Buscar

Cálculo Numérico: Aula de Métodos Numéricos para Engenheiros com Scilab

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 3, do total de 40 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 6, do total de 40 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 9, do total de 40 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Prévia do material em texto

Métodos Numéricos para Engenheiros com Scilab
Sérgio Galdino
26 de Setembro de 2013
Capítulo 1
Erros em computações
numéricas
1.1 Glamour da computação
A opinião geral é que computadores são capazes de fazer operações aritmé-
ticas rapidamente e com grande exatidão. Em parte correta quando com-
parada ao cálculo manual. Por exemplo, taxas típicas para multiplicação
manual de números são 0.05s−1 ( são 20s para efetuar uma multiplicação)
enquanto num computador são tipicamente maiores que 106s−1 chegando
facilmente a 1012s−1 em supercomputadores. Os cálculos computacionais
superam em várias ordens de magnitude os cálculos manuais, permitindo,
assim, enfrentar verdadeiros desa�os computacionais. Só para produzir o
efeito psicodélico pode ser dito que em 1 segundo um computador de 106/s
pode fazer mais cálculos (e sem cometer erros grosseiros) que uma pessoa irá
fazer manualmente em sua vida inteira. Desviando-se do glamour da compu-
tação, este capítulo dará bases pra mostrar que resultados de computações
numéricas devem ser vistas com cautela.
1.2 Análise numérica versus análise matemática
A análise matemática (no cotidiano) e análise numérica diferem muito quando
são utilizadas. A análise matemática normalmente assume uma representa-
ção in�nita para números e processos, enquanto computações numéricas são
realizadas em maquinas �nitas em tempo �nito. A representação �nita dos
números em uma máquina produz erros de arredondamento, enquanto a re-
presentação �nita de um processo produz erro de truncamento:
Exemplos:
Números:
pi = 3.1415926535 . . . (1.1)
3
4 CAPÍTULO 1. ERROS EM COMPUTAÇÕES NUMÉRICAS
1
3
= 0.33333 . . . (1.2)
Processos:∫ b
a
f(x)dx = lim
∆xi→0
n∑
i=1
f(xi)∆xi, ∆xi = (xi+1 − xi) (1.3)
df(x)
dx
= lim
∆x→0
(
f(x+∆x)− f(x)
∆x
)
(1.4)
Grande parte da matemática é sensível aos efeitos produzidos pelo arre-
dondamento numérico; esta vulnerabilidade é que os estatísticos chamam de
"não é robusto".
Esta diferença é fundamental, pois somente partes da matemática resis-
tente aos erros de arredondamentos são úteis em matemática aplicada ao
mundo real.
Signi�cados diferentes surgem para as mesmas palavras. A expressão ze-
ros de um polinômio pode ter vários signi�cados em computação e um único
signi�cado em matemática (ver [4] sec 1.10).
A matemática lida preferencialmente com teoremas exatos e precisos;
análise numérica usa muitos métodos heurísticos. A existência de um te-
orema não é su�ciente em cálculos computacionais. Estas diferenças são
muitas vezes sérias e conduzem a grandes desentendimentos.
1.3 Dígitos signi�cativos, precisão, exatidão e erros
Quando se trata com valores numéricos e cálculos numéricos, existem vários
conceitos que devem ser considerados: ,
1. Dígitos signi�cativos
2. Precisão e exatidão
3. Representação do número
4. Erros
Os três primeiros conceitos são discutidos brevemente nesta seção e os
demais nas próximas.
Dígitos signi�cativos
1.4. COMPUTAÇÕES NUMÉRICAS 5
Os algarismos signi�cativos, ou dígitos signi�cativos em um número, são
os dígitos do número que se sabe serem corretos. Cálculos de engenharia e
cientí�cos geralmente começam com um conjunto de dados com um número
limitado de dígitos signi�cativos. Quando estes números são processados
através de um algoritmo numérico, é importante estimar quantos dígitos sig-
ni�cativos estão presentes no resultado �nal computado.
Precisão e Exatidão
Precisão refere-se a quão próximo um número representa o número que
ele está representando.
Exatidão refere-se a quão próximo um número está do valor real do nú-
mero que está representando quanti�cado pelo erro absoluto ou relativo. O
termo precisão refere-se a exatidão com as quias as operações aritméticas são
realizadas. A precisão é governada pelo número de dígitos a ser utilizado nos
cálculos numéricos. A exatidão é regida por erros na aproximação numérica.
Precisão e exatidão são quanti�cados pelos erros de cálculos numéricos.
1.4 Computações Numéricas
A aritmética das máquinas digitais (computadores, calculadoras, ...) não
é a mesma que é usada em cursos de cálculo ou álgebra. Assume-se como
a�rmações verdadeiras que 2 + 2 = 4, 22 = 4, e (
√
2)2 = 2. Na aritmética
padrão das máquinas digitais as duas primeiras são verdadeiras mas a terceira
não. Para entender poque isto é verdadeiro deve-se explorar o mundo da
aritmética de precisão �nita utilizada por máquinas digitais.
1.4.1 Representação
O sistema de numeração decimal é o mais usado pelo homem nos dias de
hoje. O número 10 tem papel fundamental, é chamado de base do sistema.
Os símbolos 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, são usados para representar qual-
quer grandeza. O fato de o sistema decimal ser largamente utilizado tem
evidentemente razões históricas, pois na realidade qualquer número inteiro
maior que 1 poderia ter sido escolhido. De fato, no mundo dos computadores
digitais o sistema binário é o utilizado. O número 2 é a base do sistema e os
símbolos 0 e 1 servem para representar uma grandeza qualquer. Ao lado do
sistema binário, os sistemas octal, hexadecimal, base 8 e 16 respectivamente,
são também utilizados. Isto ocorre pelo fato de que cada símbolo octal e
hexadecimal representa um equivalente a três e quatro símbolos no sistema
binário e vice-versa.
6 CAPÍTULO 1. ERROS EM COMPUTAÇÕES NUMÉRICAS
1.4.2 Conversão
Dado um número x representado na base N, isto é, na N-representação, e nós
queremos saber como representa-lo na base M, isso é, na M-representação.
Temos então a equação:
x = amN
m + · · ·+ a1N1 + a0N0 + a−1N−1 + · · ·+ a−nN−n
= bjM
j + · · ·+ b1M1 + b0M0 + b−1M−1 + · · ·+ b−kM−k (1.5)
onde os coe�cientes am, am−1, · · · , a1, a0, a−1, · · · , an−1, a−n são conhe-
cidos e os coe�cientes bj , bj−1, · · · , b1, b0, b−1, · · · , bk−1, b−k devem ser
determinados. Observe que bj , bj−1, · · · , b1, b0, b−1, · · · , bk−1, b−k devem
ser expressos com símbolos de dígitos da N-representação. Para realizar a
conversão dividiremos x em uma parte inteira i e uma parte fracionária f .
Nós temos i = bjM
j + · · ·+ b1M1+ b0M0, e dividindo i por M nós obtemos
um quociente q1 e um resto r1 = b0. Continuando, dividiremos q1 por M ,
nós conseguiremos q2 e o resto r2 = b1, e, obviamente, b0, b1, b2, · · · são os
restos consecutivos quando i é dividido repetitivamente por M . De forma
semelhante nós encontramos a parte fracionária como as partes inteiras con-
secutivas quando f é multiplicado repetitivamente por M e a parte inteira
é removida. Os cálculos devem ser feitos na N-representação e M deve ser
também dado nesta representação.
Exemplo 1 Conversão o número decimal 261, 359 para a representação bi-
nária.
Conversão: Decimal para binário
Inteiro: Divisão sucessiva do número decimal por 2
261 2
1 130 2
0 65 2
1 32 2
0 16 2
0 8 2
0 4 2
0 2 2
0 1
O número inteiro binário é obtido através dos restos das divisões escritos
na ordem inversa da sua obtenção. Então 26110 = 1.0000.01012.
Fração: Multiplicação sucessiva da fração decimal por 2
1.4. COMPUTAÇÕES NUMÉRICAS 7
Multiplicação Sobra
0,359x2 = 0,718 0
0,718x2 = 1,436 1
0,436x2 = 0,872 0
0,872x2 = 1,774 1
0,774x2 = 1,488 1
0,488x2 = 0,976 0
0,976x2 = 1,952 1
0,952x2 = 1,904 1
0,904x2 = 1,808 1
.
.
.
.
.
.
.
.
.
.
.
.
A fração binária é obtida através das sobras, parte inteira, das multiplicações
escritas na ordem direta de sus obtenção. Então 0, 35910 = 0, 0101.1011.1 · · ·2.
Somando-se as partes inteiras e fracionárias dos binários obtidos têm-se
261, 35910 = 1.0000.0101, 0101.1011.1 · · ·2
Exemplo 2 Conversão o número decimal 261, 359 para a representação ter-
nária.
Conversão: Decimalpara ternário
Inteiro: Divisão sucessiva do número decimal por 3
261 3
0 87 3
0 29 3
2 9 3
0 3 3
0 1
O número inteiro ternário é obtido através dos restos das divisões escritos
na ordem inversa da sua obtenção. Então 26110 = 100.2003.
Fração: Multiplicação sucessiva da fração decimal por 3
