Buscar

Fundamentos de SIG

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 3, do total de 82 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 6, do total de 82 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 9, do total de 82 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Prévia do material em texto

“FUNDAMENTOS DE SISTEMAS DE 
INFORMAÇÃO GEOGRÁFICA” 
 
 
 
 
 
 
 
Maria Lúcia Calijuri 
Anderson Donizete Meira 
Luciano Ferreira Lorentz 
Eduardo Macedo Bhering 
 
 
 
 
Dr. Herbert E. A. Cardoso 
Ministério da Agricultura 
 
 
 
 
Janeiro de 2000
 
 
 
 2 
 
Sumário 
APRESENTAÇÃO ................................................................................................................................ 4 
1. INTRODUÇÃO.................................................................................................................................. 5 
2. SISTEMAS DE INFORMAÇÕES GEOGRÁFICAS .................................................................... 7 
2.1. VISÃO GERAL .................................................................................................................................. 8 
2.2. HISTÓRICO..................................................................................................................................... 10 
2.3. SIG’S E OUTROS SISTEMAS DE INFORMAÇÃO ............................................................................ 12 
2.4. ESTRUTURA ORGANIZACIONAL ................................................................................................... 14 
2.5. CARACTERÍSTICAS GERAIS E SUB-SISTEMAS ............................................................................. 16 
2.6. TENDÊNCIA TECNOLÓGICA .......................................................................................................... 18 
2.7. PRINCIPAIS SIG’S E SUAS CARACTERÍSTICAS ............................................................................. 19 
3. CONCEITOS SOBRE INFORMAÇÕES ESPACIAIS ............................................................... 21 
3.1. AMOSTRAGEM DO MUNDO – REPRESENTAÇÃO DA REALIDADE ............................................... 21 
3.2. CARACTERÍSTICAS BÁSICAS DE DADOS ESPACIAIS E SUA MANIPULAÇÃO............................... 22 
3.3. TIPOS DE DADOS GEOGRÁFICOS E SUA REPRESENTAÇÃO EM SIGS.......................................... 23 
4. REPRESENTAÇÃO DE DADOS DE MAPAS ............................................................................ 29 
4.1. A REPRESENTAÇÃO VETORIAL.................................................................................................... 30 
4.2. A REPRESENTAÇÃO MATRICIAL.................................................................................................. 30 
4.3. RASTER & VECTOR ..................................................................................................................... 31 
5. CONCEITOS DE BANCO DE DADOS GEOGRÁFICOS......................................................... 36 
5.1. ORGANIZAÇÃO .............................................................................................................................. 36 
5.2. GEOREFERENCIAMENTO............................................................................................................... 37 
5.3. TOPOLOGIA.................................................................................................................................... 38 
5.4. PRECISÃO E EXATIDÃO DE BANCOS DE DADOS ESPACIAIS ........................................................ 39 
6. CARTOGRAFIA DIGITAL........................................................................................................... 42 
6.1. ESCALAS......................................................................................................................................... 42 
6.2. PROJEÇÕES DE MAPAS .................................................................................................................. 43 
6.3. A CARTOGRAFIA DIGITAL E OS SISTEMAS DE INFORMAÇÕES GEOGRÁFICAS......................... 45 
 
 
 
