Buscar

1ª lista de exercícios

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 3, do total de 3 páginas

Prévia do material em texto

Universidade do Estado do Rio de Janeiro 
Departamento de Físico-Química 
Eletroquímica e Fenômenos de Superfície - QUI 05-09556 
Profa. Angela Sanches Rocha 
 
1a Lista de exercícios 
Questões gerais: 
1) Explicar as diferenças entre condutor eletrônico e condutor eletrolítico com 
relação ao transporte de cargas. 
2) O que se entende por eletrólito fraco e eletrólito forte? 
3) Definir: a) mobilidade eletrônica; b) resistividade; c) condutividade; d) resistência; 
e) condutância. Quais são as unidades destas grandezas? 
4) Que fatores são responsáveis pela capacidade de uma solução eletrolítica conduzir 
corrente elétrica? 
5) Como se pode medir a condutância ou a condutividade de uma solução 
eletrolítica? 
6) Explicar o efeito da temperatura sobre a condutividade do condutor eletrônico e do 
condutor eletrolítico. 
7) Explicar o efeito da concentração sobre a condutividade de um condutor 
eletrolítico. 
8) Definir condutância e condutividade molar. Quais as suas unidades? 
9) Quais os efeitos que explicam o fato da condutividade molar de um eletrólito 
diminuir com o aumento da concentração? Que relações exprimem a dependência da 
condutividade molar com a concentração? Quais os limites de validade destas 
equações? 
10) Por que se observa experimentalmente que a condutividade limite é uma 
propriedade aditiva? 
11) Como se enuncia a lei da migração independente dos íons? 
12) Definir mobilidade iônica e número de transporte. 
13) Qual a relação entre mobilidade iônica e condutividade molar iônica? 
14) Como a mobilidade iônica e o número de transporte variam com a concentração? 
15) Como se pode determinar a condutividade molar à diluição infinita de um 
eletrólito forte? E de um eletrólito fraco? 
16) Explicar o que é o efeito de relaxação e o efeito eletroforético e como atuam 
sobre a migração iônica. 
17) Explicar o que é o raio de hidratação de um íon em solução. 
18) Que relação existe entre a mobilidade de íon e seu tamanho? 
19) Descreva os métodos de medida do número de transporte. 
 
 
 
Exercícios 
1.1) Estimar a massa de cobre que será depositada com a passagem de uma corrente 
de 0,5 A durante 2 h na eletrólise de uma solução de sulfato de cobre. 
Resp. 1,18 g 
1.2) Na eletrólise de uma solução de CuCl2(aq) foi depositado 1,12 g de cobre 
metálico no cátodo. Qual a massa de cloro produzida? 
Resp. 1,25 g 
1.3) A 25 °C, foi medida uma resistência de 177,5 Ω para uma solução de cloreto de 
sódio 0,05 mol/L. Previamente, a célula de condutividade foi calibrada, na mesma 
temperatura, com uma solução de KCl 0,1 mol/L, obtendo-se uma resistência de 76,42 
Ω. Considerando que a condutividade do KCl 0,1 mol/L a 25 °C é 1,2896 10−2 S/cm, 
determinar a condutividade da solução de NaCl. 
Resp. 5,51x10-3 S cm-1 
1.4) A partir dos dados de condutividade de soluções de KCl a 25°C apresentados 
abaixo, determinar a condutividade limite com o auxílio da Lei de Kohlrausch. 
c (mol/L) 0,0005 0,0010 0,0050 0,0100 0,0200 0,0500 0,1000 
k (mS/m) 7,3905 14,695 71,675 141,27 276,68 666,85 1289,6 
Discuta a validade da lei para a faixa de concentração estudada. 
Resp.149,87 S cm2 mol-1 (usando os 3 primeiros pontos apenas) 
1.5) Determinar a condutividade molar limite do ácido acético a partir das 
condutividades limites dos seguintes eletrólitos fortes, a 25 °C: NaCl = 126,5 S·cm2 
mol-1, HCl = 426,2 S·cm2 mol-1 e NaOOCCH3 = 91,0 S·cm2 mol-1. 
Resp. 390,7 S·cm2 mol-1 
1.6) A condutividade de uma solução de ácido acético 0,01 mol/L é 16,23 mS/m, a 
25°C. Estimar o grau de dissociação do ácido acético. 
Resp. 4,15 % 
1.7) A partir das condutividades molares limites do NaCl (126,5 S·cm2 mol-1) e do 
KCl (149,9 S·cm2 mol-1 ) e dos números de transporte limites do Na+ em NaNO3 
(0,4121) e do K+ em KNO3 (0,5070), a 25 °C, calcular: as condutividades molares 
limites do NaNO3 e do KNO3, as condutividades iônicas limites e os números de 
transporte dos íons Na+, K+, Cl− e NO3−. 
Respostas: NaCl KCl NaNO3 KNO3 
Λ∞ (S cm2 mol-1) 126,5 149,9 121,6 145,0 
Λ+∞ (S cm2 mol-1) 50,1 73,5 50,1 73,5 
Λ
-
∞
 (S cm2 mol-1) 76,4 76,4 71,5 71,5 
t+
∞
 
