diferente de 0, pois, como 
sabemos, é impossível dividirmos um número por 0. 






 0,,, bZbZa
b
a
Q
 
 
Com o conjunto dos números racionais foi possível representar 
divisões cujos resultados não eram números inteiros. A razão 3/4, por 
exemplo, na forma decimal, corresponde a 0,75 e a razão 10/3 é igual 
a 3,333333333… 
 
Observe que no caso da fração 3/4, o resultado é um número decimal 
com duas casas após a vírgula. Em relação à fração 10/3, temos 
infinitas casas decimais, todas iguais a 3. Se dividirmos 3 por 11, o 
resultado é 0,272727272727... O número de casas decimais também 
é infinito e o padrão de repetição se mantém, agora com os 
algarismos 2 e 7. Esse padrão de repetição é conhecido como dízima 
periódica? 
 
Trata-se de um número, escrito na forma decimal, que após um 
determinado algarismo, possui um conjunto de algarismos que se 
repetem, sempre na mesma ordem, infinitamente. 
 
Uma forma simples de representarmos uma dízima periódica é 
adicionarmos uma barra sobre os algarismos que se repetem. Por 
exemplo: 
27,0...27272727272727,0 
 
3,12...33333333333,12 
 
3412,2...34341234343434,2 
 
E assim por diante. 
 
 
 
 
Geometricamente, podemos representar frações como divisões de um 
segmento. Por exemplo, vamos considerar um intervalo entre 0 e 2 e 
algumas frações para ilustrarmos melhor essa representação 
geométrica: 
 
 
No vídeo a seguir, temos diversas situações onde é possível perceber 
a utilização de razões: 
https://www.youtube.com/watch?v=EKKaofSIrfg&list=UUWhuro_dMp3
wVDloVCbapDQ 
 
Números Irracionais (I) 
 
No Século VI a.C., um importante matemático grego, Pitágoras, 
desenvolveu vários estudos importantes para o desenvolvimento da 
matemática. Uma de suas descobertas foi a relação métrica entre os 
lados de um triângulo retângulo. 
 
Pitágoras descobriu que se elevarmos ao quadrado a medida do maior 
lado do triângulo retângulo (hipotenusa), o resultado será igual à soma 
dos quadrados das medidas dos lados menores do triângulo (catetos). 
Essa observação deu origem ao famoso teorema de Pitágoras: 
222 cba 
. 
 
 
 
Entenda melhor qual é a aplicação prática do Teorema de Pitágoras: 
http://brasilescola.uol.com.br/matematica/aplicacoes-teorema-
pitagoras.htm 
 
Durante muito tempo acreditou-se que todos os números existentes 
poderiam ser escritos sob a forma a/b. No entanto, se tivermos um 
triângulo retângulo de catetos iguais a 1, pelo teorema de Pitágoras 
temos que o valor da hipotenusa corresponde a 
2
, cujo valor é igual 
a 1,41421356237309... (as reticências indicam que há infinitas casas 
decimais, mas o padrão de repetição encontrado nos números 
racionais não ocorre aqui). 
 
Para Pitágoras e seus discípulos, a descoberta da existência de pelo 
menos um número irracional foi perturbador e contrário à crença dos 
pitagóricos, que afirmava que tudo dependia dos números inteiros. 
Matematicamente é possível mostrar que 
2
 não pode ser escrito 
como a divisão de dois números inteiros. 
 
Durante muito tempo acreditava-seque 
2
 era o único número 
irracional, mas com o passar do tempo foi possível mostrar que
3
, 
5
, 
6
, 
7
, 
8
, 
10
, 
11
, 
12
, 
13
, 
14
, 
15
 e 
17
 também 
eram irracionais. Atualmente, sabemos que o conjunto dos irracionais 
é formado por um número de elementos muito maior do que o 
conjunto dos racionais. 
 
 
 
 
Vamos entender um pouco mais sobre números irracionais no vídeo a 
seguir: 
https://www.youtube.com/watch?v=Lv2hivRYCGc 
 
Números Reais (R) 
Como, até o momento, temos dois conjuntos distintos e sem 
elementos em comum: o conjunto dos racionais e o conjunto dos 
irracionais, nada mais justo do que criar um conjunto para agrupar os 
elementos desses dois importantes conjuntos numéricos. E pensando 
assim, foi criado o conjunto dos números reais, formados por números 
racionais e por números irracionais. 
 
Podemos escrever, então, que o conjunto dos reais “R”, é a união 
“símbolo U” do conjunto dos racionais “Q” com o conjunto dos 
irracionais ”I”: 
R = Q U I. 
 
As letras R, Q e I representam, respectivamente, os conjuntos dos 
reais, racionais e irracionais. A letra U indica a união dos conjuntos, ou 
seja, o agrupamento dos elementos de Q e de I em um único conjunto, 
denotado por R. 
 
A cada número real, temos um ponto associado a uma reta, conhecida 
como reta dos reais, e a cada ponto da reta temos um número real 
associado. 
 
O símbolo ∞ representa o infinito. Como uma reta possui infinitos 
pontos contínuos, ou seja, não há espaço vazio entre dois pontos 
consecutivos, o conjunto dos reais também é formado por infinitos 
números consecutivos. Por esse motivo, podemos dizer que o 
conjunto dos reais é contínuo. 
 
Agora vamos determinar a forma decimal dos números 
racionais , e . 
 
