Buscar

04 Fator de atrito

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 3, do total de 24 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 6, do total de 24 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 9, do total de 24 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Prévia do material em texto

UNIVERSIDADE ESTADUAL DO OESTE DO PARANÁ 
CENTRO DE ENGENHARIAS E CIÊNCIAS EXATAS 
DEPARTAMENTO DE ENGENHARIA QUÍMICA 
CURSO DE ENGENHARIA QUÍMICA 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
FATOR DE ATRITO EM DUTOS CIRCULARES 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
TOLEDO/PR 
2014
 
 
 
UNIVERSIDADE ESTADUAL DO OESTE DO PARANÁ 
CENTRO DE ENGENHARIAS E CIÊNCIAS EXATAS 
DEPARTAMENTO DE ENGENHARIA QUÍMICA 
CURSO DE ENGENHARIA QUÍMICA 
 
 
 
MATHEUS ALLAN MAIOR 
MATHEUS PIASECKI 
PEDRO VINICIUS DE SIQUEIRA 
THIAGO HENRIQUE JORIS 
 
 
 
FATOR DE ATRITO EM DUTOS CIRCULARES 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
TOLEDO/PR 
2014
Relatório entregue como requisito 
parcial de avaliação da disciplina de 
Laboratório de Engenharia Química I 
do curso de Engenharia Química da 
Universidade Estadual do Oeste do 
Paraná – Campus Toledo. 
 
Prof. Ms. Fabiano Bisinella Scheufele. 
 
1 
 
 
RESUMO 
 
 Esta prática laboratorial teve como objetivo determinar o fator de atrito 
em dutos circulares, em diversas vazões, e comparar os resultados obtidos 
com correlações encontradas na literatura. Para isso, utilizou-se um duto 
circular com três válvulas, de modo a ligar dois trechos da tubulação à um 
manômetro diferencial. Abrindo-se duas válvulas por vez, determinou-se uma 
vazão por meio do registro e mediu-se a diferença de altura no manômetro, 
realizando o mesmo procedimento para quatro vazões diferentes. Também 
mediu-se, por meio de um reservatório cilíndrico, a vazão volumétrica utilizada 
no experimento, medindo-se o tempo para encher o reservatório em triplicada. 
 A partir dos dados coletados, determinou-se o número de Reynolds e o 
fator de atrito de Darcy, plotando-se o gráfico de fator de Darcy em função de 
Reynolds. Determinou-se, também, o fator de atrito utilizando-se as correlações 
de Chen, Chen-Shacham e Shacham, e o diagrama de Moody, comparando-se 
os valores entre si. Por fim, determinou-se o fator de atrito de Fanning e a sua 
relação com o fator de Darcy. 
 Pode-se concluir que há uma relação linear entre o fator de atrito de 
Darcy e o número de Reynolds, uma vez que o R² das curvas é maior que 0,90, 
indicando que, quanto mais turbulento o escoamento, menor a perda de carga. 
Também averiguou-se uma concordância entre as correlações experimentais, 
com discrepância entre os valores menor que 4%. Ainda, pode-se comprovar a 
relação entre os fatores de Darcy e Fanning, tal que o fator de atrito de Darcy é 
quatro vezes maior do que o de Fanning, devido ao fato de Fanning utilizar o 
raio hidráulico em vez do diâmetro interno. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2 
 
 
ÍNDICE 
 
LISTA DE FIGURAS .......................................................................................... 3 
LISTA DE TABELAS .......................................................................................... 4 
NOMENCLATURA ............................................................................................. 5 
1. INTRODUÇÃO ............................................................................................... 6 
2. FUNDAMENTAÇÃO TEÓRICA ...................................................................... 6 
3. MATERIAIS E MÉTODOS.............................................................................. 9 
3.1 Materiais empregados ............................................................................... 9 
3.2 Metodologia aplicada ................................................................................ 9 
4. RESULTADOS E DISCUSSÃO ................................................................... 11 
4.1 Determinação do volume do reservatório ............................................... 11 
4.2 Determinação das vazões empregadas .................................................. 12 
4.3 Determinação da velocidade de escoamento do fluido ........................... 13 
4.4 Determinação do número de Reynolds ................................................... 13 
4.5 Determinação do fator de atrito de Darcy ............................................... 14 
 4.5.1 Fator de atrito de Darcy entre os pontos 1 e 3 .................................. 14 
 4.9.1 Fator de atrito de Darcy entre os pontos 2 e 3 .................................. 15 
 4.6 Construção do gráfico de fator de Darcy em função de Reynolds .......... 15 
 4.7 Determinação do fator de atrito pelo diagrama de Moody ....................... 17 
 4.8 Determinação do fator de atrito por correlações ..................................... 18 
 4.9 Determinação do fator de atrito de Fanning ............................................ 19 
5. CONCLUSÃO ............................................................................................... 21 
REFERÊNCIAS BIBLIOGRÁFICAS ................................................................. 21 
APÊNDICES ..................................................................................................... 22 
Apêndice I – Equações de erro aplicadas durante o tratamento dos dados 
experimentais ............................................................................................... 22 
 