0,396 0,490 0,4121 0,5070 
t
-
∞
 
0,604 0,510 0,5879 0,4930 
1.8) Calcular a condutividade molar à diluição infinita do ácido acético, a partir das 
condutividades molares à diluição infinita dos eletrólitos abaixo: 
Eletrólito Λ∞ (ohm-1 cm2 mol-1) 
HCl 425,96 
CH3COONa 94,58 
NaCl 126,39 
Resp. 394,15 S·cm2 mol-1 
1.9) Um grama de NaCl é dissolvido em 2.000 litros de água a 25 oC, dando uma 
solução que pode ser considerada como infinitamente diluída. Pergunta-se: 
a) qual a condutividade da solução? 
b) qual a resistência que apresentará se a constante da célula de 
condutividade for 0,2 cm-1? 
A condutividade molar à diluição infinita do NaCl vale 126,39 ohm-1 cm2 mol-1. 
Resp. 1,08x10-6 S cm-1; 1,85x105Ω 
1.10) A resistência de uma célula de condutividade contendo solução de KCl 0,01 M 
é 525 ohms, a 25 oC. A resistência da mesma célula contendo solução de NH4OH 0,1 M 
é 2030 ohms. Estimar a constante de dissociação do NH4OH, sabendo-se que as 
condutâncias molares iônicas à diluição infinita são, em ohm-1 cm2 mol-1 do NH4+ = 
73,5 e do OH- = 198,0. A condutividade da solução de KCl 0,01N, a 25 oC vale 
1,42x10-3 ohm-1/cm. 
Resp. 1,86x10-5 mol L-1 
1.11) A tabela seguinte fornece os valores da condutividade molar, em ohm-1 cm2 
mol-1, de soluções aquosas de ácido clorídrico em função da temperatura e da 
concentração. 
c (M) 25 oC 35 oC 45 oC 55 oC 65 oC 
0,0001 424,5 487,0 547,9 606,6 662,9 
0,0005 422,6 484,7 545,2 603,5 660,0 
0,001 421,2 483,1 543,2 601,3 657,8 
0,005 415,7 476,7 535,5 592,6 647,3 
0,01 411,9 472,2 530,3 586,5 641,2 
0,05 398,9 456,7 512,4 562,6 616,9 
0,1 391,1 446,8 501,1 552,8 602,8 
Estimar: 
a) a condutividade molar a diluição infinita do HCl a 25 oC e a 55 oC; 
b) a condutividade molar das soluções do ácido 0,0001 M e 0,05 M a 40 oC; 
c) as mobilidades iônicas e os números de transporte dos íons H+ e Cl- na solução 
0,0001 M do ácido a 65 oC, em que a condutividade molar iônica do H+ à diluição 
infinita a 25 oC vale 349,38 ohm-1 cm2 mol-1. 
Resp. 425,7 S cm2 mol-1; 549,6 S cm2 mol-1; 515,8 S cm2 mol-1; 482,4 S cm2 mol-1; 
5,65x10-3 cm2 V-1 s-1; 1,25 cm2 V-1 s-1; 0,819; 0,181 
1.12) A 18 oC, a mobilidade iônica a diluição infinita do íon amônio vale 6,6x10-4 
cm2/V.s e a do íon clorato 5,7x10-4 cm2 V-1 s-1. Calcular a condutividade molar do 
clorato de amônio e o número de transporte dos dois íons. 
Resp. 118,7 Ω-1 cm2 mol-1; 0,537; 0,463 
1.13) A 18 oC, a condutividade molar à diluição infinita para o nitrato de prata é 
igual a 133,32 ohm-1 cm2 mol-1. Qual a mobilidade do íon Ag+? O número de transporte 
do íon Ag+ vale 0,471 para este eletrólito. 
Resp. 6,51x10-4 cm2 V-1 s-1

Continue navegando