 3 
7. CONVERSÃO DIGITAL DE DADOS.......................................................................................... 47 
7.1. DIGITALIZAÇÃO ............................................................................................................................ 47 
7.1.1. Preparação dos Mapas ................................................................................................................. 48 
7.1.2. Projeto de Arquivos Digitais ....................................................................................................... 49 
7.1.3. Digitalização................................................................................................................................ 49 
7.1.4. Verificação e Edição.................................................................................................................... 50 
7.2. RASTERIZAÇÃO ............................................................................................................................. 51 
7.2.1. PREPARAÇÃO DO MAPA............................................................................................................... 51 
7.2.2. AJUSTE DO SCANNER ................................................................................................................... 52 
7.2.3. EDIÇÃO RASTER........................................................................................................................... 53 
7.2.4. COMPRESSÃO DE DADOS ............................................................................................................. 54 
7.3. TÉCNICAS PARA A CONVERSÃO RASTER/VECTOR...................................................................... 54 
7.3.1. VETORIZAÇÃO MANUAL.............................................................................................................. 55 
7.3.2. VETORIZAÇÃO SEMI-AUTOMÁTICA ............................................................................................. 55 
7.3.3. VETORIZAÇÃO AUTOMÁTICA ...................................................................................................... 57 
8. REFERÊNCIAS BIBLIOGRÁFICAS........................................................................................... 60 
9. SUGESTÕES BIBLIOGRÁFICAS ............................................................................................... 60 
ANEXOS............................................................................................................................................... 63 
A. ANEXO – AUTOCAD.................................................................................................................... 65 
B. ANEXO – MAXICAD .................................................................................................................... 70 
C. ANEXO – CARTALINX................................................................................................................ 76 
C.1. CARTALINX – CONSTRUTOR DE DADOS ESPACIAIS ................................................................... 76 
C.2. O MODELO DO BANCO DE DADOS ESPACIAL DO CARTALINX.................................................. 77 
C.3. INTERAÇÃO COM O CARTALINX ................................................................................................ 78 
C.3.1. O MENU ...................................................................................................................................... 78 
C.3.2. A BARRA DE FERRAMENTAS........................................................................................................ 80 
D. ANEXO – ARCVIEW .......................................................ERRO! INDICADOR NÃO DEFINIDO. 
 
 
 
 
 4 
Apresentação 
 
O projeto GeoMunicipal (Sistema de Gerenciamento de Informações 
Municipais aplicado ao Desenvolvimento dos Planos Municipais de Gestão das 
Águas), apoiado pela Secretaria de Recursos Hídricos do Ministério do Meio 
Ambiente, possui como um dos seus objetivos, a transferência de conhecimentosgerados no Núcleo SIGeo a agentes multiplicadores por meio de um Programa de 
Capacitação Técnica. 
Esse programa foi modulado em 4 (quatro) tópicos: Fundamentos de SIG, 
Análises Espaciais, SIG no Cadastro Técnico Multifinalitário e SIG no Município. 
Entendemos que os quatro tópicos mencionados disponibilizam com detalhes 
grande parte dos conceitos e aplicações que envolvem a tecnologia do 
GeoMunicipal. 
O Módulo 1 – Fundamentos de SIG, aborda aspectos conceituais dos 
Sistemas de Informações Geográficas, noções sobre cartografia digital e conversão 
digital de dados. Como anexos são apresentadas as principais características e 
procedimentos relacionados aos softwares: Cartalinx!, Maxicad!, AutoCAD! e 
ArcView!. 
Esperamos que esse texto possa ser útil aos iniciantes na tecnologia dos 
SIG’s e, prover subsídios para desenvolvimento dos módulos subsequentes. 
Os autores agradecem as sugestões que possam contribuir ao 
enriquecimento do texto. 
 
 
 