8 CAPÍTULO 1. ERROS EM COMPUTAÇÕES NUMÉRICAS
Multiplicação Sobra
0,359x3 = 1,077 1
0,077x3 = 0,231 0
0,231x3 = 0,693 0
0,693x3 = 2,079 2
0,079x3 = 0,237 0
0,237x3 = 0,711 0
0,711x3 = 2,133 2
0,133x3 = 0,399 0
0,399x3 = 1,197 1
.
.
.
.
.
.
.
.
.
.
.
.
A fração ternária é obtida através das sobras, parte inteira, das mul-
tiplicações escritas na ordem direta de sus obtenção. Então 0, 35910 =
0, 100.200.201 · · ·3. Somando-se as partes inteiras e fracionárias dos biná-
rios obtidos têm-se
261, 35910 = 100.200, 100.200.201 · · ·3
Exemplo 3 Conversão o número decimal 261, 359 para a representação hexa-
decimal.
Conversão: Decimal para hexadecimal
Inteira: Divisão sucessiva do número decimal por 16
261 16
5 16 16
0 1
O número inteiro hexadecimal é obtido através dos restos das divisões
escritos na ordem inversa da sua obtenção. Então 26110 = 10516.
Fração: Multiplicação sucessiva da fração decimal por 16
Multiplicação Sobra
0,359x16 = 5,744 5
0,744x16 = 11,904 11
0,904x16 = 14,464 14
0,464x16 = 7,424 7
0,424x16 = 6,784 6
0,784x16 = 12,544 12
0,544x16 = 8,704 8
0,704x16 = 11,264 11
0,264x16 = 4,224 4
.
.
.
.
.
.
.
.
.
.
.
.
1.4. COMPUTAÇÕES NUMÉRICAS 9
Tabela 1.1: Símbolos Hexadecimais.
Grandeza Símbolo
decimal hexadecimal
0 0
1 1
2 2
3 3
4 4
5 5
6 6
7 7
8 8
9 9
10 A
11 B
12 C
13 D
14 E
15 F
A fração hexadecimal é obtida através das sobras, parte inteira, das mul-
tiplicações escritas na ordem direta de sus obtenção. Então
0, 35910 = 0, 5 11 14 7 6 12 8 11 4 · · ·16
ou utilizando-se os símbolos hexadecimais (Tabela 1.1)
0, 35910 = 0, 5BE.76C.8B4 · · ·16
Somando-se as partes inteiras e fracionárias dos binários obtidos têm-se
261, 35910 = 105, 5BE.76C.8B4 · · ·16
Conv10.sce
Este roteiro Scilab realiza a conversão de inteiros na base 10 para base
qualquer.
1. // Conversão de inteiros da base 10 para uma base qualquer
2. function y=conv10(x,b)
3. y=''
4. while x > 0
5. cx=modulo(x,b)
6. x=int(x/b)
7. y=string(cx)+'.'+y
10 CAPÍTULO 1. ERROS EM COMPUTAÇÕES NUMÉRICAS
8. end
9. endfunction
Ao executar o roteiro Conv10.sce pode-se realizar as conversões. Aqui
estão os resultados:
-->conv10(261,2)
ans =
1.0.0.0.0.0.1.0.1.
-->
-->conv10(261,3)
ans =
1.0.0.2.0.0.
-->
-->conv10(261,16)
ans =
1.0.5.
-->
ConvF10.sce
Este roteiro Scilab realiza a conversão de fracionários na base 10 para
base qualquer.
1. // Conversão de fracionários da base 10 para uma base qualquer
2. function y=convF10(x,b,n)
3. y='0,'
4. i=0
5. while i < n
6. p=x*b
7. cx=int(p)
8. y=y+string(cx)+'.'
9. x=p-cx
10. i=i+1
11. end
12. endfunction
Ao executar o roteiro ConvF10.sce pode-se realizar as conversões. Aqui
estão os resultados:
-->convF10(0.359,2,9)
ans =
0,0.1.0.1.1.0.1.1.1.
-->
-->convF10(0.359,3,9)
ans =
1.4. COMPUTAÇÕES NUMÉRICAS 11
0,1.0.0.2.0.0.2.0.1.
-->
-->convF10(0.359,16,9)
ans =
0,5.11.14.7.6.12.8.11.4.
-->
Conv10X.sce
Este roteiro Scilab realiza a conversão de um número na base 10 para
base qualquer (combina Conv10.sce e ConvF10.sce ) .
1. // Conversão da base 10 para uma base qualquer: Inteiro + Fração
2. function y=conv10X(xx,b,n)
3. x=int(xx)
4. yi=''
5. while x > 0
6. cx=modulo(x,b)
7. x=int(x/b)
8. yi=string(cx)+'.'+yi
9. end
10. y=yi
11. x=xx-int(xx)
12. yf=','
13. i=0
14. while i < n
15. p=x*b
16. cx=int(p)
17. yf=yf+string(cx)+'.'
18. x=p-cx
19. i=i+1
20. end
21. y=y+yf
22. endfunction
Ao executar o roteiroConv10X.sce pode-se realizar as conversões. Aqui
estão os resultados:
-->conv10X(261,2,0)
ans =
1.0.0.0.0.0.1.0.1.,
-->
-->conv10X(0.359,2,9)
ans =
,0.1.0.1.1.0.1.1.1.
-->
-->conv10X(261.359,2,9)
ans =
12 CAPÍTULO 1. ERROS EM COMPUTAÇÕES NUMÉRICAS
1.0.0.0.0.0.1.0.1.,0.1.0.1.1.0.1.1.1.
-->
-->conv10X(261,16,0)
ans =
1.0.5.,
-->
-->conv10X(0.359,16,9)
ans =
,5.11.14.7.6.12.8.11.4.
-->
-->conv10X(261.359,16,9)
ans =
1.0.5.,5.11.14.7.6.12.8.11.4.
-->
1.4.3 Conversão de uma base qualquer para base 10
Para obter-se o número decimal equivalente a um número escrito em qualquer
base é só multiplicar cada dígito por sua potência:
Exemplo 4 261, 35910 ∼= 1.0000.0101, 0101.1011.12
Parte inteira
1 · 28 + 0 · 27 + 0 · 26 + 0 · 25 + 0 · 24 + 0 · 23 + 1 · 22 + 0 · 21 + 0 · 20
= 261
Parte fracionária
0 · 2−1 + 1 · 2−2 + 0 · 2−3 + 1 · 2−4 + 1 · 2−5 + 0 · 2−6 + 1 · 2−7+
1 · 2−8 + 1 · 2−9 ∼= 0, 3574
Erro
|261, 359− 261, 3574| = 0, 0016
Exemplo 5 261, 35910 ∼= 100.200, 100.200.2013
Parte inteira
1 · 35 + 0 · 34 + 0 · 33 + 2 · 32 + 0 · 31 + 0 · 30
= 261
1.4. COMPUTAÇÕES NUMÉRICAS 13
Parte fracionária
1 · 3−1 + 0 · 3−2 + 0 · 3−3 + 2 · 3−4 + 0 · 3−5 + 0 · 3−6 + 2 · 3−7+
0 · 3−8 + 1 · 3−9 ∼= 0, 35899
Erro
|261, 359− 261, 35899| = 0, 00001
Exemplo 6 261, 35910 ∼= 105, 5 11 14 7 6 12 8 11 416 ou seja,
261, 35910 ∼= 105, 5BE.76C.8B416
Parte inteira
1 · 162 + 0 · 161 + 5 · 160 = 261
Parte fracionária
5
161
+
11
162
+
14
163
+
7
164
+
6
165
+
12
166
+
8
167
+
11
168
+
4
169
∼= 0, 35899999999674
Erro
|261, 359− 0, 35899999999674| ∼= 3, 24× 10−12
1.4.4 Representação de um número inteiro
A representação de um número inteiro num computador qualquer que
trabalha internamente com uma base �xa β ≥ 2 (um número inteiro); sendo
geralmente escolhido como uma potência de 2.
Dado um número inteiro n ≥ 0, ele possui uma única representação,
n = ±(nknk−1 · · ·n1n0)
= ±(nkβk + nk−1βk−1 + · · ·+ n1β1 + n0β0), (1.6)
onde os ni, i = 0, 1, · · · , k são inteiros satisfazendo 0 ≤ ni < β e nk 6= 0.
Por exemplo, na base β = 10, o número 1957 é representado por:
1957 = 1× 103 + 9× 102 + 5× 101 + 7× 100
e é armazenado como n3n2n1n0.
14 CAPÍTULO 1. ERROS EM COMPUTAÇÕES NUMÉRICAS
1.4.5 Representação de um número real
A representação de um número real no computador pode ser feita de duas
maneiras:
a) Representação do ponto �xo
Este foi o sistema usado, no passado, por muitos computadores. Sendo ainda
usado por ser simples em aplicações de microprocessadores. Um número real,
x 6= 0, ele será representado em ponto �xo por:
x = ±
−l∑
i=k
xiβ
i
(1.7)
onde k e l são o comprimento da parte inteira e fracionária do número x,
respectivamente.
Por exemplo, na base β = 10, o número 1957.325 é representado por:
1957.325 = +
−3∑
i=3
xiβ
i
= 1× 103 + 9× 102 + 5× 101 + 7× 100 + 3× 10−1 + 2× 10−2 + 5× 10−3
e é armazenado como x3x2x1x0.x−1x−2x−3.
b) Representação do ponto-�utuante
Em geral, um número x na representação do ponto-�utuante tem a forma seguinte:
x = ±m · βk (1.8)
onde
m = mantissa, um número fracionário em ponto �xo, isto é, m =
n∑
i=l
m−iβ−i
(onde l > 0, frequentemente l = 1, tal que se x 6= 0, então m−1 6= 0; 0 ≤ m−i < β,
i = 1, 2, · · · t, com t a quantidade de dígitos signi�cativos ou precisão do sistema ,
β−1 ≤ m < 1 e −m ≤ k ≤M) ;
β = base, 2 se o sistemas de numeração for binário, 10 se o sistema de
numeração for decimal, etc.;
k = expoente, um inteiro.
Observação 1 m−1 6= 0 ou 1
β
< m < 1 (signi�ca que devemos ter um digito não
nulo após a virgula) caracteriza o sistema de números em ponto �utuante normali-zado.
Observação 2 o número zero pertence a qualquer sistema e é representado com
mantissa igual a zero e k = −m.
1.4. COMPUTAÇÕES NUMÉRICAS 15
Exemplo 7 Escrever o número N = −19.2 · 10−8 em ponto �utuante na forma
normalizada.
Reescrevendo o número para a forma N = −0.192 · 10−6 , o número �ca na re-
presentação do ponto-�utuante, o expoente é igual a -6, a mantissa é igual a -0.192
e a base é 10.
Escrevendo agora os números: x1 = 0.53;x2 = −8.472;x3 = 0.0913;x4 =
35391.3 e x5 = 0.0004 , onde todos estão na base β = 10, em ponto �utuante na
forma normalizada:
x1 = 0.53 = 0.53× 100,
x2 = −8.472 = −0.8472× 101,
x3 = 0.0913 = 0.913× 10−1,
x4 = 35391.3 = 0.353913× 105,
x5 = 0.0004 = 0.4× 10−3.
Para representarmos um sistema de números em ponto �utuante normalizado,
na base β, com t dígitos signi�cativos e com limites do expoente m e M , usa-se a
notação: FN (β, t,m,M).
Um número em FN (β, t,m,M) será representado por:
±0.m−1m−2m−3 · · ·m−t × β−k (1.9)
onde m−1 6= 0 e −m ≤ k ≤M .
Exemplo 8 Considere o sistema FN (10, 3,−2, 2). Represente nesse sistema os
números do exemplo anterior.
Solução: Os número serão representado por ±0.m−1m−2m−3 · · ·m−t×β−k, onde
−2 ≤ k ≤ 2. Então:
x1 = 0.53 = 0.53× 100,
x2 = −8.472 = −0.8472× 101,
x3 = 0.0913 = 0.913× 10−1,
x4 = 35391.3 = 0.353913× 105,
x5 = 0.0004 = 0.4× 10−3.