1. A forma decimal é obtida pela divisão do valor numérico no 
numerador pelo valor numérico no denominador. Em alguns casos 
ocorre uma quantidade finita de dígitos: 
 = -5,625 
 
2. Em outros casos, a quantidade de dígitos é infinita, o que leva as 
dízimas periódicas. 
Exemplos: 
 
 e 
 
3. Quando ocorre a repetição de uma sequência de dígitos pode-se 
utilizar uma barra sobre os dígitos da repetição para simplificar a 
notação, ou seja, nos exemplos anteriores pode-se escrever: 
0,1515151515… = e 0135135135135…. = 
 
No material on-line, o professor Ricardo Zanardini irá conversar 
conosco sobre os conjuntos numéricos. Não deixe de acessar! 
 
 
Intervalos Numéricos 
Quando falamos de números reais, muitas vezes nos deparamos com 
problemas onde não temos necessariamente um único valor, mas sim 
um conjunto de valores que estão dentro de um intervalo. A 
temperatura, ao longo do dia, por exemplo, varia em função do tempo, 
dentro de um intervalo que vai desde a temperatura mínima daquele 
dia até a temperatura máxima. 
O vídeo a seguir inicia um resumo de 30 mil anos de ideias e 
desenvolvimentos matemáticos em 58 minutos. É o primeiro de uma 
série de 4 episódios de uma produção da BBC e da Open 
University sobre a história e o desenvolvimento da Matemática. 
Interessante, não? 
https://www.youtube.com/watch?v=BWtrVYNS3BI 
 
Para que possamos saber mais sobre intervalos numéricos e suas 
aplicações, é importante que façamos a leitura do texto a seguir. O 
texto trata sobre números inteiros, racionais e irracionais, além da 
questão da não-enumerabilidade do conjunto dos reais. 
http://super.abril.com.br/comportamento/georg-cantor-e-o-alefe-zero-o-
homem-que-colocou-o-infinito-no-bolso 
E, para auxiliar na compreensão do conceito dos intervalos numéricos, 
assista ao vídeo do professor Ricardo no material on-line! 
Bem, sabemos que o conjunto dos números reais é um conjunto 
contínuo formado por uma infinidade de números (racionais e 
irracionais) onde cada número real está associado a um ponto da reta 
real e cada ponto dessa reta está associado a um número real. 
Além dos números reais estarem associados aos pontos de uma reta, 
uma outra particularidade é que o conjunto dos números reais é 
ordenado, ou seja, se compararmos dois números reais a e b 
quaisquer, teremos três possibilidades: 
1°) a é igual a b, ou seja a = b 
2°) a é menor do que b, ou seja, a < b 
3°) a é maior do que b, ou seja, a > b 
Dessa forma, na reta dos reais, os números à direita do 0 são 
positivos e crescentes e os números à esquerda de 0 são negativos e 
decrescentes. 
 
Em virtude dessa ordem, podemos afirmar, por exemplo, que 7 > 2 (7 
é maior do que 2) ou que 5 < 18 (5 é menor do que 18). Também 
podemos escrever que 4 = 4 ou que 3 + 5 = 8. 
 
Mas, além da possibilidade de compararmos números reais, muitas 
vezes não temos necessariamente um número, mas sim uma 
quantidade de números em um certo intervalo. 
 
Em situações práticas, temos muitos exemplos onde utilizamos 
intervalos numéricos. Podemos citar, por exemplo, a temperatura de 
armazenamento de um determinado produto alimentício (1°C a 5°C), o 
estoque de um armazém (5.000 a 7.000 unidades de um produto), a 
quantidade de feijão em uma embalagem (0,987 kg a 1,013 kg)... 
 
Em uma pesquisa que mede as intenções de voto de um candidato, é 
muito comum termos uma margem de erro em função da amostra 
escolhida. Por exemplo, se um candidato tem 55% das intenções de 
voto com uma margem de erro de 2% para mais ou para menos, na 
verdade, as intenções de voto desse candidato variam de 53% a 57%. 
 
 
É só calcularmos 55% - 2% = 53% e 55% + 2% = 57%. Podemos 
escrever esse intervalo utilizando desigualdades: 
%57%53  x
 
Onde x indica a porcentagem de intenções de voto desse candidato. 
Observe que “x“ pode assumir qualquer valor de 53% à 57%, ou seja, 
os extremos que são 53% e 57%, respectivamente estão incluidos. O 
símbolo 

 significa “menor ou igual” e o símbolo 

 significa “maior ou 
igual”. 
 
Esse intervalo também pode ser representado através da notação de 
intervalo: 
[53%, 57%] 
ou também graficamente: 
 
 
O intervalo que acabamos de ver é chamado de intervalo fechado, 
pois os extremos (53% e 57%) fazem parte das possibilidades. Em 
alguns casos, temos intervalos abertos e intervalos semi-abertos, onde 
um ou os dois extremos não fazem parte das possibilidades do 
problema. 
 
Para ilustrarmos melhor isso, vamos imaginar um amplificador cujo 
volume varia de 0 a 10. Podemos selecionar qualquer valor dentro 
desse intervalo. Mas, por questões da qualidade do equipamento, há 
ruídos indesejáveis quando o volume está no máximo. Por isso, o 
objetivo é elevar o volume, mas nunca deixá-lo no 10. Podemos 
representar essa situação através de desigualdades: 
100  x
 
Observe que se x é o volume do amplificador, ele faria de 0 a 10, 
podendo assumir qualquer valor nesse intervalo, incluindo o 0 
(estamos utilizando o símbolo 

). No entanto, “x” não pode ser igual a 
10. Por esse motivo, estamos utilizando o símbolo < no lugar do 
símbolo 

. 
 
Graficamente esse intervalo é representado com uma bola fechada no 
zero e uma bola aberta no 10. 
 