 
 5 
1. Introdução 
 
A visão globalizada das questões ambientais tem contribuído para uma 
crescente demanda por informações cartográficas, obtidas em ritmo cada vez mais 
intenso graças ao desenvolvimento de técnicas apoiadas no uso de computadores e 
às imagens obtidas por sensores instalados a bordo de satélites espaciais. Tais 
imagens, com suas características de repetitividade e periodicidade, tornaram-se 
também ferramentas indispensáveis na análise e monitoramento multitemáticos e 
multitemporais de fenômenos naturais ou decorrentes de ações antrópicas em nosso 
planeta. Além disso, o extraordinário avanço da informática nos últimos anos, tem 
permitido a integração das informações coletadas com o seu suporte geográfico por 
intermédio dos Sistemas de Informações Geográficas (SIGs). 
Em suma, o Geoprocessamento, que nada mais é do que o resultado de 
uma forte interação dessas tecnologias, constitui-se no grande fator de 
universalização e compartilhamento de informações que, por sua vez, são a matéria 
prima responsável pela qualidade das decisões tomadas pelos administradores. 
Na prática, tudo se passa para os usuários dessas ferramentas, como se 
o nosso planeta tivesse ficado menor e, por isso, a capacidade do homem em tomar 
decisões, com índices cada vez maiores de sucesso, tivesse sido potencializada em 
função de poder contar, em tempo hábil, com informações antes muito mais difíceis, 
restritas e privilegiadas. 
No gerenciamento de recursos naturais, em especial dos recursos 
hídricos, os SIG’s podem ser utilizados como uma ferramenta de inventário além de 
permitir um melhoramento do gerenciamento desses recursos, da proteção contra o 
desenvolvimento especulativo e modelagem da complexa interação entre o 
fenômeno e a tomada de decisões. 
A implementação de um SIG que vise diagnosticar e gerenciar estudos 
hidrológicos e hidrogeológicos, bem como, dar suporte a estudos de planejamento 
de uso e ocupação do solo, exige a obtenção e manipulação de uma grande 
variedade de informações, tais como, parâmetros hidrológicos básicos, geologia, 
cobertura vegetal, climatologia, uso da água, dentre outras. Este banco de dados 
deve incluir características como, rede de transportes; limites municipais; erosão; 
escoamento de água subterrânea; produtividade de culturas, etc. Para o sucesso da 
implementação destes é importante considerar as características fundamentais de 
um Banco de Dados Ambientais que são, a natureza normalmente estatística dos 
dados, processo de atualização pouco frequente e resolução espacial relativamente 
baixa. Estes estudos normalmente cobrem grandes áreas a custos razoáveis e os 
requisitos de hardware são modestos para implementação. Por outro lado, Bancos 
de Dados Cadastrais devem ser incluidos no contexto do sistema. Estes dados, em 
função do grau de detalhamento e precisão, podem exigir grandes esforços por 
parte do usuário de SIG por envolver maior montante de recursos e maior tempo de 
 
 
 
 6 
execução. Além disso, exige-se uma equipe dedicada visando uma atualização mais 
frequente da base de dados. 
Apresenta-se no desenvolvimento deste módulo toda a conceituação 
fundamental relativa a tecnologia dos Sistemas de Informação Geográfica (SIG’s) e 
exemplifica-se o uso desse ferramental em estudos relativos ao planejamento e 
manejo de recursos hídricos. A perfeita assimilação desta base conceitual e 
metodológica apresentada é imprescindível para que se possa iniciar o processo de 
implementação do Geoprocessamento no contexto municipal. 
 
 
 
 
 
 7 
2. Sistemas de Informações Geográficas 
 
O SIG é uma forma particular de Sistema de Informação aplicado a 
dados geográficos. Um Sistema de Informação é um conjunto de processos, 
executados no dado natural, produzindo informações úteis na tomada de decisões. 
Sistemas de informações geográficas são ferramentas que permitem 
armazenar, analisar, recuperar, manipular e manejar grandes quantidades de dados 
espaciais. Os SIGs são técnicas de manipulação de bancos de dados variáveis 
espacialmente. Originalmente estas ferramentas foram desenvolvidas para facilitar 
trabalhos cartográficos, mas estão sendo atualmente utilizadas para inventários, 
estimativas, planejamento e modelagem. 
Os Sistemas de Informações Geográficas – SIG’s utilizam dados 
geograficamente referenciados (georreferenciados) e dados não espaciais, incluindo 
operações que dão suporte as análises espaciais. 
No SIG, o principal objetivo é o suporte à tomada de decisões, para 
gerenciamento de uso do solo, recursos hídricos, ecossistemas aquáticos e 
terrestres, ou qualquer entidade distribuída espacialmente. 
A conexão entre os elementos do sistema é a geografia, isto é, a 
localização, a proximidade e a distribuição espacial. 
O termo Sistema de Informação Geográfica - SIG é freqüentemente 
aplicado à tecnologia computacional orientada geograficamente. Os SIG’s são 
sistemas computacionais utilizados para armazenar e manipular informações 
geográficas. 
Embora existam debates sobre a origem do tema e a data de início dos 
trabalhos neste campo, está claro que o SIG é um fenômeno recente. 
Ao longo dos últimos trinta anos ( a partir da década de 1960), o campo 
do SIG apresentou um rápido desenvolvimento teórico, tecnológico e organizacional, 
culminando com um período de intensa atividade nos últimos cinco anos. 
Atualmente o SIG é aceito como uma ferramenta essencial para o uso efetivo da 
informação geográfica. 
O campo de aplicações dos SIG’s é amplo e diversificado, incluindo a 
geografia, agricultura, hidrologia, geologia, geotecnia, meio ambiente, computação, 
economia, fotogrametria, agrimensura, planejamentos urbano e regional, engenharia 
florestal e outros. 
 