 
 
 
 
 
 
 
 
3 
 
 
LISTA DE FIGURAS 
 
Figura 1: Módulo Experimental para a determinação do fator de atrito. ............. 9 
Figura 2: Tubulação do módulo experimental. ................................................. 10 
Figura 3: Fator de atrito de Darcy em função do número de Reynolds para o 
trecho 1-3 ......................................................................................................... 10 
Figura 4: Fator de atrito de Darcy em função do número de Reynolds para o 
trecho 2-3. ........................................................................................................ 10 
Figura 5: Diagrama de Moody .......................................................................... 18 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4 
 
 
LISTA DE TABELAS 
 
Tabela 1: Medidas das dimensões do reservatório. .............................................. 11 
Tabela 2: Dados experimentais obtidos para diferentes vazões. .......................... 12 
Tabela 3: Valores de vazão determinados para o experimento ............................ 12 
Tabela 4: Valores determinados de velocidade de escoamento para o 
experimento ........................................................................................................... 13 
Tabela 5: Valores de número de Reynolds determinados para o experimento. .... 14 
Tabela 6: Valores determinados de fator de atrito de Darcy para o trecho 1-3. .... 15 
Tabela 7: Valores determinados de fator de atrito de Darcy para o trecho 2-3. .... 15 
Tabela 8: Equação da reta e R² para os gráficos plotados de fator de Darcy em 
função de Reynolds ............................................................................................... 17 
Tabela 9: Valores de fator de atrito determinados pelo diagrama de Moody ........ 18 
Tabela 10: Valores determinados de fator de atrito utilizando a correlação de 
Chen ...................................................................................................................... 19 
Tabela 11: Valores determinados de fator de atrito utilizando a correlação de 
Chen-Shacham .....................................................................................................19 
Tabela 12: Valores determinados de fator de atrito utilizando a correlação de 
Shacham ............................................................................................................... 19 
Tabela 13: Valores determinados de fator de atrito de Fanning para L=1,4 m ...... 20 
Tabela 14: Valores determinados de fator de atrito de Fanning para L=0,695 m .. 20 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5 
 
 
NOMENCLATURA 
 
Símbolo Descrição/Unidade 
 Letras latinas 
ΔP Diferencial de pressão (Pa) 
De Diâmetro externo do reservatório (cm) 
Di Diâmetro interno do reservatório (cm) 
h Altura do reservatório (m) 
V Volume (m³) 
 Vazão volumétrica (m³/s) 
 ̅ Tempo médio (s) 
 Velocidade média de escoamento (m/s) 
Re Número de Reynolds 
D Diâmetro interno da tubulação (m) 
g Aceleração da gravidade (m/s²) 
ΔH Variação de altura no manômetro (m) 
L Comprimento da tubulação (m) 
fD Fator de atrito de Darcy 
f Fator de atrito (generalizado) 
RH Raio hidráulico (m) 
AM Área molhada (m²) 
PM Perímetro molhado (m) 
fF Fator de atrito de Fanning 
 Letras gregas 
µ Viscosidade dinâmica (Pa s) 
ρ Densidade do fluido (kg/m³) 
ε Rugosidade absoluta do material (m) 
 