Dessa maneira, os intervalos podem ser classificados como segue: 
 
[a, b] 
Intervalo 
fechado 
bxa 
 
 
(a, b) 
]a, b[ 
Intervalo 
aberto 
bxa 
 
 
[a, b) 
[a, b[ 
Intervalo 
aberto à 
direita e 
fechado à 
esquerda 
bxa 
 
 
(a, b] 
]a, b] 
Intervalo 
aberto à 
esquerda e 
fechado à 
direita 
bxa 
 
 
Nesse exemplo, “a e b” são dois números reais quaisquer e chamados 
de extremos do intervalo. O número “a” também pode serchamado de 
limite inferior do intervalo e “b” o limite superior do intervalo. 
 
É importante ressaltar que se estivermos tratando com intervalos que 
envolvem o infinito (-∞ ou ∞), o intervalo no infinito sempre será 
aberto. Isso se deve ao fato de que o infinito não é considerado como 
sendo um número, pois, por definição, número indica uma quantia 
exata e o infinito indica uma quantia muito grande, mas incerta. É 
impossível afirmar quanto vale o infinito. Por exemplo, o intervalo x>2 
 
 
é representado por (2, ∞) e o intervalo x
4
 é representado por (-∞, 4]. 
O conjunto dos reais pode também ser representado por um intervalo: 
(-∞,∞). 
 
Vamos ver se você aprendeu a representar corretamente os 
intervalos? 
Uma agência de modelos infantis, busca uma criança que tenha no 
máximo 5 anos de idade, para divulgação de vestuário de loja. Deve-
se considerar que a criança (modelo infantil) possa ser de recém-
nascido (poucos dias de vida) até 5 anos de idade (inclusive). 
 
Tem-se o intervalo 0 < x < 6 onde os extremos representam valores 
em anos. No lado esquerdo do intervalo usa-se 0 < x pois o modelo 
infantil (a criança) deverá ter pelo menos alguns dias de vida, e no 
lado direito usa-se x < 6 pois seriam aceitas crianças até 6 anos 
incompletos (ou 5 anos e alguns meses). 
 
A taxa de juros para aquisição de imóveis pelo SFH (sistema 
financeiro de habitação) ficará entre 6,5% e 9,5% ao ano. Neste caso, 
a palavra “entre” indica que os valores de 6,5% e 9,5% não serão 
incluídos no intervalo. Tem-se o intervalo 6,5 < x < 9,5 onde “x” denota 
a taxa de juros anual. 
 
Devido à greve dos caminhoneiros, o preço da gasolina, na região de 
Curitiba, está variando de R$ 3,20 a R$ 3,80. Neste 
caso, “x” representa o valor do litro de combustível, que pode ser 
adquirido a partir de R$ 3,20 (inclusive) até R$ 3,80 (inclusive). A 
notação de intervalo correspondente é 3,20 ≤ x ≤ 3,80. 
 
Os itens à venda na loja de presentes populares, tem preços inferiores 
a R$ 30,00. Neste caso, deve-se considerar que algum item possa 
custar alguns poucos centavos ou até algum valor inferior (e não igual) 
a R$ 30,00. Escreve-se a solução sendo 0 < x < 30. 
 
Potenciação 
 
Propriedades Algébricas 
A álgebra é um ramo da matemática que estuda situações envolvendo 
variáveis e números. Já sabemos que os números são utilizados para 
que possamos representar quantidades finitas. A esses números 
damos o nome de constante. Mas o que são as variáveis? As variáveis 
são elementos, geralmente representados por letras, que indicam 
quantidades desconhecidas. 
 
Se comprarmos dois X-Salada e pagarmos 10 reais, quanto custou 
cada X-Salada? Podemos representar o preço do X-Salada pela letra 
x, que é a nossa variável, também chamada de incógnita. 
 
Quando estudamos álgebra, é muito comum nos depararmos com 
expressões algébricas, ou seja, problemas relacionados a operações 
(soma, subtração, multiplicação, potenciação, radiciação...) 
envolvendo não só as constantes, mas envolvendo constantes e 
variáveis. 
 
Para que possamos resolver problemas algébricos, é importante 
conhecermos algumas propriedades algébricas dos números reais. 
 
1. Propriedade comutativa 
Os números reais são comutativos, tanto na adição quanto na 
multiplicação. Mas o que isso significa? 
 
Se somarmos 4+5 ou 5+4, por exemplo, obteremos o mesmo 
resultado, ou seja, 4+5=9 e 5+4=9. Por isso podemos dizer que a 
adição de dois reais é comutativa. A troca da ordem dos números não 
altera o resultado da adição. 
 
 
 
O mesmo ocorre com a multiplicação. Se multiplicarmos 3X5 ou 5X3, 
iremos obter o mesmo resultado: 3X5=15 e 5X3=15. A multiplicação 
de dois números reais gera o mesmo resultado, independente da 
ordem dos números que estão sendo multiplicados. 
 
De uma maneira geral, podemos escrever que: 
a+b=b+a 
e 
a.b=b.a 
Para todo a e b reais. 
 
2. Propriedade associativa 
Uma propriedade bastante interessante dos números reais é a 
chamada propriedade associativa em relação à adição e à 
multiplicação. 
 
Se tivermos que somar três números tais como 2+5+8, por exemplo, 
podemos somar 2+5 primeiro, que é igual a 7 e, em seguida, 
somarmos esse resultado com 8, totalizando 15. 
 
Também é possível somarmos 5+8 primeiro, que resulta em 13 e, em 
seguida, somarmos 13 com 2, cujo resultado também é igual a 15. Ou 
seja, se alterarmos a ordem dos números que estamos somando, o 
resultado permanece o mesmo. 
 
De uma forma simplificada, podemos dizer que (2+5)+8=2+(5+8) ou, 
generalizando, (a+b)+c=a+(b+c). O mesmo vale para a multiplicação 
de números reais: (a.b).c=a.(b.c). Essa propriedade permite 
alterarmos a ordem dos números que estamos somando ou dos 
números que estamos multiplicando sem alterarmos o resultado final. 
 