Observe que os números x4 = 35391.3 e x5 = 0.0004 não podem ser representa-
dos no sistema. De fato, o número 35391.3 = 0.353913× 105 tem o expoente maior
que 2, causando over�ow, por outro lado 0.0004 = 0.4× 10−3 e assim o expoente
é menor que −2 causando under�ow.
Exemplo 9 Diferença entre dois números na aritmética em ponto �utuante nor-
malizada.
0.27143247 · 107
−0.27072236 · 107
0.00071011 · 107
Vemos que a diferença entre estes dois números ponto-�utuante normalizados,
resulta num número em ponto-�utuante não normalizado. Podemos, entretanto,
normaliza-lo se deslocarmos o ponto três lugares à direita e somar -3 ao expoente,
obtendo-se 0.71011000 · 104 normalizado.
16 CAPÍTULO 1. ERROS EM COMPUTAÇÕES NUMÉRICAS
1.4.6 Armazenamento na memória
Para começar vamos representar o número 0.00053474839 num computador deci-
mal. A notação ponto-�utuante normalizada deste número é 0.53474839 · 10−3.
Par evitar expoente negativo, nós adicionamos, arbitrariamente, 50 (deslocamento)
ao expoente e o número agora é 0.53474839 · 1047. O expoente somado a uma
constante arbitrária é chamado de característica. O número pode ser representado,
unicamente, através da normalização da notação ponto-�utuante, na memória do
computado utilizando o esquema de representação seguinte:
+ 5 3 4 7 4 8 3 9 4 7
↘ ↘
sinal característica = expoente + 50
Deve ser observado que a característica coloca o expoente limitado a expressão
seguinte: −50 ≤ k ≤ 49. O número tem o máximo de oito dígitos de precisão e
a representação falha quando temos números muito grande ou muito pequeno. De
modo análogo, um número binário na representação do ponto-�utuante também
pode ser armazenado na memória de um computador digital. Uma palavra arma-
zenada tendo um bit de "sinal"e 31 bits regulares pode representar um número
binário ponto-�utuante na forma seguinte:
0 1 8 9 31
sinal característica mantissa normalizada
onde
sinal = sinal do número codi�cado, 0 se positivo e 1 se negativo;
característica = 128 + expoente (resultado escrito em binário);
mantissa = fração binária normalizada.
Exemplo 10 Represente o número 12.625 numa palavra de 32 bits conforme es-
quema de representação acima.
12 2
0 6 2
0 3 2
1 1
Multiplicação Sobra
0.625x2 = 1.25 1
0.25 x2 = 0.50 0
0.5 x2 = 1.0 1
12.62510 = 1100.1012 = 0.1100101× 24
Ajustando a característica: 4 + 128 = 132
1.4. COMPUTAÇÕES NUMÉRICAS 17
132 2
0 66 2
0 33 2
1 16 2
0 8 2
0 4 2
0 2 2
0 1
13210 = 100001002
0 1 8 9 31
0 1 0 0 0 0 1 0 0 1 1 0 0 1 0 1 0 . . . . . . 0
1.4.7 Aritmética do ponto-�utuante
Os princípios das operações aritméticas básicas de um computador serão discuti-
dos agora. Para isto iremos considerar que estamos trabalhando num computador
decimal com uma palavra de 10 dígitos de comprimento. Princípios semelhantes
são utilizados em computadores binários (digitais). Na adição ou subtração de dois
números o computador examina a característica ajustada dos dois números. Os
seguintes casos são possíveis:
1- Características iguais: Adiciona-se as mantissas e mantém-se a característica.
32109876 54
+12340123 54
44449999 54
2- Quando existe estouro (over�ow) na adição das mantissas: O resultado será
ajustado.
51319212 55
+98756431 55
150075643 55
↘ ↘
estouro característica
Resulta em:
15007564 56
↘
característica ajustada
3- Características distintas: Mantém-se a de maior módulo e ajusta-se a de
menor valor.
18 CAPÍTULO 1. ERROS EM COMPUTAÇÕES NUMÉRICAS
31411122 55 31411122 55
+12344321 53 −→ +00123443 55
31534565 55
4- Resultado com zero, ou zeros, à esquerda: Normaliza-se o resultado.
34122222 73
−34000122 73
00122100 73 resulta em: 12210000 71
Na multiplicação e divisão as mantissas e características são tratadas separa-
damente.
31313142 51
×12315782 65
mantissa = 0.31313142× 0.12315782 = 0, 038564583
característica = 51 + 65 − 50 = 66, onde −50 é o desconto para compensar o
ajuste +50 em cada ajuste do expoente da representação.
A produto é:
31313142 51× 12315782 65 = 038564583 66
Com a normalização obtém-se o resultado: 38564583 65
1.5 Análise de erros
Resultados exatos dos cálculos são um supremo ideal em análise numérica. Quatro
tipos de erro afetam a exatidão dos cálculos [1]: erros de modelo, erros de dados,
erros de algoritmos e erros de arredondamento. A maioria da literatura em língua
inglesa faz classi�cação diferente. Estes erros não são conseqüências de equívocos
ou decisões precipitadas. Diferente, por exemplo, de erros de programação, eles
são inevitáveis. Em muitos casos eles podem ser antecipados, e requerimentos de
exatidão podem ser impostos, i.e., eles podem ser controlados para permanecerem
abaixo de certos limites de erros. Os limites de erro são parte da especi�cação do
problema numérico:
|Erros do modelo + erros dos dados + erros de algoritmos + erro de arredondamento|
≤ tolerância
Todos os erros relevantes têm que ser identi�cados e seus efeitos nos resultados
numéricos devem ser avaliados. Nas seções seguintes os quatro tipos de erros são
caracterizados.
1.5.1 Erros de modelo
Em qualquer processo de modelagem, várias grandezas são desprezadas. O modelo
resultante é uma abstração da realidade e vários modelos podem ser utilizados.
1.5. ANÁLISE DE ERROS 19
O desvio inevitável entre o modelo e o objeto modelado é denotado por erro de
modelagem. É necessário estimar a magnitude dos efeitos dos erros de modelagem
para garantir os requisitos de tolerância de erro. Normalmente tais estimativas não
são obtidas pois os fatores envolvidos são desconhecidos e não quanti�cados.
1.5.2 Erro de dados
Geralmente modelos não são para uma aplicação especí�ca, mas para uma classe
de aplicações similares. Uma instância é identi�cada por valores de parâmetros
do modelo. Por exemplo, o comprimento l, o deslocamento angular inicial θ e a
constante gravitacional g (que depende da localização geográ�ca) são parâmetros
do modelo matemático do pêndulo simples. Devido a medições inexatas e outros
fatores, os valores usados para parâmetros do modelo diferem do verdadeiro valor
(normalmente desconhecido); isto é chamado de erro de dados. Os impactos dos
erros de dados são objetos de análise.
1.5.3 Erro de algoritmo
Quando um problema matemático não pode ser resolvido analiticamente usando
manipulações algébricas, então pode ser tentada uma solução por algoritmo numé-
rico.No desenvolvimento de algoritmos numéricos são feitas simpli�cações antes
que uma formulação �nita do problema possa ser obtida para que o esforço com-
putacional requerido seja reduzido a um nível razoável. O desvio resultante dos
resultados obtidos pelo algoritmo dos da solução do problema matemático é deno-
tado por erro de algoritmo.
Exemplo:
A solução do sistema de equações
Ax = b, A ∈ Rnxn, b, x ∈ Rn
requer um esforço computacional proporcional a n3. Se uma solução aproximada x˜
satisfazendo
||Ax˜− b|| < �
é su�ciente, o custo computacional pode ser reduzido signi�cativamente. Se A não
possui estrutura especial, então somente
k ≈ √κ2 ln(2/�)
2
, κ2 := ‖A‖2
∥∥A−1∥∥
2
multiplicações matriz-vetor são necessárias para solução iterativa [3]. O número κ2
é o número condição euclidiano da matriz A (ver seção 13.8 [1]).
1.5.4 Erro de truncamento
Algoritmos numéricos implantados em um computador podem somente realizar
uma seqüência �nita de operações aritméticas (adição, subtração, multiplicação,
divisão e lógicas). Para calcular funções prede�nidas sin, exp, ln, . . . somente
uma seqüência �nita de operações aritméticas são executados pelo computador. O
erro devido a troca de um processo in�nito por uma seqüência �nita de operações
aritméticas é chamado de erro de truncamento.
20 CAPÍTULO 1. ERROS EM COMPUTAÇÕES NUMÉRICAS
Exemplo 11 A troca da série in�nita da exponencial:
ex =
∞∑
k=0
xk
k!
com Pn(x) =
n∑
k=0
xk
k!
produz um erro de truncamento
etrunc(x) := Pn(x)− cos(x)
que cresce com a distância entre x e zero.
1.5.5 Erros de discretização
O erro resultante de uma troca de informação contínua por informação discreta,
num processo de amostragem, é referido como erro de discretização. Muitos autores
estendem o termo erro de truncamento para incluir o erro de discretização.
Exemplo 12 O cálculo de uma integral de�nida
I =
∫ b
a
f(x)dx
são aproximados por somas �nitas envolvendo uma malha de pontos xi ∈ [a, b], i =