6 
 
 
1. INTRODUÇÃO 
 
 No setor industrial se faz muito necessário o uso de tubulações, onde 
sempre encontram-se forças de atrito que surgem por causa da viscosidade 
dos fluidos, na interface entre o fluido e a tubulação. Devido a essas forças de 
atrito, pode ocorrer perda de carga durante o transporte do fluido. Assim é 
importante entender as características de tais forças e desenvolver métodos 
práticos para anular os efeitos negativos que elas causam no processo, 
impedindo problemas de rendimento de processos e de mal funcionamento de 
equipamentos na indústria. Uma das formas de calcular essa perda de carga é 
por meio do fator de atrito (SISSON, 1989). 
 Segundo Ribeiro (2013) o custo da instalação de dutos transportadores 
de fluidos como vapor, água potável, óleos ou lubrificantes, ar comprimido, 
distribuição de gases ou líquidos industriais pode representar 70% do custo dos 
equipamentos ou 25% do custo total da instalação. Tendo em vista todo esse 
investimento que é feito na instalação de tubulações em uma indústria, é 
necessário um estudo para maximizar a eficiência do transporte. 
 O experimento realizado teve como objetivo determinar 
experimentalmente o fator de atrito em dutos circulares, em várias vazões, e 
comparar os resultados obtidos com correlações disponíveis na literatura. 
 
 
2. FUNDAMENTAÇÃO TEÓRICA 
 
 Um determinado fluido ao escoar numa tubulação sofre uma resistência 
ao seu movimento, tendo como “agentes” a viscosidade, inércia e atrito. Para o 
fluido vencer essa resistência ao movimento, esse perde uma parte de sua 
energia disponível, ou seja, há uma perda de energia, comumente chamada de 
perda de carga (CAVALCANTI et al., 2009). 
 A rugosidade do meio por onde o fluido irá escoar, também irá 
influenciar a perda de carga, de forma que quanto maior a rugosidade, maior a 
turbulência do escoamento, como consequência maior perda de carga 
(CAVALCANTI et al., 2009). 
 Já há cerca de dois séculos estudos e pesquisas vêm sendo realizados, 
procurando estabelecer leis que possam reger as perdas de carga em 
condutos. Várias fórmulas empíricas foram estabelecidas no passado e 
algumas empregadas até com alguma confiança em diversas aplicações de 
engenharia. Uma delas é através do fator de atrito de Darcy, também 
conhecido como fórmula universal de perda de carga, conforme mostrado na 
Equação (1). 
 
 
 
 
 
 
 
 
 
(1) 
7 
 
 
 
 Sabendo-se que e fazendo-se as simplificações 
necessárias, obtém-se a Equação (2). 
 
 
 
 
 
 
 
 
 
(2) 
 
 Outra forma de calcular o fator de atrito pode ser observada na Equação 
(3), proposta por J. T. Fanning (1877). 
 
 
 
 
 
 
 
 
(3) 
 
Considerando-se e fazendo-se as simplificações necessárias, 
obtém-se a Equação (4). 
 
 
 
 (4) 
 
 Relacionando-se as Equações (1) e (3), obtém-se a Equação (5). Isso 
ocorre devido a Fanning utilizar o raio hidráulico ao invés do diâmetro interno 
do tubo ( ) na equação de atrito, e assim os valores do fator de atrito de 
Fanning são apenas a quarta parte dos valores do fator de atrito de Darcy 
(BROWN, 2007). 
 (5) 
 
 Além de fórmulas empíricas, outro método bastante utilizado para se 
obter o fator de atrito faz uso do Diagrama de Moody, onde é função da 
rugosidade relativa e do número de Reynolds (VEIT, 2010). Esse diagrama é 
construído a partir da Equação (6). 
 
 (
 
 
 ) (6) 
 
 Moody fez uso de diferentes equações para a construção do diagrama, 
baseando-se no regime de escoamento apresentado por cada tubulação. No 
caso de fluxo laminar, o fator de atrito depende unicamente do número de 
Reynolds e é calculado pelas Igualdades mostradas pelas Equações (7) e (8). 
Sendo a Equação (7) conhecida como equação de Hagen-Poiseuille e a 
Equação (8), exclusiva para tubos lisos, conhecida como equação de Von 
Kárman-Prandt. 
 
 
 
 
 (7) 
8 
 
 
 
 
√ 
 ( √ ) (8) 
 
 Para fluidos em regime turbulento totalmente desenvolvido, o fator de 
atrito pode ser expresso pelas Equações (9) e (10). 
 
 
 
 √
 
 
 (9) 
 
 
√ 
 (
 
 
) (10) 
 
 Para escoamentos em regime transiente, utiliza-se a Equação (11), uma 
equação semi-empírica conhecida como correlação de Colebrook. Além disso, 
essa equação é a mais indicada para se resolver vários problemas de 
escoamento, pois cobre toda a faixa de transição mais a turbulenta para tubos 
lisos e rugosos. 
 