 
 
 
3. Propriedade do elemento neutro 
Tanto na adição quanto na multiplicação temos a existência do 
elemento neutro. Mas o que é um elemento neutro? 
Matematicamente, o elemento neutro é aquele que não altera o 
resultado de uma operação. 
Na adição o elemento neutro é o 0 (zero) pois, qualquer número 
somado com 0 é igual ao próprio número. Por exemplo, 4+0=4, 8+0=8, 
122+0=122 e assim por diante. 
 
Em relação à multiplicação, o elemento neutro é o número 1 (um). 
Qualquer número real multiplicado por 1 resulta no próprio número. 
Podemos citar, como exemplo, 33X1=33, (-3)X1=(-3), 6X1=6. Logo, 
podemos dizer que a + 0 = a e a . 1 = a ou a x 1 = a, onde “a” é um número 
real. 
 
4. Propriedade do elemento inverso 
Além do elemento neutro, temos a existência dos inversos aditivo e 
multiplicativo. Na adição, o inverso de um número “a”, também 
conhecido como oposto de “a”, é o número “–a”, ou seja, o inverso 
aditivo de 2 é o -2, o inverso aditivo do 5 é o -5, o inverso aditivo do -4 
é o –(-4)=4, ou seja, o inverso aditivo do -4 é o 4. 
 
Mas por que isso? 
 
No conjunto dos reais, a soma de um número com o seu inverso 
aditivo resulta no elemento neutro. Isso quer dizer que 2+(-2)=0, 3+(-
3)=0 -4+4=0. Em relação à multiplicação, o significado do elemento 
inverso é bem parecido com o da adição. 
 
Na multiplicação de um número real pelo seu inverso multiplicativo, o 
resultado é o neutro da multiplicação que é o número 1. Por isso o 
inverso multiplicativo de um número real “a” é igual a 1/a, pois 
(a.1)/a=1 com a

0. Como exemplo, temos que o inverso multiplicativo 
 
 
de 2 é 1/2, o inverso multiplicativo de 5 é 1/5, o inverso multiplicativo 
de 3/7 é 7/3, o inverso multiplicativo de -6 é -1/6. 
 
5. Propriedade distributiva 
Finalmente, a última propriedade dos reais a ser estudada é a 
propriedade distributiva, onde é possível afirmar que a.(b+c)=a.b+a.c. 
Por exemplo, 3.(x+y)=3.x+3.y e 4.(5+7)=4.5+4.7. 
 
As propriedades dos reais são muito úteis na resolução de equações, 
fatoração e outros problemas relacionados à matemática. 
 
Bom, agora que já vimos as propriedades dos números reais, vamos 
estudar a potenciação. Veremos o que é, quais são as suas 
propriedades e algumas das aplicações. 
 
Potenciação 
Muitas vezes nos deparamos com problemas onde é necessário 
multiplicarmos uma sequência de números iguais. Quando isso ocorre, 
é possível utilizarmos a potenciação. 
 
Na matemática financeira a potenciação é utilizada para que 
possamos calcular o acumulado de uma dívida que sofre uma 
incidência constante de juros a cada período de tempo, calculado 
sempre sobre o valor atualizado dessa dívida. Para ilustrarmos 
melhor, vamos imaginar que a dívida de uma pessoadobra de valor a 
cada ano. Supondo que a dívida inicial é de R$ 100,00, temos a 
seguinte situação: 
 
De um modo geral, podemos dizer então que a potenciação é uma 
sequência de multiplicações de “n” fatores iguais. O número “n” é 
chamado de expoente, o fator que se repete é chamado de base e o 
resultado das multiplicações é chamado de potência. 
 
A seguir, alguns exemplos de potências: 
a) 32=3.3=9 
b) 53=5.5.5=125 
c) (-3)2=(-3).(-3)=9 
d) -32=-3.3=-9 
 
É importante ressaltar que no caso da potência (-3)2, a base tem sinal 
negativo. Por isso utilizamos a regra de sinais que diz que a 
multiplicação de dois números negativos resulta em um número 
positivo. No caso da potência -32, estamos elevando o número 3 ao 
quadrado. O sinal negativo é de toda a expressão, e não da base. Por 
isso que o resultado permanece negativo. 
 
Para que possamos resolver problemas algébricos, é importante 
conhecermos algumas propriedades algébricas dos números reais. 
 
1. Potência elevada a 0 
Todo número real diferente de 0 elevado a 0 é igual a 1. 
a0 = 1, a ≠ 0. 
 
Exemplificando, pela propriedade da divisão de potências de 
mesma base, temos que: 
 
Mas observe que se calcularmos as potências, temos: 
 
Logo, 20 = 1. E isso vale para qualquer real diferente de zero. 
 
É importante ressaltar que 00 é uma indeterminação. Isso 
ocorre por que há um conflito de regras. Sabemos que 0 elevado 
a qualquer número é igual a 0 e qualquer número elevado a 0 é 
 
 
igual a 1. Mas e 00 é igual a 0 ou igual a 1? Como não é possível 
encontrar uma resposta para essa pergunta, dizemos que 00 é 
uma indeterminação. 
 