1, 2, · · ·n que pertencem ao conjunto de números de pontos �utuantes e as corres-
pondentes avaliações aproximadas das funções {f(x1), · · · f(xn)}. Os erros de ar-
redondamento comprometem a exatidão dos resultados quando tenta-se minimizar
os erros de truncamento re�nando-se a malha de discretização.
1.5.6 Erros de arredondamento
Um computador fornece somente um conjunto �nito de números: inteiros, e número
de ponto-�utuante com mantissa de comprimento �xo. Desta forma as operações
feitas num programa de computador não são geralmente executadas exatamente.
Cada passo mapeia seu resultado em um dos números de ponto-�utuante disponí-
veis, normalmente o mias próximo. A diferença entre o resultado exato e o resultado
arredondado de uma operação á chamado de erro de arredondamento. O efeito dos
erros de arredondamento acumulados sobre o resultado �nal do método de aproxi-
mação é chamado de efeito de erro de arredondamento.
1.5.7 Estudo de caso
É interessante ilustrar diferentes tipos de erro mais explicitamente [13]. Suponha
que se quer computar f(x) para um dado x real. No cálculo prático x é aproximado
por x˜ pois o computador tem uma palavra �nita. A diferença entre x˜− x é o erro
inicial, enquanto �1 = f(x˜)−f(x) é o erro propagado correspondente. Normalmente
f é trocado por uma função mais simples f1 (freqüentemente uma expansão em série
de potência truncada). A diferença �2 = f1(x˜)− f(x˜) é o erro de truncamento. Os
cálculos são feitos por um computador, portanto não são operações exatas. Na
realidade calculamos f2(x˜) no lugar de f1(x˜), o qual é um valor calculado errado
1.6. PROPAGAÇÃO DE ERROS 21
de uma função errada com argumento errado. A diferença �3 = f2(x˜) − f1(x˜) é o
erro de arredondamento propagado. O erro total é
� = f2(x˜)− f(x) = �1 + �2 + �3.
Exemplo 13 Calcular e1/3 fazendo todos os cálculos com 4 decimais. (Obs. Os
cálculos foram feitas com uma calculadora)
�1 = e
0.3333 − e1/3 = −0.000465196
ex ≈ f1(x) = 1 + x
1!
+
x2
2!
+
x3
3!
+
x4
4!
para x˜ = 0.3333
�2 = f1(x˜)− f(x˜) = −
(
0.33335
5!
+
0.33336
6!
+ · · ·
)
= −0.0000362750
f2(x˜) = 1 + 0.3333 + 0.0555 + 0.0062 + 0.0005 = 1.3955
f1(x˜) = 1.3955296304 obtidos com 10 decimais
�3 = −0.0000296304
� = 1.3955− e1/3 = �3 + �3 + �3 = −0.0001124250
1.6 Propagação de erros
Os erros são de�nidos como absoluto e relativo. Se x é o número exato e x˜ uma
aproximação, então temos:
Erro absoluto : � = |x− x˜| (1.10)
e
Erro relativo :
∣∣∣ �
x
∣∣∣ = ∣∣∣∣x− x˜x
∣∣∣∣ , (1.11)
Um número decimal é arredondado na posição n desprezando-se todos os dígi-
tos à direita desta posição. O dígito na posição n é deixado inalterado ou acrescido
de uma unidade se o dígito da posição n + 1 é um número menor que 5 ou maior
que 5. Se o número na posição n+1 for igual a 5, o digito na posição n é acrescido
de uma unidade se ele for par e é deixado inalterado se for impar ( a regra pode
ser o contrário: o digito na posição n é acrescido de uma unidade se ele for impar
e é deixado inalterado se for par ) . Frequentemente é feito o truncamento para n
decimais onde todos os dígitos além da posição n são simplesmente desprezados.
22 CAPÍTULO 1. ERROS EM COMPUTAÇÕES NUMÉRICAS
Exemplo 14 3.1415926535
Arredondamento:
3.14 (2d)
3.141 (3d)
3.1416 (4d)
3.1415927 (7d)
onde (nd) = número de casas decimais.
Pode-se dizer de forma simplória que dígitos signi�cativos são aqueles que têm
informação sobre a dimensão do número sem contar com a parte exponencial. Na-
turalmente um dígito d localizado mais à esquerda tem mais informação do que
um mais à direita. Quando um número é escrito com somente seus dígitos signi-
�cativos estes formam uma cadeia de símbolos que começa com o primeiro dígito
diferente de zero. Portanto se a parte fracionária termina com um ou vários zeros,
eles são signi�cativos por de�nição. Se o número é inteiro e termina com zeros,
somente com o conhecimento da situação é que podemos decidir se eles são signi�-
cativos ou não. Por exemplo, 8630574 escrito com 4 dígitos signi�cativos é 8630000.
Em muitos casos nós estimamos o erro de uma função f(x1, x2, . . . , xn) com
erros individuais nas variáveis (x1, x2, ..., xn) conhecidos. Nós encontramos direta-
mente que
∆f =
∂f
∂x1
∆x1 +
∂f
∂x2
∆x2 + · · ·+ ∂f
∂xn
∆xn (1.12)
onde os termos de ordem superior foram desprezados. O erro máximo é dado por
|∆f | =
∣∣∣∣ ∂f∂x1
∣∣∣∣ |∆x1|+ ∣∣∣∣ ∂f∂x2
∣∣∣∣ |∆x2|+ · · ·+ ∣∣∣∣ ∂f∂xn
∣∣∣∣ |∆xn| (1.13)
O limite superior do erro é geralmente bastante pessimista, em computações prá-
ticas os erros têm uma tendência a cancelar [13]. Por exemplo, se 20000 números
são arredondados com quatro casa decimais e adicionados, o erro máximo é
1
2
× 10−4 × 20000 = 1
O experimento com simulação Monte Carlo abaixo demonstra que a
previsão acima é pessimista para o cenário examinado.
Exemplo 15 Cálculo de z =
x
y
.
Se x˜ = x+ δ e y˜ = y+ γ são duas aproximações para os números exatos x e y.
Calcula-se z =
(
x
y
)
arredondado
=
x˜
y˜
=
x+ δ
y + γ
+ �
então
z˜ ∼= z + 1
y
· δ − x
y2
· γ + �
1.6. PROPAGAÇÃO DE ERROS 23
Caso A:
x = 8 δ = 0.009 y = 5 δ = 0.04
x˜ = x+ δ y˜ = y + γ
x
y
= 1.6
x˜
y˜
= 1.589 z +
1
y
· δ − x
y2
· γ + � = 1.589
Caso B:
x = 8 δ = −0.07 y = 5 δ = 0.08
x˜ = x+ δ y˜ = y + γ
x
y
= 1.6
x˜
y˜
= 1.561 z +
1
y
· δ − x
y2
· γ + � = 1.56
O erro em z˜ é constituído dos erros propagados de x e y acrescido de um novo
erro de arredondamento.
1.6.1 Cancelamento numérico
Devido ao comprimento limitado das palavras em computadores, e em conseqüência
do uso da aritmética do ponto-�utuante com representação normalizada, as leis da
aritméticaelementar não são satisfeitas. Os efeitos do uso da aritmética do ponto-
�utuante serão vistos em alguns exemplos que seguem.
Os exemplos a seguir violam a lei associativa da adição:
Exemplo 16 (usando-se uma máquina com quatro dígitos decimais na mantissa
da representação)
x = 9.909 y = 1.000 z = −0.990
(x+ y) + z = 10.90 + (−0.990) = 9.910
x+ (y + z) = 9.909 + (0.010) = 9.919
Exemplo 17 (usando-se uma máquina com quatro dígitos decimais na mantissa
da representação)
24 CAPÍTULO 1. ERROS EM COMPUTAÇÕES NUMÉRICAS
x = 4561 y = 0.3472
(y + x)− x = (−0.3472 + 4561)− 4561 = 4561− 4561 = 0.0000
y + (x− x) = 0.3472 + (4561− 4561) = 0.3472 + 0.0000 = 0.3472
Vejamos agora um exemplo (usando-se uma máquina com quatro dígitos deci-
mais na mantissa da representação) que viola a lei distributiva.
Exemplo 18 x = 9909 y = −1.000 z = 0.999
(x× y) + (x× z) = −9909 + 9899 = −10.00
x× (y + z) = 9909× (−0.0001) = −9, 909
Exemplo 19 A equação do segundo grau x2 − b · x+ � = 0 tem duas soluções:
x1 =
b+
√
b2 − 4�
2
e x2 =
b−√b2 − 4�
2
Se b < 0 e � << b , x2 é expresso como a diferença de dois números pratica-
mente iguais e poderá perder muitos dígitos signi�cativos.
Se x2 for reescrito como:
x2 =
�
x1
=
2�
b+
√
b2 − 4�
a raiz é aproximadamente
�
b
sem perda de dígitos signi�cativos.
Usando-se uma máquina com quatro dígitos decimais na mantissa da repre-
sentação:
b = 300.0 e � = 1.000√
90000− 4.000 = 300.0
x1 =
600.0
2.000
= 300.0
x2 =
300.0− 300.0
2.000
=
0.0000
2.000
= 0.0000
usando a relação x2 =
�
x1
=
1.000
300.0
= 0.0033 é um resultado mais preciso.
Exemplo 20 Sabe-se que para x grande senh(x) ∼= cosh(x) ∼= e
x
2
. Se quisermos
calcular e−x podemos dizer que e−x = cosh(x) − senh(x), o que conduz a um
cancelamento perigoso. Por outro lado e−x =
1
cosh(x) + senh(x)
fornece resultados
mais precisos.
1.6. PROPAGAÇÃO DE ERROS 25
1.6.2 Aritmética intervalar
O cálculo de erro de arredondamento estimado por aproximação de primeira or-
dem, descrito no �nal da indrodução da seção 1.6 acima, são inviáveis para serem
utilizados em métodos numéricos típicos onde o número de operações aritméticas é
muito grande para permitir uma estimativa satisfatória do efeito total de todos os
erros de arredondamentos.
A aritmética intervalar é uma alternativa para determinar limites para o erro
absoluto de um algoritmo, considerando todos erros de dados e arredondamento.
A aritmética intervalar faz cálculos sistemáticos através de intervalos [x] = [x, x]
limitados de números de máquinas x, x ∈ F, em vez de números reais simples x. As
operações aritméticas +, −, ×, ÷ são de�nidas através de intervalos. Algoritmos
intervalares são implementados em computadores produzindo resultados intervala-