√ 
 [
 
 
 
 
 √ 
] (11) 
 
 Além dessas apresentadas anteriormente, outras correlações podem ser 
utilizadas. A Equação (12) é conhecida como Equação de Chen e a Equação 
(13) é conhecida como Equação de Chen-Shacham. Ambas são válidas para 
qualquer e ⁄ . 
 
 
√ 
 [
 
 
 
 
 
 (
 
 
 
 
 
 
 
)] (12) 
 
 
 
√ 
 [
 
 
 
 
 
 (
 
 
 
 
 
)] (13) 
 
A última correlação possível a ser empregada é conhecida como Equação de 
Shacham, e é apresentada pela Equação (14). 
 
 
√ 
 [ 
 
 
] [ 
 
 
] (14) 
 
 
Em que: 
9 
 
 
 
 
 
 
 
 
 (
 
 
 
 
 
) (14a) 
 
 
 
3. MATERIAIS E MÉTODOS 
 
3.1. Materiais utilizados 
 
 Os materiais empregados para a prática laboratorial foram: 
 
 Tubo de cobre com diâmetro interno de 1,5 cm; 
 Tanque de PVC; 
 Paquímetro; 
 Cronômetro; 
 Termômetro; 
 Bomba; 
 Régua de metal; 
 Balde; 
 Água; 
 
3.2. Metodologia aplicada 
 
 Utilizou-se o módulo experimental, representado nas Figuras 1 e 2, para 
a realização do módulo de determinação do fator de atrito em dutos circulares. 
 
 
Figura 1: Módulo Experimental para a determinação do fator de atrito. 
 
10 
 
 
 
Figura 2: Tubulação do módulo experimental. 
 
 Descrevendo-se o módulo experimental utilizado, onde: 
 
1) Dispositivo para o acionamento da bomba; 
2) Válvula 1; 
3) Válvula 2; 
4) Válvula 3; 
5) Válvula 4; 
6) Tomada de pressão 1; 
7) Tomada de pressão 2; 
8) Tomada de pressão 3; 
9)Tubo de cobre; 
10) Válvula para controlar a vazão; 
11) Tanque de PVC; 
12) Manômetro; 
13) Bomba; 
 
 Inicialmente aferiu-se, utilizando a régua, a distância entre os pontos (6) 
e (8), e os pontos (7) e (8). Seguidamente mediu-se o diâmetro externo do 
tanque menor, o diâmetro interno do tanque menor e a altura do tanque. 
 Colocou-se o Módulo Experimental de determinação do fator de atrito 
em operação a partir do seguinte esquema: 
 
1. Abriram-se as válvulas 1, 2, 3 e 4 e esperou-se o nivelamento do 
manômetro; 
2. Fecharam-se todas as válvulas e ligou-se a bomba, permitindo o 
escoamento da água; 
3. Determinou-se uma vazão menor que 1 kgf/cm²; 
4. Cronometrou-se o tempo necessário para o preenchimento com água do 
tanque de diâmetro conhecido; 
5. Com o auxílio de um termômetro aferiu-se três vezes a temperatura da 
água no tanque; 
11 
 
 
6. Abriu-se simultaneamente (2) e (4) e mediu-se a queda de pressão pela 
diferença de altura constatada no manômetro. Fechou-se (2) e (4); 
7. Abriu-se simultaneamente (3) e (4) e mediu-se a queda de pressão pela 
diferença de altura constatada no manômetro. Fechou-se (3) e (4); 
8. As verificações do tempo para o preenchimento do tanque e das 
medidas de diferença de pressão, para os dois pontos, foram feitas em 
triplicatas; 
9. Desligou-se a bomba. 
 
 O experimento foi realizado para quatro vazões diferentes, seguindo o 
mesmo procedimento para todas. 
 
 
4. RESULTADOS E DISCUSSÃO 
 
4.1. Determinação do volume do reservatório 
 
 Mediu-se as dimensões do reservatório em forma de cilindro circular 
reto, a fim de se calcular a vazão do sistema. As medidas encontram-se na 
Tabela 1. Pelo fato de o reservatório apresentar falhas na forma, mediu-se o 
diâmetro externo do mesmo em triplicata, utilizando-se a média na 
determinação do volume do reservatório. O diâmetro externo e a altura foram 
medidos com uma régua, enquanto que o diâmetro interno foi medido com um 
paquímetro digital. 
 