 
 
 
 8 
2.1. Visão Geral 
 
Um SIG é projetado para a coleta, armazenamento e análise de objetos e 
fenômenos onde a localização geográfica é uma característica importante ou 
fundamental para as análises. Por exemplo, a localização de um posto de bombeiros 
e as localizações onde a erosão do solo é mais severa, são considerações chaves 
no uso dessa informação; em cada caso, o que é e onde está, deve ser levado em 
conta. 
 
(fonte: Esri) 
Figura 2.1.1. Dados gerados e manipulados por um SIG 
Enquanto o manuseio e a análise de dados referenciados a uma 
localização geográfica são ferramentas chaves de um SIG, a potencialidade do 
sistema é mais visível quando a quantidade de dados envolvidos é muito grande 
para a manipulação manual. 
O número, o tipo de aplicações e as análises que podem ser realizadas 
por um SIG são tão grandes e diversas quanto a disponibilidade dos conjuntos de 
dados geográficos. 
Um SIG, como qualquer outro sistema, não pode existir por si próprio,ele 
deve existir num contexto. Deve existir uma organização de pessoas, de certas 
facilidades e de equipamentos responsáveis pela implementação e manutenção do 
SIG. 
Para que um SIG reuna as necessidades de uma organização, o fluxo de 
informações dentro da organização deve estar explicitamente definido. 
O valor da informação depende de alguns fatores, tais como o contexto 
em que é aplicada, o custo da coleção, armazenamento e apresentação. A 
informação e sua transmissão são a chave do desenvolvimento de processos e 
características das sociedades contemporâneas. 
 
 
 
 9 
Considerando as tarefas executadas, podem ser identificados dois tipos 
de sistema de informação: os sistemas de processamento de operações e os 
sistemas de suporte a decisões. 
Os sistemas de processamento de operações privilegiam a ocorrência 
das operações, registro e manutenção, como os sistemas de transações bancárias e 
reservas de passagens aéreas. Estes sistemas podem operar no modo “on-line” ou 
“batch” e são baseados em procedimentos bem definidos. 
Nos sistemas de suporte às decisões, a ênfase está na manipulação, na 
análise e, particularmente, na modelagem para propiciar suporte aos profissionais 
envolvidos na tomada de decisões. 
A informação no sistema deve ser organizada de forma a ter utilidade 
quando recuperada; o acesso à informação deve ser cuidadosamente administrado; 
a manutenção, o suporte e a tecnologia devem ser constantes no tempo. 
Algumas definições para os sistemas de informações geográficas, são 
listadas abaixo: 
- “um sistema para captura, armazenamento, checagem, manipulação, 
análise e apresentação de dados que são espacialmente referenciados à Terra” 
(DOE, 1988); 
- “um sistema em que a maioria dos dados são espacialmente indexados 
e sobre o qual operam um conjunto de procedimentos afim de responder questões 
sobre entidades espaciais do banco de dados” (SMITH et al., 1987); 
- “um poderoso conjunto de ferramentas para coleção, armazenamento, 
recuperação, transformação e apresentação de dados espaciais do mundo real” 
(BURROUGH, 1994); 
- “um sistema de suporte a decisões envolvendo a integração de dados 
espacialmente referenciados na solução de problemas ambientais” (COWEN, 1988). 
Em SIG a realidade é representada como uma série de características 
geográficas definidas de acordo com dois elementos de dados. O elemento de dado 
geográfico (também denominado localizacional) é usado para fornecer uma 
referência para o elemento de dado atributo (também chamado descritivo ou não 
localizacional). 
 