res garantidos conterem a solução desejada.
A aritmética intervalar deve ser usada com bastante senso crítico, caso contrá-
rio os resultados con�áveis de limites de erro serão, na maioria das vezes, muito
pessimísticos.
Exemplo 21 Calcule y = x3 − 3x2 + 3x para [x] = [0.9, 1.1] ?
Pelo esquema de Horner
y = ((x− 3)x+ 3)x
[y] = [0.6209, 1.4191] (muito largo)
usando
y = 1 + (x− 1)3
[y] = [0.9989, 1.0011] (resultado o´timo)
Para o sucesso da aplicação da aritmética intervalar é necessário desenvolver
novos algoritmos que produzam limites de erros aceitáveis. Um tratamento mais
profundo da aritmética intervalar pode ser visto emMoore [5], Alefeld [6] e Kulish [7]
(para inclusão dos arredondamentos direcionados da aritmética de ponto �utuante).
1.6.3 Estimativa estatística de erros de arredondamento
Para obtenção de estimativas estatísticas de erros de arredondamento relativo (ver
Rademacher [8]) que é causado por uma operação elementar, seus resultados são
considerados uma variável aleatória no intervalo [−eps, eps] onde |�| ≤ eps . Alem
disso assume-se que os erros de arredondamento atribuídos as operações diferentes
são variáveis independentes. Por µ� e σ
2
� denota-se o valor esperado e variância da
distribuição do arredondamento. Eles satisfazem as seguintes relações gerais
σ2� = E(�− E(�))2 = E(�2)− ((E(�))2 = µ�2 − µ2�
Assumindo uma distribuição uniforme no intervalo [−eps, /eps], obtém-se
µ� := E(�) = 0, σ
2
� = E(�
2) =
1
2 eps
∫ eps
−eps
t2dt =
1
3
eps2 =: �−2 (1.14)
Exames rigorosos mostram que a distribuição de arredondamento não é muito
uniforme (ver Sterbenz [9]). Deve-se ter em mente que o padrão ideal do erro
26 CAPÍTULO 1. ERROS EM COMPUTAÇÕES NUMÉRICAS
de arredondamento é somente uma aproximação do padrão observado em cálcu-
los computacionais, assim os as estimativas de µ� e σ
2
� devem ser determinadas
empiricamente. Os resultados x dos algoritmos estando sujeitos a erros de arredon-
damento aleatórios tornam-se variaríeis aleatórias com valor esperado µx e variância
σ2x satisfazendo a mesma relação básica
σ2x = E(x− E(x))2 = E(x2)− ((E(x))2 = µx2 − µ2x
Os efeitos da propagação de erros de arredondamento das operações elementares
são descritas pelas seguintes fórmulas para variáveis aleatórias independentes x, y
e constantes α, β ∈ R:
µαx±βy = E(αx± βy) = αE(x)± βE(y) = αµx ± βµy
σ2αx±βy = E((αx± βy)2)− (E(αx± βy))2
= α2E(x− E(x))2 + β2E(y − E(y))2 = α2σ2x + β2σ2y
(1.15)
A primeira fórmula acima resulta da linearidade do valor esperado. Ela é valida
para variáveis aleatórias x, y. A segunda fórmula segue da relação E(xy) = E(x) ·
E(y), que é satisfeita se x e y são independentes. Assim
µx×y = E(x× y) = E(x)E(y) = µxµy
σ2x×y = E(x× y − E(x)E(y))2 = µx2µy2 − µ2xµ2y
= σ2xσ
2
y + µ
2
xσ
2
y + µ
2
yσ
2
x
(1.16)
Alem disso os valores esperados µx são trocados por valores estimados x e
variâncias relativas �2x = σ
2
x/µ
2
x ≈ σ2x/x2 são considerados, então de (1.15) e (1.16):
z = x+ y ou z = x− y : �2z =˙ (xz )2�2x + (yz )2�2y + �¯2
z = x× y ou z = x÷ y : �2z =˙ �2x + �2y + �¯2
Os limites de erros para o resultado �nal r de uma computação numérica são
obtidos da variância relativa �2r, assumindo que o erro �nal tem distribuição normal.
Esta suposição é justi�cada uma vez as distribuições dos erros propagados tendem
a ser normal se sujeitas as muitas operações elementares. Supondo o resultado �nal
ser normal, o erro relativo do resultado �nal r é limitado com probabilidade 0.9 por
2�r
1.7 Padronização do sistema de números de ponto
�utuante
Padrões internacionais são desenvolvidos pelo ISO (International Standardization
Organization) com suas organizações nacionais a�liadas de padronização (ABNT
- Associação Brasileira de Normas Técnicas) . Um caso especial é o campo da
engenharia elétrica e eletrônica, na qual os padrões são desenvolvidos pela IEC (In-
ternational Electrotecnical Commission).
Nos anos 70 tentou-se desenvolver padrões para a aritmética de ponto �utuante
binária para microcomputadores. Um dos principais objetivos era tornar programas
mias portáveis para que técnicas de programação particulares usadas para tratar
1.7. PADRONIZAÇÃODO SISTEMADE NÚMEROS DE PONTO FLUTUANTE27
erros de arredondamento exceções (e.g. , over�ow de expoentes) fossem efetivas
para arquiteturas de computadores diferentes.
Após lenta negociação, a sociedade americana de computadores IEEE (Institute
of Electrical and Eletronics Engineers) adota o padrão IEE 754-1985, o padrão para
a aritmética de ponto �utuante binária (abreviadamente IEEE-754). Em 1984 o
IEC decide considerar este padrão nacional um padrão internacional , IEC 559:1989
da aritmética de ponto �utuante para sistemas de microcomputadores. O padrão
relacionado IEEE 854-1987 generaliza 754 para cobrir tanto decimal como binário.
Padrão IEEE 754 ponto �utuante é a representação mais comum hoje em dia
para os números reais em computadores, incluindoPC com processador Intel, Ma-
cintoshes e a maioria das plataformas Unix.
1.7.1 O que são os números em ponto �utuante?
Existem várias maneiras de representar números reais em computadores. A repre-
sentação do ponto �xo coloca um ponto (potência) em algum lugar no meio dos
dígitos, e é equivalente ao uso de números inteiros que representam partes de uni-
dades. Por exemplo, pode representar um centésimo (1/100) de uma unidade, com
quatro dígitos decimais, pode-se representar 32.45 ou 00.03. Outra possibilidade é
usar racionais e representar cada número como a razão entre dois inteiros.
A representação de ponto �utuante - a solução mais usual - basicamente repre-
senta reais em notação cientí�ca. A notação cientí�ca representa os números como
um número de base e um expoente. Por exemplo, 123.123 pode ser representado
como 1.23123 × 102. Em hexadecimal, o 123.FAC número pode ser representado
como 1.23FAC× 162.
A representação de ponto �utuante resolve alguns problemas de representação.
O Ponto �xo tem uma janela �xa de representação, o que limita de representar
números muito grandes ou muito pequenos. O ponto �xo é propenso a uma perda
de precisão quando dois grandes números são divididos.
A representação de ponto �utuante emprega uma �janela deslizante� de pre-
cisão adequada à escala do número. Isso permite que ele represente números de
0, 0000000000000001 e 1.000.000.000.000 com facilidade.
1.7.2 Esquema de armazenamento
Os números de ponto �utuante IEEE tem três componentes básicos: o sinal, o ex-
poente e a mantissa. A mantissa é composta por fração e um dígito líder implícito
(explicado abaixo). A base do expoente (2) é implícita e não precisa ser armazenado.
A tabela a seguir mostra os esquemas de armazenamento de precisão simples
(32 bits) e precisão dupla (64 bits)s de ponto �utuante. O número de bits para
cada campo são mostradas (intervalo dos bits estão entre colchetes):
28 CAPÍTULO 1. ERROS EM COMPUTAÇÕES NUMÉRICAS
Precisão Sinal Expoente Fração Deslocamento
Simples 1 [0] 8 [1-8] 23 [9-31] 127
Dupla 1 [0] 11 [1-11] 52 [12-63] 1023
Gra�camente:
0 1 8 9 31
sinal característica mantissa
e
0 1 11 12 63
sinal característica mantissa
O bit de sinal
O bit de sinal é simples: 0 denota um número positivo; 1 denota um número
negativo. Invertendo-se o valor deste bit inverte o sinal do número.
O expoente
O campo de expoente precisa representar expoentes positivos e negativos. Para
fazer isso, um deslocamento é adicionado ao verdadeiro expoente, a �m de se obter
o expoente de armazenamento. Para IEEE de precisão simples, este valor é de 127.
Assim, um expoente zero signi�ca que 127 é armazenado no campo de expoente.
Um valor armazenado de 150 indica um expoente de (150-127), ou 23. Por razões
apresentadas mais tarde,os expoentes de −127 (todos bits 0's) e 128 (todos bits 1's)
são reservados para números especiais. Para precisão dupla, o campo de expoente
tem 11 bits e um deslocamento de 1023.
A mantissa
A mantissa, também conhecida como o signi�cando, representa os bits de precisão
do número. É composto de um bit implícito e os bits da fração.
Para saber o valor do bit líder implícito, considerar que qualquer número pode
ser expresso em notação de ponto �utuante de muitas maneiras diferentes. Por
exemplo, o número 4957 pode ser representado por qualquer uma dessas:
4957× 100
0.4957× 104
4.957× 103
0.004957× 106
Para maximizar a quantidade de números representáveis, os números de ponto
�utuante são normalmente armazenados na forma normalizada. Na forma norma-
lizada 4957 é representado como 4.957× 103.
Uma otimização pequena e agradável está disponível na base dois, já que a
única forma possível do dígito zero é 1. Pode-se supor apenas um dígito de 1,
1.7. PADRONIZAÇÃODO SISTEMADE NÚMEROS DE PONTO FLUTUANTE29
e não precisa-se representá-lo explicitamente. Como resultado, a mantissa tem
efetivamente 24 bits de resolução com fração de 23 bits.
Ressumindo:
1. O bit de sinal é 0 para positivo, 1 para o negativo.
2. A base do expoente é dois.
3. O campo de expoente contém 127 mais o verdadeiro expoente de precisão
simples ou 1023 mais verdadeiro para o expoente de precisão dupla.
4. O primeiro bit da mantissa é geralmente assumida como 1.f , onde f é o
campo fração de bits.
Intervalo de números de ponto �utuante
O intervalo de números positivos de ponto �utuante podem ser divididos em nú-
meros normalizados (que preserva toda a precisão da mantissa), e os números des-
normalizados (discutido mais tarde) que usam apenas uma porção de precisão da
mantissa.
• Números positivos normalizados são de�nidos dentro da faixa de:
2(1−deslocamento) até (2− 2−precisa˜o)× 2deslocamento.
• Números negativos normalizados são de�nidos dentro da faixa de:
−2(1−deslocamento) até −(2− 2−precisa˜o)× 2deslocamento.
• Números positivos normalizados superiores (2− 2−precisa˜o)× 2deslocamento e
números negativos normalizados inferiores −(2 − 2−precisa˜o) × 2deslocamento
são transbordados (over�ows).
• Números positivos normalizados menores que 2(1−deslocamento) e
números negativos normalizados maiores que −21−deslocamento são insu�ci-
entes (under�ows).
Precisão Desnormalizados Normalizados
Simples
±2−149 ≈ ±10−44.85 ate´
(1− 2−23)× 2126 ≈ 1037.93
±2−126 ≈ ±10−37.93 ate´
(2− 2−23)× 2127 ≈ 1038.53
Dupla
±2−1074 ≈ ±10−323.31 ate´
(1− 2−52)× 21022 ≈ 10307.65
±2−1022 ≈ ±10−307.65 ate´
(2− 2−52)× 21023 ≈ 10308.25
Dado que o sinal dos números de ponto �utuante é dado por um bit líder especial,
o intervalo de números negativos é dado pela negação dos valores acima.
Há cinco diferentes intervalos numéricos que a precisão simples de números de
ponto �utuante não são capazes de representar:
• Números negativos menores do que −(2− 2−23)× 2127. (over�ow negativo)
• Números negativos maiores do que −2−149. (under�ow negativo)
• Zero.
• Números positivos menores do que 2−149. (under�ow positivo)
30 CAPÍTULO 1. ERROS EM COMPUTAÇÕES NUMÉRICAS
• Números positivos superiores à (2− 2−23)× 2127. (over�ow positivo)
Over�ow signi�ca que os valores são muito grande para a representação, e assim,
da mesma forma que os inteiros podem transbordar. Under�ow é um problema
menos grave, porque ele apenas denota uma perda de precisão, que é garantido ser
muito próximo de zero.
Segue uma tabela com o intervalo efetivo (excluindo valores in�nitos) de núme-
ros IEEE de ponto �utuante:
Precisão Binário Decimal
Simples ±(2− 2−23)× 2127 ≈ ±1038.53
Dupla ±(2− 2−52)× 21023 ≈ ±10308.25
Observação 3 Note-se que os valores extremos ocorrem (independentemente do
sinal), quando o expoente é o valor máximo para os números �nitos (2127 para
precisão simples, 21023 para o dupla), e, a mantissa está completa de 1's (incluindo
1 bit da normalização).
1.7.3 Valores Especiais
IEEE reserva valores do campo expoente com todos 0's e 1's para representar todos
os valores especiais no sistema de ponto �utuante.
Zero
Como mencionado acima, o zero não é diretamente representável no formato direto,
devido à suposição de um 1 à esquerda (que seria preciso especi�car numa mantissa
zero real para produzir o valor de zero). Zero é um valor especial denotado com
um campo de expoente zero e um campo de mantissa zero. Observe que −0 e 0 são
valores distintos, embora ambos são comparados como iguais.
Desnormalizados
Se o expoente é todo de 0's, mas a mantissa for diferente de zero (o que poderia
ser interpretado como zero), então o valor é um número desnormalizado, que não
tem um líder assumido 1 antes do ponto binário. Portanto representa um número
(−1)s× 0.m× 2−126, onde s é o bit de sinal e m é a mantissa. Para precisão dupla,
desnormalizada números são da forma (−1)s×0.m×2−1022. A partir disto se pode
interpretar o zero como um tipoespecial de número desnormalizado.
In�nito
Os valores (+)in�nito (+∞) e (-)in�nito (−∞), são indicados com um expoente de
1's e uma mantissa de 0's. O bit de sinal faz a distinção entre in�nito positivo e
in�nito negativo. Ser capaz de denotar o in�nito como um valor especí�co é útil
porque permite as operações para tratar de situações de estouro (over�ow). As
operações com valores in�nitos são bem de�nidas no IEEE de ponto �utuante.
1.7. PADRONIZAÇÃODO SISTEMADE NÚMEROS DE PONTO FLUTUANTE31
Não é um número
O valor NaN (Not a Number) é usado para representar um valor que não representa
um número real. NaN são representados por um padrão de bits com um expoente
de 1's e uma mantissa diferente de zero. Existem duas categorias de NaN: QNaN
(Quiet NaN) e SNaN (Sinalização NaN).
A QNaN é um NaN com o conjunto mais signi�cativo de bits na mantissa.
QNaN propaga livremente através da maioria das operações aritméticas. Estes va-
lores saltam de uma operação quando o resultado não é de�nido matematicamente.
Um SNaN é um NaN com o bit mais signi�cativo da mantissa limpa. Ela é
usada para sinalizar uma exceção quando utilizado em operações. SNaN pode ser
útil para atribuir a variáveis não inicializadas como armadilha de uso prematuro.
Semanticamente, QNaN denotam operações indeterminadas, enquanto SNaN
denotam operações inválidas.
1.7.4 Parâmetros de um sistema de número de ponto-�utuante
A notação de um sistema de ponto �utuante é
F(β, t, m, M, dnorm)
Quatro parâmetros e um valor booleano:
1. Base: β ≥ 2
2. Precisão: t ≥ 2
3. menor expoente: m < 0
4. maior expoente: M > 0
5. indicador de normalização: dnorm ∈ booleano
caracterizam cada sistema de números IEEE/IEC
dnorm
= true caso o sistema contenha
números denormalizados (sub-normal)
= false para o sistema normalizado
A notação de um sistema de ponto �utuante F(β, t, m, M, dnorm) satisfaz
as seguintes relações
F(b, p, emin, emax, true) = FN (b, p, emin, emax) ∪ FD(b, p, emin, emax)
F(b, p, emin, emax, false) = FN (b, p, emin, emax).
Exemplo 22 (Intel) De acordo com a norma IEC/IEEE os sistemas de numeração
utilizados nos microprocessadores Intel são F(2, 24,−125, 128, true) e F(2, 53,−1021, 1024, true)
para precisão simples e precisão dupla. Microprocessadores Intel têm precisão es-
tendida F(2, 64,−16381, 16384, true).
32 CAPÍTULO 1. ERROS EM COMPUTAÇÕES NUMÉRICAS
Exemplo 23 (IBM System/390) Fornece três sistemas de numeração hexadecimal
F(16, 6,−64, 63, false) para short precision, F(16, 14,−64, 63, false) para long pre-
cision e F(16, 28,−64, 63, false) para extended precison.
Exemplo 24 (Cray) Fornece dois sistemas de numeração F(2, 48,−16384 , 8191, false)
e F(2, 96,−16384, 8191, false).
Exemplo 25 (Calculadoras) Calculadoras cienti�cas são normalmente fornecidas
com um único sistema de numeração F(10, 10,−98, 100, false). Algumas trabalham
com maior precisão interna enquanto exibem somente dez casas decimais.
Exemplo 26 Sabemos que os números reais podem ser representados por uma reta
contínua. Entretanto, em ponto �utuante podemos representar apenas pontos dis-
cretos da reta real. Para ilustrar este fato consideremos o seguinte exemplo.
Quantos e quais números podem ser representados no sistema FN (2, 3, 1, 2)?
Solução: Temos que β = 2 então os dígitos podem ser 0 ou 1; m = 1 e M =
2 então −1 ≤ k ≤ 2 e t = 3. Então os números são da forma:
±0.m1m2m3 × βk.
Tem-se duas possibilidades para o sinal, uma possibilidade para m1, duas para
m2 , duas para m3 e quatro para as formas de β
k
. Fazendo o produto 2 · 1 · 2 · 2 · 4
obtém-se 32. Portanto neste sistema pode-se representar 33 números visto que o
zero faz parte de qualquer sistema. Para responder quais são os números lista-se
as formas da mantissa: 0.100, 0.101, 0.110 e 0.111 e as formas de βk são: 2−1, 20,
21 e 22. Tem-se então os seguintes números:
0.100(2) ×