Tabela 1: Medidas das dimensões do reservatório. 
Dimensão Valor (cm) 
Diâmetro externo 33,5 ± 0,05 
33,1 ± 0,05 
33,6 ± 0,05 
Média do diâmetro externo 33,42 ± 0,21 
Diâmetro interno 6,003 ± 0,0005 
Altura 30,0 ± 0,05 
 
 O volume do reservatório pode ser calculado pela Equação (15). O erro 
propagado é calculado pela equação (A) do Apêndice I. 
 
 
 
 
 
 
 
(15) 
 
 
 
 
 
 
 
 
12 
 
 
 
 
 Pelo fato do reservatório ser irregular, observou-se uma quantidade de 
água no fundo do mesmo, de altura 2 cm, que será descontado do volume total 
do reservatório. O volume de água correspondente à esses 2 cm é de 
V0 = 1697,81 cm³. Dessa forma, o volume do reservatório utilizado na 
determinação da vazão é V = 23769,35 cm³. 
 
4.2. Determinação das vazões empregadas. 
 
 Tendo-se o volume do reservatório utilizado para a medida de vazão e 
os tempos medidos em triplicada para completar o reservatório, determinou-se 
cada uma das quatro vazões utilizadas no experimento. Os dados 
experimentais estão relacionados na Tabela 2, enquanto que as vazões 
calculadas pela equação (16) estão na Tabela 3. O erro associado à medida do 
tempo pelo cronômetro é de 0,005 s. Demonstrou-se o cálculo para a vazão 1. 
O erro associado à vazão é calculado pela equação (B) do Apêndice I. 
 
Tabela 2: Dados experimentais obtidos para diferentes vazões. 
Vazão 
Tempo (s) 
Tempo médio (s) 
1 2 3 
1 32,99 32,88 33,00 32,95 ± 0,05 
2 35,54 35,43 35,63 35,53 ± 0,08 
3 41,57 41,64 41,76 41,65 ± 0,08 
4 56,87 57,04 57,36 57,09 ± 0,20 
 
 
 
 ̅
 (16) 
 
 
 
 
 
 
 
 
 
Tabela 3: Valores de vazão determinados para o experimento. 
Vazão Tempo médio (s) Volume (cm³) Vazão média (cm³/s) 
1 32,95 ± 0,05 
23769,35 ± 373,027 
721,38 ± 10,22 
2 35,53 ± 0,08 668,99 ± 8,99 
3 41,65 ± 0,08 570,69 ± 7,86 
4 57,09 ± 0,20 416,35 ± 5,07 
 
13 
 
 
 Observa-se que, quanto menor a vazão, menor também é o erro 
associado, devido ao tempo medido ser maior, o que diminui a margem de 
erro. 
 
4.3. Determinação da velocidade de escoamento do fluido. 
 
 Com as vazões determinadas, empregando-se a equação (17), 
determinou-se as velocidades de escoamento do fluido na tubulação. 
Demonstra-se o cálculo para a vazão 1. Os valores de velocidade de 
escoamento estão na Tabela 4. Sabe-se que a tubulação possui diâmetro 
interno D = 1,5 cm, logo, sua área de secção transversal é A = 1,77 cm². O erro 
associado à velocidade é calculado segundo a equação (C) do Apêndice I. 
 
 
 
 
 (17) 
 
 
 
 
 
 
Tabela 4: Valores determinados de velocidade de escoamento para o 
experimento. 
Vazão Vazão média (cm³/s) Velocidade média de escoamento (cm/s) 
1 721,38 ± 10,22 408,22 ± 5,77 
2 668,99 ± 8,99 377,96 ± 5,08 
3 570,69 ± 7,86 322,42 ± 4,44 
4 416,35 ± 5,07 235,23 ± 2,86 
 
4.4. Determinação do número de Reynolds. 
 
 Tendo-se a velocidade de escoamento do fluido, e sabendo-se o 
diâmetro interno e a temperatura média do fluido, determinou-se o número de 
Reynolds para as quatro vazões utilizadas, a partir da equação (18). A 
densidade e a viscosidade da água para a temperatura média de 22,63 ºC são, 
respectivamente, ρ = 0,9976 g/cm³ e μ = 9,4 x10-3 g/cm.s. Os valores estão 
dispostos na Tabela 5, com o cálculo para a vazão 1 demonstrado. 
 