 
 
 
 
Figura 2.1.2. Elementos de Dados manipulados por um SIG 
Uma das características chaves que diferencia o SIG de outros sistemas 
de informações é que, em SIG, o elemento geográfico é mais importante do que o 
elemento atributo. 
O termo espacial refere-se a qualquer tipo de informação sobre 
localização e pode incluir informações de engenharia, cartografia, sensoriamento 
remoto,etc. O termo geográfico refere-se somente a localização da informação sobre 
a superfície da terra ou próxima dela em escalas do mundo real e no espaço do 
mundo real. 
O termo Geoprocessamento é um conceito mais global, relacionado às 
atividades de sensoreamento remoto, cadastros e outros tipos de pesquisa e 
investigações de campo para capturar dados. SIG é a manipulação desta 
informação conectada a um banco de dados geográficos, que possui dados 
espaciais e de atributos. O Geoprocessamento pode ser usado para montar o banco 
de dados; para manipular, organizar e atualizar as informações usamos SIG. Na 
grande maioria dos países o SIG é considerado como parte final do 
Geoprocessamento. 
 
 
2.2. Histórico 
 
O desenvolvimento dos SIGs foi iniciado no início da década de 1960 nos 
Estados Unidos da América do Norte e Canadá, por iniciativa de alguns 
pesq estacando-se Howard Fisher, R. Tomlinson e Ja ond. 
começou a trabalhar com sistema amento 
com em 1963 no North Western Technical Institute. undou o 
Lab
Harv
de m
DDAADDOOSS 
DDEESSCCRRIITTIIVVOOSS DDAADDOOSS GGRRÁÁFFIICCOOSS 
uisadores, d
Fisher 
putadorizado
oratório de Computação Gráfica na Escola de Graduação d
ard e, em conjunto com um grupo de programadores, dese
apeamento denominado SYMAP. A importância do SYMAP
ck Dangerm
de mape
 Em 1965, f
10 
a Universidade de 
nvolveu um pacote 
 é atribuída ao fato 
 
 
 
 11 
de ter sido este o primeiro pacote de mapeamento largamente distribuído para 
manipulação de dados geográficos. 
 
Fonte: Gis Timeline (University of Toronto) 
Figura 2.2.1. Exemplo de mapa produzido em impressora matricial pelo SYMAP 
Ao mesmo tempo em que Fisher estava desenvolvendo suas idéias em 
mapeamento computadorizado em Harvard, R. Tomlinson estava envolvido na 
criação do primeiro e verdadeiro SIG, e certamente o primeiro a ser desta forma 
intitulado. Tomlinson é considerado o pai do SIG por ter desenvolvido o Canada 
Geographic Information System- CGIS, em 1966, para o governo canadense. 
A origem do trabalho de Tomlinson remonta a 1960 quando atuou junto a 
Spartan Air Services desenvolvendo uma pesquisa florestal no leste da África. 
Tomlinson tornou-se consultor independente em 1969 e promoveu, as 
duas primeiras conferências internacionais sobre SIG, em 1970 e 1972, em Ottawa - 
Canadá. 
Em 1969 Jack Dangermond fundou a Environmental Systems Research 
Institute - ESRI, que posteriormente veio a lançar o ARC/INFO em 1982. 
 