2−1
20
21
22
 =

0.25(10)
0.5(10)
1.0(10)
2.0(10)

desde que 0.100(2) = 0.5(10);
0.101(2) ×

2−1
20
21
22
 =

0.3125(10)
0.625(10)
1.25(10)
2.5(10)

desde que 0.101(2) = 0.625(10);
0.110(2) ×

2−1
20
21
22
 =

0.375(10)
0.75(10)
1.5(10)
3.0(10)

desde que 0.110(2) = 0.75(10);
1.8. PROGRAMAS DE PRECISÃO MÚLTIPLA 33
0.111(2) ×

2−1
20
21
22
 =

0.4375(10)
0.875(10)
1.75(10)
3.5(10)

desde que 0.111(2) = 0.875(10);
Exemplo 27 Considerando o mesmo sistema do exemplo 26, represente os núme-
ros: x1 = 0.48, x2 = 4.8 e x3 = 0.18 dados na base 10.
Solução: Fazendo os cálculos obtemos que: 0.4810 = 0.111 × 2−1, 4.810 =
0.100×23 e 0.1310 = 0.100×2−2. Apenas o primeiro número pode ser representado
no sistema, pois para o segundo teremos over�ow e para o terceiro under�ow.
Observe que o número 0.4810 tem no sistema dado, a mesma representação que o
número 0.4375(10).
1.8 Programas de precisão múltipla
Em certas aplicações o sistema de ponto �utuante fornecido pelo computador tem
precisão ou intervalo insu�ciente. Se os cálculos são feitos em precisão simples,
então se usa precisão dupla para tentar remediar di�culdades e, se ainda assim, a
precisão dupla é insu�ciente, tenta-se a precisão estendida. Contudo esta estratégia
prejudica a portabilidade dos programas, pois poucos sistemas de computadores
fornecem mais que dois níveis de precisão. Além disso, esta estratégia é de uso
limitado: existem raramente quatro níveis, então o nível de precisão pode não ser
adaptado aos requisitos de uma aplicação particular. Uma solução é o uso de um
software de precisão múltipla (Maple, Matlab, etc.) , que permite aumentar a
precisão independente da arquitetura.
Estes softwares permitem uma escolha �exível da precisão e/ou intervalo neces-
sário dos números de ponto �utuante. A desvantagem mais séria das implementa-
ções de sistemas de numeração via software comparada a hardware é o tempo de
processamento (crescimento em tempo de execução por um fator > 100 [10]
1.9 A in�uência da aritmética do ponto �utuante
Os problemas com o uso da aritmética de ponto �utuante são fartamente discutido
na literatura, o artigo [11] é clássico. A seguir veremos alguns casos selecionados.
Para resolver um sistema de equações na linear, a função f : Rn → Rn deve ser
implementada na forma de um (sub)programa. Então os zeros da implementação
f˜ : Fn → Fn são determinados, em vez da função matematicamente de�nida f . O
termo zero perde seu signi�cado comum mesmo no caso de funções de uma variável
(n = 1) porque a equação
f˜(x) = 0 com f˜ : F→ F
pode ter várias soluções (zeros) ou nenhuma solução na vizinhança de um zero
isolado da função original.
Exemplo 28 (zeros não encontados[12], pag. 279)
34 CAPÍTULO 1. ERROS EM COMPUTAÇÕES NUMÉRICAS
Figura 1.1: Planilha do software matemático Mathcad usada para traçar o
grá�co da função f(x) = 3x2 + 1
pi4
ln(pi − x)2 + 1. A função não tem zeros
quando calculada numericamente com F(2, 53,−1021, 1024, true) (analitica-
mente tem dois)
A função
f(x) = 3x2 +
1
pi4
ln(pi − x)2 + 1 (1.17)
Tem duas raízes no intervalo [3.14, 3.15]; �1 ∈ [3.14, pi] e �2 ∈ [pi, 3.15]. Estes
zeros não podem ser determinados numericamente, desde que
f(x) > 0
Para todo x ∈ F(2, 53,−1021, 1024, true) para a qual 1.17 pode se calculado. Os
dois zeros de f ,
x∗1 ≈ pi − 10−647 e x∗2 ≈ pi + 10−647
estão localizados muito próximos de pi, e f(x) ≤ 0 é valido somente no intervalo
localizado entre dois números de máquina. A implementação f˜ : F→ F não possui
zeros (ver �gura 1.1).
Exemplo 29 (grande número de zeros [12], pag. 279 )
O polinômio
P7(x) = x
7 − 7x6 + 21x5 − 35x4 + 35x3 − 21x2 + 7x− 1 =
= ((((((x− 7) + 21)x− 35)x+ 35)x− 21)x+ 7)x− 1 = (x− 1)7
tem somente um zero em x∗ = 1.A implementação de P˜7 : F → F usando o
esquema de Horner tem milhares de zeros na vizinhança de x = 1 [cálculo com
1.9. A INFLUÊNCIA DA ARITMÉTICA DO PONTO FLUTUANTE 35
F(2, 24,−125, 128, true), i.e., com uma aritmética de precisão simples IEC/IEEE];
para x > 1 existem milhares de pontos com valores P˜7 < 0, embora P˜7 > 0 nesta
região e, similarmente, para x < 1 existem milhares de pontos com valores P˜7 > 0,
embora P˜7 < 0 nesta região. A fenômeno do Caos surge do cancelamento dos dígi-
tos mais signi�cativos (ver �gura 4.10 e 4.11 [1], pag 145).
Exemplo 30 (solução do sistema linear inspirado em [12], pag. 233)
A =