2. Potência de expoente negativo 
Uma potência de expoente negativo é igual ao inverso multiplicativo 
da mesma potência, mas com o expoente positivo: 
0,
1
 a
a
a
n
n
. 
Como exemplo, temos que: 
a) 
3
3
5
1
5 
 
b) 
4
4
2
1
2 
 
c) 
 
 7
7
6
1
6



 
 
3. Multiplicação de potências de base diferente 
A potência de um produto é o produto das potências: 
  nnn baba .. 
. 
Como exemplo, temos: 
a) 
  222 5.35.3 
 
b) 
  444 .. yxyx 
 
 
4. Divisão de potências de base diferente 
A potência de um quociente é o quociente das potências: 
n
nn
b
a
b
a






. 
Podemos exemplificar essa propriedade da seguinte forma: 
a) 
4
44
5
3
5
3






 
b) 
2
22
q
p
q
p





 
 
5. Potência de um expoente fracionário 
Quando o expoente de uma potência é uma fração resulta em 
uma raiz cujo índice é o denominador da fração, e o numerador é 
a potência interna no radicando: 
 
Por exemplo: 
 
 
 
6. Potência elevada a 1 
Todo número elevado a 1 terá como resultado ele mesmo. 
a1 = a 
7. Multiplicação de potências de mesma base 
Na multiplicação de potências de mesma base, repetimos a base e 
somamos os expoentes: 
nmnm aaa .
 
Por exemplo, 
53232 222.2  
 pois 

5
22
32 22.2.2.2.22.2
32

. 
Essa propriedade é muito utilizada quando estamos trabalhando com 
multiplicações de potências onde a base é um valor desconhecido. 
Se tivermos que multiplicar 
3x
 por 
4x
, o resultado será 
7x
, pois 
74343. xxxx  
. 
 
 
 
 
8. Divisão de potências de mesma base 
Na divisão de potências de mesma base, devemos repetir a base e 
subtrair os expoentes: 
nm
n
m
a
a
a 
 
É fácil perceber que isso ocorre de fato. Vamos ver o seguinte 
exemplo: 
2.2.2
2.2.2.2.2
2
2
3
5

. 
Simplificando numerador com denominador, temos: 
222.2
2.2.2
2.2.2.2.2

 
Ou seja, 
42.222
2
2 235
3
5
 
. 
Logo, se tivermos que dividir 
8x
 por 
3x
, por exemplo, o resultado 
será 
5x
, pois 
538
3
8
xx
x
x
 
. 
 
9. Potência de uma potência 
Na potência de uma potência, repete-se a base e 
multiplicam-se os expoentes: 
(am)n = a(m . n) 
 
a. (23)4 = 23 . 4 = 212 
b. (x5)2 = x5 . 2 = x10 
 
https://www.youtube.com/watch?v=CTSx-
AoBlEo&index=125&list=PLf4asln_6hSeN868g8mXhAAQfQV6L1nsc 
 
Chegou a hora de praticar. Usando as propriedades da 
potenciação, simplifique as expressões abaixo, depois clique 
sobre elas e veja a resolução completa! 
a) 
b) 
c) 
d) 
 
Notação científica 
Em algumas áreas do conhecimento que trabalham com quantias 
muito grandes ou com quantias muito pequenas, é comum o uso de 
potências para que os cálculos sejam feitos de maneira mais simples. 
 
Observe: 
365.000 = 3,65 × 100.000 = 3,65 × 105 
0,7=7÷10=7 × 10(-1) 
 
Vamos agora assistir a um vídeo sobre notação científica e potências 
de 10: 
https://www.youtube.com/watch?v=4UfGn3FLtQY&index=24&list=PLf4
asln_6hSeN868g8mXhAAQfQV6L1nsc 
 
 
Se tivermos que efetuar a multiplicação de 4000000 por 3700000000 
para depois dividirmos o resultado por 2800000, teremos muito 
trabalho. No entanto, se utilizarmos a notação científica e algumas 
propriedades das potências, tudo fica mais fácil. Observe: 
 
   
 6
96
10X8,2
10X7,3X10X4
2800000
3700000000X4000000

 
 
O próximo passo é agruparmos os números (realizando as 
multiplicações e divisões) e as potências de 10 (utilizando as 
propriedades da potenciação): 
   
 
69610X
8,2
7,3X4 
 
 
 
   
 
529000000010X29,510X
8,2
7,3X4 99 
. 
A notação científica é a maneira utilizada para representar valores 
muito elevados ou muito pequenos, onde surge uma quantidade 
considerável de dígitos nulos antes ou depois do digito significativo 
(não-nulo). Para escrever os valores com notação científica, usamos 
as potências de 10 como fator multiplicativo junto aos dígitos não 
nulos, de maneira que o valor a ser denotado deve estar entre 0 e 10 
(intervalo aberto nestes extremos). 
 
Vamos praticar? Usando a notação científica, expresse as grandezas 
abaixo (clique sobre elas e veja o resultado). 
 
a) A massa de um nêutron é de aproximadamente 0,000 000 000 000 
000 000 000 001 672 gramas. 
Resposta: 
1,672 . 10-24 g 
 
b) Um ano-luz (distância que a luz viaja em um ano) é de 
aproximadamente 9.500.000.000.000 km. 
Resposta: 
9,5 . 1012 Km 
 
c) A carga elétrica de um elétron (dada em Coulombs) é de -0,000 000 
000 000 000 000 160 21. 
Resposta: 
-1,6021 . 10-19 C 
 
Usando a notação científica, calcule os valores correspondentes às 
expressões abaixo: 
 
 
b) 2,38 . 108 . 4,22 . 10-7 . 3,41 . 10 4 
Para facilitar a obtenção dos resultados, é conveniente agrupar as 
partes com as constantes e agrupar as partes do número que 
envolvam as potências de 10, e operar com cada grupo 
separadamente. 
 
Resolução: 
 
 
Fazendo a multiplicação de 1,37 por 3,18 resulta 4,3566 que dividido 
por 4,15 resulta 1,04978... com aproximação para 1,05 (utilizando 
duas casas decimais). Para as potências de 10, usa-se as 
propriedades relativas a multiplicação de potências de mesma base 
𝑎𝑚. 𝑎𝑛 = 𝑎𝑚+𝑛 e de divisão de potências de mesma base 𝑎𝑚/𝑎𝑛 = 𝑎𝑚−𝑛 
simultaneamente, resultando: 
 
E por fim, juntando as duas partes tem-se o resultado 1,05 . 104. 
 