Fonte: ESRI 
Figura 2.2.2. Equipe do Environmental Systems Research Institute (ESRI) fundado 
por Jack e Laura Dangermond. 
A ESRI, pode ser considerada um exemplo de sucesso empresarial; 
embora houvesse outras empresas como Intergraph, ComputerVision e Synercon, 
 
 
 
 12 
todas elas, exceto a ESRI, entraram para a área do SIG a partir da área de 
CAD/CAM Computer-Aided-Design / Computer-Aided-Machine. 
O campo do SIG adquiriu reconhecimento científico no estabelecimento 
do (National Center for Geographic Information and 
Analysis – NCGIA), fundado pela National Science Foundation em 1987 como um 
empreendimento cooperativo entre as Universidades da California, Maine e New 
York. 
O desenvolvimento dos SIGs ocorreu em diferentes épocas e em diversas 
partes do mundo, podendo ser subdividido em quatro fases: 
- a primeira, caracterizada pela iniciativa individual de alguns 
profissionais, aconteceu no período compreendido entre o início da década de 1960 
e meados de 1973; 
- a segunda, de 1973 até o inicio da década de 1980, foi caracterizada 
pela forte utilização de SIGs em agências governamentais; 
- a terceira fase, onde predominou o domínio comercial, ocorreu de 1982 
até o final da década de 1980; 
- a quarta fase e atual é caracterizada pelo domínio do usuário e é 
facilitada; pela competição entre vendedores, a padronização embrionária na 
abertura de sistemas e maior conscientização dos usuários sobre o que o SIG pode 
e parece fazer. 
Foi predominante a contribuição da América do Norte no desenvolvimento 
e implementação de SIGs até meados da década de 1980, em função do poder de 
persuasão de indivíduos pioneiros, do tamanho do market interno, do papel de 
destaque dos Estados Unidos no desenvolvimento de hardwares e softwares e, 
acima de tudo, na crescente apreciação dos usuários deste país da necessidade de 
eficiência, velocidade e rentabilidade para a manipulação de grandes quantidades 
de dados geográficos. 
Foi esta percepção da necessidade que levou usuários potenciais a 
procurar soluções em SIG, encorajando as empresas a desenvolverem sistemas que 
atendessem às necessidades dos usuários. 
2.3. SIG’s e outros Sistemas de Informação 
 
A relação entre SIG e projeto auxiliado porcomputador, por cartografia 
computadorizada, por gerenciamento de banco de dados e por informações de 
sensoreamento remoto é importante no estabelecimento de uma definição de SIG. 
 
 
 
 13 
Sistemas CAD, Computer-Aided Design, foram desenvolvidos para projeto 
e desenho de novos objetos. São baseados em gráficos e utilizam símbolos para 
representar características no processo interativo do projeto. Os sistemas CAD têm 
lincagem rudimentar com o banco de dados, que poderia conter listagens ou 
armazenar números de referência; utilizam relações topológicas simples e, no geral, 
manipulam quantidade relativamente pequena de dados. 
Usualmente os sistemas de cartografia computadorizada possuem muitas 
facilidades para desenho de mapas e impressões de alta qualidade no formato 
vetorial. 
Os sistemas de gerenciamento de banco de dados (DBMS) são softwares 
bem desenvolvidos, otimizados para armazenagem e recuperação de atributos não-
gráficos. Possuem capacidade limitada para recuperação e apresentação de 
gráficos, e para implementação de operações analíticas espaciais. 
Os sistemas de sensoriamento remoto são projetados para colecionar, 
armazenar, manipular e apresentar dados raster; usualmente possuem capacidade 
limitada para manuseio de dados de atributos e pobre lincagem com o DBMS. 
A principal característica de um SIG é enfatizar operações analíticas. 
Segundo GOODCHILD (1988) apud MAGUIRE (1991), a habilidade de um SIG para 
analisar dados espaciais é vista frequentemente como elemento chave em sua 
definição e tem sido utilizado como uma característica que distingue o SIG de 
sistemas cujo objetivo primário é a produção de mapas. 
Em termos funcionais, COWEN (1988) afirma que as consultas espaciais 
e overlays são operações únicas do SIG. A análise espacial é definida por 
GOODCHILD (1988) apud MAGUIRE (1991) como um conjunto de métodos 
analíticos que requerem acesso aos atributos dos objetos em estudo e sua 
informação localizacional. 
As várias idéias sobre SIG podem ser sintetizadas e apresentadas na 
forma de três visões distintas que entretanto se superpõem, e são denominadas 
mapas, banco de dados e análise espacial. 
A visão de mapa enfoca os aspectos cartográficos do SIG e teve origem 
no trabalho de McHARG (1969) apud MAGUIRE (1991); atualmente é representada 
por BERRY (1987) e TOMLIN (1990,1991) apud MAGUIRE (1991). 
 