 
 
 
 (18) 
 
 
 
 
 
 
14 
 
 
Tabela 5: Valores de número de Reynolds determinados para o experimento. 
Vazão 
Velocidade média de escoamento 
(cm/s) 
Número de Reynolds 
1 408,22 ± 5,77 64985,15 ± 918,53 
2 377,96 ± 5,08 60168,02 ± 808,69 
3 322,42 ± 4,44 51326,52 ± 706,81 
4 235,23 ± 2,86 37446,61 ± 455,29 
 
 Analisando-se os dados da tabela, percebe-se que todos os 
escoamentos realizados foram em regime turbulento, uma vez que o número 
de Reynolds determinado é maior que 4000 (LIVI, 2004). 
 
4.5. Determinação do fator de atrito de Darcy. 
 
 Do mesmo modo, determinou-se o fator de atrito de Darcy, utilizando-se 
a equação (2), sabendo-se que o diâmetro interno da tubulação é D = 1,5 cm e 
a aceleração da gravidade é g = 9,81 m/s². O fator foi calculado para as duas 
partes do sistema de tubulações empregado. Como o manômetro estava 
desregulado, havia uma diferença de altura ΔH0 = –1,3 cm. O sinal negativo 
indica que a altura relativa ao ponto 3 era maior do que a altura relativa ao 
ponto 1-2. Por ter-se medido a variação de altura com uma régua, o erro 
associado à medida é de ± 0,05 cm. 
 
4.5.1. Fator de atrito de Darcy entre os pontos 1 e 3. 
 
 Determinou-se o fator de atrito de Darcy para o percurso entre os pontos 
1 e 3 da tubulação mostrada na Figura X, de largura L = 1,4 m, na qual a 
variação da vazão gerou uma variação de altura entre os fluidos no 
manômetro, utilizando-se para isso a equação (2). A Tabela 6 expressa os 
valores de variação de altura e de velocidade de escoamento, juntamente com 
os valores determinados para o fator de atrito de Darcy. Demonstra-se o 
cálculo para a primeira vazão utilizada. 
 
 
 
 
 (2) 
 
 
 
 
 
 
 
 
 
 
 
 
15 
 
 
Tabela 6: Valores determinados de fator de atrito de Darcy para o trecho 1-3. 
Vazão 
Velocidade média de 
escoamento (cm/s) 
Variação dealtura (m) 
Fator de atrito de 
Darcy (x10-3) 
1 408,22 ± 5,77 0,358 4,513 ± 0,121 
2 377,96 ± 5,08 0,311 4,576 ± 0,116 
3 322,42 ± 4,44 0,245 4,954 ± 0,126 
4 235,23 ± 2,86 0,176 6,686 ± 0,144 
 
4.5.2. Fator de atrito de Darcy entre os pontos 2 e 3. 
 
 Da mesma forma, determinou-se o fator de atrito de Darcy para o 
percurso entre os pontos 2 e 3 da tubulação, com largura L = 0,695 m, 
utilizando-se a equação (2). Os valores determinados encontram-se na Tabela 
7. 
 
Tabela 7: Valores determinados de fator de atrito de Darcy para o trecho 2-3. 
Vazão 
Velocidade média de 
escoamento (cm/s) 
Variação de 
altura (m) 
Fator de atrito de 
Darcy (x10-3) 
1 408,22 ± 5,77 0,174 4,421 ± 0,123 
2 377,96 ± 5,08 0,155 4,595 ± 0,109 
3 322,42 ± 4,44 0,125 5,092 ± 0,120 
4 235,23 ± 2,86 0,089 6,811 ± 0,117 
 
 Os erros propagados foram calculados segundo a equação (D) no 
Apêndice I. 
 
4.6. Construção do gráfico de fator de Darcy em função de Reynolds. 
 
 Com os dados determinados nas Tabelas 5, 6 e 7, plotou-se dois 
gráficos de fator de atrito de Darcy em função do número de Reynolds, sendo o 
primeiro para o trecho 1-3 da tubulação, e o segundo, para o trecho 2-3. Os 
gráficos plotados estão expressos nas Figuras 3 e 4. A Tabela 8 indica a 
equação da reta e o seu respectivo R². 
 
16 
 
 
 
Figura 3: Fator de atrito de Darcy em função do número de Reynolds para o 
trecho 1-3. 
 
 
Figura 4: Fator de atrito de Darcy em função do número de Reynolds para o 
trecho 2-3. 
 