Para este caso, agrupando as constantes, tem-se 2,38 . 4,22 . 3,41 
resultando 34,248676. Para as potências de 10, tem-se 108 . 10−7 . 104 
que resulta 108 . 10−7 . 104 = 10(8)+(−7)+(4) = 105. 
O resultado obtido é 34,248676.105. Este resultado apresenta um 
problema em sua apresentação,pois a parte relativa a constante na 
notação científica deve ser um valor do intervalo 0 < C < 10. 
Reescrevendo o valor de 34,248676 como sendo 3,4248676.101 o 
valor obtido será 3,4248676.101.105 onde as potências de 10 devem 
ser agrupadas. 
 
 
Usando a propriedade 𝑎 𝑚. 𝑎 𝑛 = 𝑎 𝑚+𝑛 resulta como solução da 
questão 3,4248676.106. Considerando que os valores iniciais foram 
expressos com apenas duas casas decimais, pode-se fazer o 
arredondamento do valor obtido para 3,42.106. 
Para entendermos melhor, vamos imaginar a seguinte situação: uma 
pessoa pagou com 10 meses de atraso a fatura do cartão de crédito 
cujo valor inicial era de R$ 1.676,30. Se os encargos financeiros 
correspondem a 16% ao mês, determine o total pago em decorrência 
do atraso. 
 
Para resolvermos o problema, o primeiro passo é determinarmos quais 
são os termos conhecidos. O capital é o valor original da fatura, nesse 
caso, R$ 1.676,30. O tempo corresponde a 10 meses e a taxa de 
juros, nesse caso, encargos financeiros, é igual a 16% que, na forma 
decimal, equivale a 0,16. O montante é o valor que estamos querendo 
calcular. Portanto: 
C = 1.676,30 
n = 10 meses 
i = 16%=0,16 ao mês 
M = ? 
Agora que já temos os valores, basta substituirmos cada um deles na 
fórmula: 
 niCM  1.
. 
 1016,01.30,1676 M
 
 1016,1.30,1676M
 
 411435079,4.30,1676M
 
89,7394M
 
Logo, o total a ser pago pela fatura, em função do atraso, é de R$ 
7.394,89. 
 
 
Muitos problemas que estudaremos durante a nossa disciplina podem 
ser resolvidos devido às propriedades dos números reais. Mas quais 
são essas propriedades? Assista à videoaula, disponível no material 
on-line para saber! 
 
Radiciação 
Assim como a potenciação, a radiciação serve para simplificarmos 
expressões matemáticas. Também temos diversas aplicações da 
radiciação relacionadas a problemas do cotidiano. Em particular, 
veremos sua aplicação relacionada à matemática financeira. 
A operação inversa à potenciação e conhecida como radiciação. Por 
exemplo, a raiz quadrada de 16 é igual a 4 pois 42=16. Podemos 
representar a raiz quadrada de 16 como . Note que (-4)2também é 
igual a 16, pois (-4) × (-4) = 16. Por isso, podemos ter como resultados 
da raiz quadrada de 16 os valores 4 ou -4. Por convenção, iremos 
considerar como resultado de uma raiz de índice par o número 
positivo. 
 
Assim como na potenciação, é possível utilizarmos as propriedades da 
radiciação para simplificarmos expressões matemáticas. Também 
temos diversas aplicações da radiciação relacionadas a problemas do 
cotidiano. Em particular, estaremos vendo aplicação relacionada à 
matemática financeira. 
Considerando = b ↔ bn = a, com a ≥ 0, onde “a” é o radicando, n é 
o índice e b é a raiz n-ésima de a, quando n é impar, temos uma única 
raiz real. Por exemplo, , pois 23=8. Observe que , 
pois (-2)3 = (-2)(-2)(-2) = -8. Quando o índice n de uma raiz é um 
número par, temos duas raízes reais, uma com o sinal positivo e outra 
com o sinal negativo. No entanto, não existe raiz real de um número 
 
 
negativo quando o índice for par. Por exemplo, não existe raiz real 
de , pois não há um número real que, elevado ao quadrado, 
resulte em 16. Problemas que envolvem raízes de índice par e 
radicando negativo podem ser resolvidos utilizando o conjunto dos 
números complexos. 
 
A radiciação é útil em muitos problemas reais. Alguns exemplos: na 
matemática financeira a raiz n-ésima é utilizada para calcular a taxa 
composta de juros. 
 
Podemos também utilizar uma raiz quadrada para determinarmos a 
medida do lado de uma sala quadrada sabendo qual é a sua área ou 
utilizarmos a raiz cúbica para determinarmos o valor de cada aresta de 
um cubo sabendo a medida do seu volume. 
 
Em situações mais avançadas também é possível utilizarmos raízes n-
ésimas como, por exemplo, na computação gráfica e no 
processamento digital de sinais e de imagens. 
 
Propriedades da radiciação 
 
Para que possamos resolver problemas envolvendo radiciação, é 
importante conhecermos as propriedades dos radicais. Supondo que a 
e b são números reais, e m e n são números positivos e inteiros 
maiores do que 1, temos: 
 
1. Raiz e-ésima de um produto: 
A raiz de índice “n” de um produto pode ser resolvida como sendo o 
produto das raízes de índice “n”. 
nnn baba ..  
 