8 3 0
7 8 3
7 8 3
. . .
. . .
7 8 3
0 7 8

e b =

11
18
18
.
.
18
15

A �gura 1.2 mostra uma planilha Mathcad para resolução do sistema linear
A · x = b. Embora o residual seja praticamente zero para todos as componentes do
vetor solução, temos um resultado numericamente insatisfatório:
x =

1
1
1
·
·
1
1

= solução EXATA !
Obs. A função verifylss do Matlab Intlab toolbox produziu os resultados de
acordo.
Exemplo 31 (avaliação de função)
Abaixo vamos avaliar a função f(x, y) = 333.75 ∗ y6 + x2 ∗ (11 ∗ x2 ∗ y2 − y6 −
121 ∗ y4 − 2) + 5.5 ∗ y8 + x/(2 ∗ y) usando o Maple com precisão variada. A �gura
1.3 mostra a planilha Maple onde só a partir de 37 dígitos é que os resultados
apresentados são numericamente válidos.
36 CAPÍTULO 1. ERROS EM COMPUTAÇÕES NUMÉRICAS
Figura 1.2: Software matemático Mathcad usado na solução do sistema linear
Figura 1.3: Software matemático Maple usado na avaliação da função
f(x, y) = 333.75∗y6+x2 ∗(11∗x2 ∗y2−y6−121∗y4−2)+5.5∗y8+x/(2∗y)
1.10. EXERCÍCIOS PROPOSTOS 37
1.10 Exercícios Propostos
1) Converta os seguintes números decimais para sua forma binária:
a) 35 b) 2345 c) 0.1218 d) 67.67 e) 95 f) 2500
g) 2000 h) 655 i) 722 j) 3.6× 1021 l) 231 m) 2.5× 10−18
2) Converta os números binários para suas formas octal, hexadecimal e decimal:
a) 1011012 b) −1101010112 c) −0.11012
d) 0.1111111012 e) 0.00001012 f) 101012
g) −111010110112 h) −0.11000012 i) 0.1011001111012
j) 0.0011001012
3) Reescreva os números seguintes na representação do ponto-�utuante norma-
lizada:
a) 27.534 b) −89.901 c) 18× 1021 d) 1.3756× 10−7
e) 11.01112 f) −111.01012 g) 0.001012 h) 1110101012
4) Seja o número seguinte em ponto-�utuante num computador de 32 bits:
0010.0101.0000.0001.0001.1001.1100.1110
Se o primeiro bit é o sinal do número, os oito seguintes a característica obtida
com adição de 128 ao expoente do número ponto-�utuante, e os 23 restantes são a
mantissa, responda às questões seguintes:
a) O número está normalizado? Se não o normalize.
b) Qual o sinal do número?
c) O valor absoluto do número é menor que 1?
5) Repita a questão 4 com o número:
1000.0000.0110.1101.1010.1101.1011.0110
6) Para a representação da questão 4, quais são aproximadamente o maior e o
menor número, o menor número positivo e o próximo menor número positivo.
7) Represente os números binários da questão 2 na maquina binária que utiliza
o seguinte esquema de representação de ponto-�utuante:
↘ ↘ ↘
sinal mantissa característica
a) o bit de sinal é codi�cado 0 se o número é positivo e 1 se o número é negativo.
b) a característica é obtida com adição de 128 ao expoente do número ponto-
�utuante.
38 CAPÍTULO 1. ERROS EM COMPUTAÇÕES NUMÉRICAS
8) Converter para base 10 os valores representados na máquina binária da ques-
tão 7) acima:
a)
1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1
b)
0 1 1 1 0 1 1 1 0 0 0 0 0 0 0 0 1 1 1 0 0 1 0 1
9) Seja um sistema de aritmética de ponto-�utuante na base decimal com qua-
tro dígitos na mantissa e dois na característica, 1 digito de sinal da mantissa e 1
digito sinal da característica.
↓ mantissa ↓ expoente
sinal sinal
da mantissa do expoente
O sinal é codi�cado (+) se o número é positivo e (-) se o número é nega-
tivo.
Dados os números:
x = 0.77237 y = 0.2145× 10−3 z = 0.2585× 101
Efetue as seguintes operações:
a) x+ y + z b) x− y − z c) x/y d) (xy)/z e) x(y/z)
10) Use a aritmética do ponto-�utuante, com a representação da questão
9 acima, para somar e subtrair os seguintes pares de números:
a) 5.414234 e 2.27531 b) 5.414234 e 22.7531
c) 54.67 e 0.328 d) 5.4× 10−8 e 3.14× 10−5
11) Use a aritmética do ponto-�utuante, com a representação da questão
9 acima, para realizar as operações aritméticas seguintes:
a) 3.14× 7.47 b) 75.81× 8.15 c) 1.35÷ 28.5 d) 4000÷ 150
12) Calcular as cotas dos erros absolutos e relativos que se comete ao se
tomar como valores de:
a) 22/7 b) 333/116 c) 355/113 d)
√
3 +
√
2
13) Ao se calcular cos(x) ∼= 1− x
2
2!
− x
4
4!
− x
6
6!
para x = 5/7, quais são os
erros: inicial, de truncamento, de arredondamento e total cometidos quando
se realiza os cálculos arredondados em duas casas decimais.
Bibliogra�a
[1] C.W. Ueberhuber: Numerical Computation: Methods, software and
analysis. Springer Berlin Heidelberg (1997) Vol. 1 474 pages
[2] J. Stoer, R. Bulirsh: Introduction to Numerical analysis. 2nd ed.
Springer-Verlag, Berlin Heidelberg New York Tokio (1993)
[3] J.F. Traub, H. Wozniakowski: On the Optimal Solution of Large Linear
Systems. J. Assoc. Comp. Mach. 31 (1984), pp. 545-559.
[4] R.W. Hamming, E.A. Feigenbaum Introduction to applied numerical
analysis. McGraw-Hill, Inc New York (1971)
[5] R.E. Moore: Interval Analysis. Prentice Hall, Englewood Clifs, NJ, USA
(1966)
[6] G. Alefeld, J. Herzberger: Introduction to Interval Computations. Aca-
demic Press, New (1966)
[7] U.W. Kulish and W.L. Miranker: The Arithmetic of the Digital Com-
puters: A New Approach. SIAM Review 28, 1 (1986)
[8] Rademacher, H, A.: On the accumulation of errors in processes of inte-
gration on higg-speed calculating machines. Procedings of a symposium
on large-scale digital calculating machinary. Annals Comp. Labor. Ha-
vard Univ. 16 (1948) pp 176-185
[9] Sterbenz, P.H.: Floating Point Computation. Prentice Hall, Englewood
Clifs, NJ, USA (1974)
[10] Bailey, D.H.: MPFUN - A portable High Performance Multiprecision
Package. NASA Ames Tech. Report RUR-90-022, (1990)
[11] Goldeberg, D: What Every Computer Scientist Should Know About
Floating-Point Arithimethic. ACM Computing Surveys, 23 (1991) pp
5-48
[12] C.W. Ueberhuber: Numerical Computation: Methods, software and
analysis. Springer Berlin Heidelberg (1997) Vol. 2 495 pages
39
40 BIBLIOGRAFIA
[13] Fröberg, C-E.: Introduction to numerical analysis. 2nd ed. Addison-
Wesley Pub. Co. , Reading, Mass, , 1965
[14] Süli, E and Mayers, D. F.: An Introduction to Numerical Analysis.
Cambridge University Press, 2003
[15] Conte, S.D. and Boor, C.: Elementary Numerical Analysis: An algo-
rithmic approach. 3rd ed. McGraw-Hill Book Company, New York, 1980

Outros materiais