17 
 
 
Tabela 8: Equação da reta e R² para os gráficos plotados de fator de Darcy em 
função de Reynolds. 
Trecho Equação da reta R² 
1-3 (Figura X) y = -8x10-8 x + 9,49x10-3 0,9114 
2-3 (Figura Y) y = -9x10-8 x + 9,93x10-3 0,9497 
 
 Analisando-se os gráficos plotados, percebe-se que há uma tendência 
linear nos pontos. Fazendo-se o ajuste, encontrou-se a equação da reta para 
os dois casos, com o R² maior do que 0,91 em ambas as retas, indicando o 
comportamento linear dos dados. Assim, pode-se inferir que, quanto mais 
turbulento for o escoamentomenor é a perda de carga no processo. 
 Percebe-se que, em ambos os casos, o ponto relativo à vazão 3 é o 
mais deslocado da reta de tendência, estando esse desvio associado à 
variação de altura (portanto, ao fator de Darcy) determinada para esse ponto. 
Apesar de se considerar o erro na medida da variação de altura como um 
padrão de 0,05 cm (o erro instrumental da régua), pode-se perceber durante a 
prática que, para a vazão 3, o manômetro demorava mais para estabilizar, o 
que dificultou na medida da variação de altura, causando uma maior incerteza 
no valor da mesma, portanto, uma maior incerteza no valor do fator de atrito de 
Darcy. 
 
4.7. Determinação do fator de atrito pelo diagrama de Moody. 
 
 Determinou-se o fator de atrito utilizando-se o diagrama de Moody, 
representado na Figura 5. Como o diagrama é de difícil leitura, utilizou-se as 
equações aplicadas para construir-se tal diagrama. 
 Uma vez que o regime de escoamento não é turbulento totalmente 
desenvolvido (ou seja, regime de transição), utilizou-se a correlação de 
Colebrook, representada na equação (11). Para tal, determinou-se a 
rugosidade relativa da tubulação, sabendo-se que a tubulação é de cobre (ε = 
0,0015 mm) e tem diâmetro interno D = 1,5 cm, encontrando-se ε/D = 10-4. Os 
valores de fator de atrito determinados encontram-se na Tabela 9. 
18 
 
 
 
Figura 5: Diagrama de Moody (fonte: Wikimedia, 2014). 
 
Tabela 9: Valores de fator de atrito determinados pelo diagrama de Moody. 
Vazão Número de Reynolds Fator de atrito (x10-2) 
1 64985,15 ± 918,53 2,01314 
2 60168,02 ± 808,69 2,04485 
3 51326,52 ± 706,81 2,11315 
4 37446,61 ± 455,29 2,26087 
 
 Analisando-se os resultados encontrados, percebe-se uma diferença 
entre os fatores de atrito de Moody e de Darcy na ordem de 101. Essa 
discrepância pode estar relacionada ao fato do fator de atrito de Darcy não 
levar em consideração a rugosidade específica da tubulação. 
 
4.8. Determinação do fator de atrito por correlações. 
 
 Também determinou-se o fator de atrito utilizando-se correlações 
experimentais de Chen, Chen-Shacham e Shacham, pelas equações (12-14), 
sabendo que D = 1,5 cm e ε = 0,0015 mm. As Tabelas 10-12 indicam os 
valores de fator de atrito encontrados para os respectivos escoamentos. 
 
 
19 
 
 
Tabela 10: Valores determinados de fator de atrito utilizando a correlação de 
Chen. 
Vazão Número de Reynolds Fator de atrito (x10-2) 
1 64985,15 ± 918,53 2,0177 
2 60168,02 ± 808,69 2,0494 
3 51326,52 ± 706,81 2,1175 
4 37446,61 ± 455,29 2,2648 
 
Tabela 11: Valores determinados de fator de atrito utilizando a correlação de 
Chen-Shacham. 
Vazão Número de Reynolds Fator de atrito (x10-2) 
1 64985,15 ± 918,53 2,0230 
2 60168,02 ± 808,69 2,0548 
3 51326,52 ± 706,81 2,1231 
4 37446,61 ± 455,29 2,2704 
 
Tabela 12: Valores determinados de fator de atrito utilizando a correlação de 
Shacham. 
Vazão Número de Reynolds Fator de atrito (x10-2) 
1 64985,15 ± 918,53 2,0773 
2 60168,02 ± 808,69 2,1108 
3 51326,52 ± 706,81 2,1831 
4 37446,61 ± 455,29 2,3395 
 
 Comparando-se os valores encontrados pelas correlações entre si, 
percebe-se que os mesmos estão muito próximos, com a discrepância entre os 
valores não chegando a 4%. 
 Quando comparados com os valores encontrados pelo diagrama de 
Moody, também pode-se visualizar concordância entre os valores, indicando 
que ambos os métodos são válidos. 
 