Essa propriedade é muito importante quando pudermos simplificar 
expressões que estão sob o radical. Por exemplo: 
xxx 2.44 
 
 
2. Raiz de um quociente: 
A raiz n-ésima de um quociente é igual ao quociente das raízes de 
índice n. 
0,  b
b
a
b
a
n
n
n 
 
 
 
Como exemplo: 
3
3
3
y
x
y
x
 ou 3
5
15
5
15
 
 
3. Raiz de raiz: 
Para calcularmos a raiz n-ésima de outra raiz, basta multiplicarmos os 
índices das raízes. 
nmm n aa . 
 
Por exemplo: 
124.33 4 303030  
 
4. Potência de expoente “n” de raiz n-ésima: 
Se uma raiz de índice “n” está elevada a um expoente também igual a 
“n”, o resultado é o próprio radicando. 
 
 
  aa nn  
Podemos exemplificar essa propriedade como segue: 
  77 1010  
 
5. Raiz de uma potência: 
O expoente do radicando pode ser escrito como expoente da raiz. 
 mnn m aa  
Para exemplificarmos a propriedade, 
 233 2 44 
 
 
6. Raiz n-ésima de potência de expoente “n”: 




ímpar é se ,
par é se ,
na
na
an n
 
Relembrando, o símbolo | | indica módulo. Matematicamente, o 
módulo de um número representa esse número desprovido de sinal. 
Por exemplo, |-2| = 2 e |2| = 2. 
 
Podemos simplificar o expoente do radicando com o índice da raiz, 
mas sempre cuidando com a questão de que toda potência de 
expoente par, independente do sinal da base, tem como resultado um 
número positivo. Por exemplo: 
  3334 4 
 e 
  335 5 
. 
 
Uma relação importante entre radicais e potências é que quando 
temos um expoente fracionário, podemos escrever essa potência, de 
forma equivalente, sob a forma de raiz, como segue: 
n mn
m
aa  . 
Em particular, nn aa 1 . 
Por exemplo, 4 343 88  e 331 1313  . 
 
É muito comum utilizarmos raízes de índice “n” na matemática 
financeira, quando conhecemos o capital, o montante e o tempo e 
queremos encontrar a taxa de juros compostos que foi utilizada. A 
fórmula da taxa é 
1 n
C
M
i
 
Onde “i” é a taxa de juros, “n” é o tempo, “M” é o montante e “C” é o 
capital. 
 
Vamos imaginar que uma pessoa estava devendo R$ 100,00 para 
uma instituição financeira e que depois de 12 meses pagou R$ 313,84 
para quitar essa dívida. Nessas condições, qual foi a taxa mensal de 
juros compostos? 
 
Para resolvermos esse problema, temos os seguintes dados: 
C = 100,00 
M = 313,84 
n = 12 meses 
i = ? 
 Substituindo os dados na fórmula 
1 n
C
M
i
, temos: 
1
100
84,313
12 i
 
131384,312 i
 
1099999,1 i
 
099999,0i
 
 
Para escrevermos essa taxa na forma de porcentagem, basta 
multiplicarmos o resultado por 100. Logo, 0,099999X100 = 9,9999% 
ao mês ou, arredondando, a taxa utilizada foi de 10% ao mês. 
 
 
 
 
Usando as propriedades da Radiciação (ou potência fracionária), 
simplifique as expressões exponenciais. 
 
 
 
 
Usa-se inicialmente a propriedade relativa a produto de potências de 
mesma base 𝑎𝑚. 𝑎𝑛 = 𝑎𝑚+𝑛 para o numerador da expressão acima. 
Tem-se que somar os expoentes, ou seja, 2/3 e 3/4 e para isto 
emprega-se o mínimo múltiplo comum (m.m.c.)para o trabalho com 
frações. 
 
O mínimo múltiplo comum é obtido pelo produto de todos os números 
primos que ocorrerem na decomposição dos denominadores, tomados 
com a maior potência. Este valor pode ser facilmente obtido pela 
decomposição de cada um dos denominadores como produto de 
números primos. 
 
Assim tem-se o 𝑚𝑚𝑐 (3; 4) = 22.3 = 4.3 = 12. 
 
Agrupando-se as duas frações com denominadores diferentes, em 
uma única fração com o denominador sendo igual ao mínimo múltiplo 
comum (12) entre os denominadores iniciais (3 e 4). 
 
Para reescrever a fração equivalente a inicial, divide-se o novo 
denominador (12) pelo denominador inicial de cada fração, e o 
resultado obtido é multiplicado pelo valor do numerador da fração. 
 
 
Tem-se a expressão reescrita como: 
 
 
Com a propriedade relativa a divisão de potências de mesma base 
𝑎𝑚/𝑎𝑛 = 𝑎𝑚-𝑛 tem-se: 
 
Novamente com o emprego do cálculo do m.m.c. para a subtração das 
frações que se apresentam no expoente, resulta: 
 
Por fim, o resultado será: 
 
 
 
 
Considerando as propriedades: (𝑎.𝑏)𝑛 = 𝑎𝑛.𝑏𝑛 e (𝑎𝑚)𝑛 = 𝑎𝑚.𝑛 aplicadas 
ao numerador e ao denominador tem-se: 
 
 
 
Este resultado pode ser simplificado utilizando a propriedade 𝑎𝑚/𝑎𝑛 = 
𝑎𝑚-𝑛 obtendo: 
 
 
 
 
 
 
Agora, simplifique a expressão removendo fatores do radicando. 
 
a) 
 
Resolução: 
Pode-se utilizar a propriedade de radiciação e aplicar 
a expressão para obter: 
 
O primeiro radical envolve um número irracional (√𝟐), portanto não é 
possível ser removido. 
 
O segundo radical apresenta possibilidade de remoção do fator, pois o 
expoente da potência interna é maior (e múltiplo) do índice da raiz. 
Pode-se escrever: 
 
 
Similarmente para o último radical, é possível fazer a remoção do fator 
no radicando. 
 