4.9. Determinação do fator de atrito de Fanning. 
 
 Para determinar-se o fator de atrito de Fanning, calculou-se o raio 
hidráulico da tubulação, segundo a equação (19), para então aplicar a equação 
(4). Fez-se os cálculos para o trecho 1-3, de L = 1,4 m, e para ao trecho 2-3, de 
L = 0,695 m. Os valores estão expostos nas Tabelas 13 e 14. Demonstra-se o 
cálculo para a vazão 1 no trecho 1-3. O erro é calculado pela equação (E) do 
Apêndice I. 
 
 
 
20 
 
 
 
 
 
 (19) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 (4) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Tabela 13: Valores determinados de fator de atrito de Fanning para L=1,4 m. 
Vazão 
Velocidade média de 
escoamento (cm/s) 
Variação de 
altura (m) 
Fator de atrito de 
Fanning (x10-3) 
1 408,22 ± 5,77 0,358 1,129 ± 0,030 
2 377,96 ± 5,08 0,311 1,144 ± 0,028 
3 322,42 ± 4,44 0,245 1,239 ± 0,032 
4 235,23 ± 2,86 0,176 1,672 ± 0,036 
 
Tabela 14: Valores determinados de fator de atrito de Fanning para L=0,695 m. 
Vazão 
Velocidade média de 
escoamento (cm/s) 
Variação de 
altura (m) 
Fator de atrito de 
Fanning (x10-3) 
1 408,22 ± 5,77 0,174 1,105 ± 0,028 
2 377,96 ± 5,08 0,155 1,149 ± 0,027 
3 322,42 ± 4,44 0,125 1,273 ± 0,030 
4 235,23 ± 2,86 0,089 1,703 ± 0,032 
 
 Comparando-se as Tabelas 13 e 14 com as Tabelas 6 e 7, para o fator 
de atrito de Darcy, pode-se comprovar a relação entre as duas equações 
estabelecida pela equação (5). 
 
 
 
 
21 
 
 
5. CONCLUSÃO 
 
 A partir dos dados coletados e determinados, dos cálculos feitos e das 
considerações propostas, pode-se concluir que o experimento atingiu o seu 
objetivo de forma satisfatória. Determinou-se o fator de atrito de Darcy e o 
número de Reynolds a partir de dados de vazão e diâmetro interno, plotando-
se dois gráficos com os valores determinados, indicando a relação linearentre 
os dois fatores. 
 Também calculou-se o fator de atrito por meio de quatro correlações 
experimentais, atingindo resultados com ótima concordância entre si. Por fim, 
determinou-se, por meio do raio hidráulico, o fator de atrito de Fanning, 
provando a relação entre este e o fator de atrito de Darcy. 
 
 
 
REFERÊNCIAS BIBLIOGRÁFICAS 
 
 
BROWN, G. A História da Equação de Darcy-Weisbach. Disponível em: 
<http://biosystems.okstate.edu/darcy/Portuguese/HistoriaDarcy-
Weisbach.htm>. Acesso em 26 mai 2014. 
 
CAVALCANTI, R.A; CRUZ, O.C; BARRETO, A.C. Determinação da perda de 
carga em tubo de PVC e comparação nas equações empíricas. II 
Seminário de iniciação científica do Instituto Federal do Triângulo Mineiro, 
Uberaba, 2009. 
 
LIVI, C. P. Fundamentos de fenômenos de transporte: um texto para 
cursos básicos. 4ª edição, Sub-Reitoria de Ensino de Graduação e 
Corpo Discente, UFRJ, 2004 
 
RIBEIRO, A. C. Curso de tubulações industriais. Disponível em: 
<ftp://ftp.demec.ufpr.br/disciplinas/TM141/aula01.pdf>. Acesso em 26 mai 
2014. 
 
SISSON, L. E. Fenômenos de Transporte, 3ª edição, Editora Guanabara 
Dois, 1989. 
 
VEIT, M. T. Apostila dos Roteiros da Disciplina de Laboratório de 
Engenharia Química I. Toledo – PR, 2010. 
 
 
 
 
 
 
22 
 
 
APÊNDICES 
 
Apêndice I – Equações de erro aplicadas durante o tratamento dos dados 
experimentais. 
 
 
 
 
 
 
 
 
 
 
 (A) 
 
 
 
 
 
 ̅
 ̅ (B) 
 
 
 
 (C) 
 
 
 
 
 
 
 (D) 
 
 
 
 
 
 
 (E)

Continue navegando