Tem-se então: 
 
 
b) 
Empregando a propriedade pode-se separar em 4 
partes a expressão, e analisar cada uma separadamente. 
 
 
Em relação a pode-se reescrever o radicando como sendo 
que pode ser simplificado devido a potência interna ser a mesma do 
índice da raiz, resultando apenas 3 para este fator. 
Em relação a pode-se tornar o radicando como de 
maneira que a primeiro expoente seja múltiplo (ou igual) ao índice da 
raiz e o outro expoente seja menor que o índice da raiz. Pode-se 
então aplicar outra vez a propriedade citada, e obter: 
 
 
Em relação a tem-se o expoente interno maior que o índice da 
raiz que pode ser reescrito por de maneira que o 
primeiro expoente interno seja múltiplo do índice da raiz e o outro 
expoente seja menor que o índice da raiz, o que permite separar em 
duas raízes tal que: , resultando . 
 
O resultado é composto por cada uma das análises feitas, de forma 
que: 
 
 
Organizando a apresentação do resultado tem-se: 
 
 
Acesse o material on-line e assista ao vídeo do professor Ricardo, no 
qual ele irá nos mostrar as propriedades e aplicações da radiciação. 
Nesta aula, vimos que a matemática está presente em diversas 
situações do nosso cotidiano e que a sua origem vem desde a pré-
história. 
Aprendemos, ainda, quais são os conjuntos numéricos que serão 
utilizados na nossa disciplina e o que são intervalos numéricos. 
Aprendemos as propriedades dos números reais além da potenciação 
e da radiciação. 
 
 
Esperamos que você tenha aprendido da melhor forma possível os 
temas estudados. Se necessário, retome os conteúdos abordados e 
refaça os exercícios propostos. Para que possamos avançar nos 
nossos estudos, é importante que os assuntos vistos até aqui estejam 
bem assimilados e que as possíveis dúvidas tenham sido 
esclarecidas. 
Na prática 
Chegou o momento de colocarmos em prática o que vimos até agora. 
Vamos utilizar alguns dos conhecimentos adquiridos até aqui para 
resolvermos o seguinte problema: 
Uma indústria de móveis planejados está desenvolvendo um software 
próprio para os projetos que serão executados. 
Além da montagem e da visualização renderizada dos móveis, 
também será possível gerar o preço de custo com base nos materiais 
a serem utilizados e também o preço de venda levando em 
consideração a porcentagem de lucro esperada, a comissão do 
vendedor e os impostos. 
O programa será desenvolvido em linguagem C e a equipe de 
programação precisa definir que tipo de variável será utilizada para 
cada informação. 
Sabemos que as variáveis reais, conhecidas como variáveis do tipo 
float são utilizadas quando temos informações que envolvem números 
decimais, tais como “4,5”, “-12,898”, e assim por diante. 
As variáveis inteiras ocupam menos espaço na memória do 
computador e são utilizadas quando trabalhamos com quantidades 
inteiras, ou seja, que não serão escritas na forma decimal. 
No caso do software para essa indústria, serão consideradas as 
quantidades necessárias de corrediças para as gavetas, de 
cantoneiras, puxadores, entre outros. Também será necessário a 
quantidade em metros quadrados de vidro, madeira, espelhos, etc. A 
variável associada a cada um desses elementos deve estar de acordo 
com o tipo de número a ser utilizado: inteiro ou real. 
Após ler atentamente o caso, realize o exercício a seguir. 
Para que seja possível declarar corretamente as variáveis, indique se 
cada uma das variáveis associadas aos seguintes elementos é real 
(float) ou inteira (int). 
I. metros quadrados de madeira ( ) 
II. puxadores ( ) 
III. metros quadrados de vidro branco ( ) 
IV. metros quadrados de espelho ( ) 
V. corrediças para gavetas ( ) 
VI. parafusos ( ) 
VII. cantoneiras ( ) 
VIII. impostos, em porcentagem ( ) 
IX. margem de lucro esperada, em porcentagem ( ) 
X. comissão do vendedor, em porcentagem ( ) 
 
Para conferir o gabarito da atividade, acesse o material on-line! 
 
 
 
Síntese 
Chegamos ao final da aula! 
Nessa aula, vimos que a matemática está presente em diversas 
situações do nosso cotidiano e que a sua origem vem desde a pré-
história. Aprendemos sobre os conjuntos numéricos, o que são 
intervalos numéricos e também as propriedades dos números reais, 
além da potenciação e da radiciação. 
Para que possamos melhorar ainda mais a nossa aprendizagem, é 
muito importante que você leia os capítulos 1 e 2 da obra Pré-Cálculo 
dos autores Franklin D. Demana, Bert K. Waits, Gregory D. Foley e 
Daniel Kennedy, 2a edição, editora Pearson, que pode ser facilmente 
encontrado na biblioteca virtual. 
Aproveite a oportunidade e resolva os exercícios propostos que estão 
no final dos capítulos. Para saber se as suas respostas estão de 
acordo com o esperado, o gabarito se encontra no final do livro, a 
partir da página 331. 
Esperamos que você tenha aprendido da melhor forma possível os 
temas estudados! 
Se necessário, retome os conteúdos abordados e refaça os exercícios 
propostos. Para que possamos avançar nos nossos estudos, é 
importante que os assuntos vistos até aqui estejam bem definidos e 
que as possíveis dúvidas tenham sido esclarecidas. 
Até a próxima! 
 
Referências 
DEMANA, F.D.; WAITS, B.K.; FOLEY, G.D.; KENNEDY, D. Pré-
Cálculo. 2a Ed, São Paulo, Pearson, 2013.

Outros materiais