Defensores desta corrente vêem o SIG como processamento de mapas 
ou sistemas de apresentação. Em processamento de mapas cada conjunto de 
dados é representado com um mapa (também denominado um layer, tema, ou 
coverage). Os mapas usualmente são mantidos no formato raster e manipulados por 
 
 
 
 14 
uma função capaz de adicionar, subtrair, multiplicar, etc.,ou realizar consultas por 
padrões. O produto destas operações é outro mapa. 
 
A visão de banco de dados do SIG enfatiza a importância de um banco de 
dados bem projetado e implementado. Um sistema sofisticado de gerenciamento de 
banco de dados é vista como parte integrante de um SIG. São adequadas a essa 
visão, as aplicações que requerem o uso frequente de consultas simples. 
 
A terceira visão do SIG enfatiza a importância da análise espacial 
enfocando a análise e modelagem em que o SIG é visto mais como uma ciência da 
informação espacial do que uma tecnologia. Embora os sistemas atuais ainda 
possuam funcionalidade limitada para a análise espacial; está claro que esta é a 
maior área de desenvolvimento. Esta corrente é a mais aceita pela comunidade de 
SIG e pode ser utilizada para a diferenciação entre SIG e outros sistemas de 
informação. 
 
Embora estas correntes tenham enfoques diferenciados, elas não são 
conflitantes; um sistema simples pode ser visto de três maneiras dependendo da 
perspectiva do usuário. 
2.4. Estrutura Organizacional 
 
O SIG compreende cinco elementos básicos que operam em um contexto 
institucional: hardware, software, dados, profissionais e métodos. 
O hardware pode ser qualquer tipo de plataforma computacional, 
incluindo computadores pessoais, relativamente modestos, workstations e 
minicomputadores de alta performance. Quanto aos periféricos especiais de entrada 
são utilizados mesas digitalizadoras, scanners, drivers de fita, etc. No que se refere 
a periféricos de saída, são utilizados traçadores gráficos e impressoras especiais. 
 
 
 
 15 
 
O software de SIG é desenvolvido em níveis sofisticados, constituído de 
módulos que executam as mais variadas funções. Existem muitos softwares de SIG 
disponíveis no mercado, sendo que alguns deles são consagrados pela eficiência 
comprovada na sua grande base instalada e no número de usuários. 
 
O dado é um elemento fundamental para o SIG. Os dados geográficos 
são muito dispendiosos para coleta, armazenamento e manipulação, pois são 
necessários grandes volumes para solucionar importantes problemas geográficos. 
Segundo estimativas de ROWLEY e GILBERT (1989) apud MAGUIRE (1991), a 
coleção de dados representa 70% do custo total da implantação de um SIG. 
 
O elemento mais importante do SIG é o profissional, a pessoa 
responsável pelo projeto, implementação e uso do SIG. Sem pessoas 
adequadamente treinadas e com visão do contexto global, dificilmente um projeto de 
SIG terá sucesso. 
Por fim, os métodos, técnicas, critérios e experiências irão nortear o uso 
do SIG na solução dos problemas apresentados. 
 
 
 
 
 16 
2.5. Características Gerais e Sub-Sistemas 
 
“Um SIG é um sistema assistido por computador para aquisição, 
armazenamento, análise e apresentação de dados geográficos”, (EASTMAN, 1997). 
Atualmente existe um grande número de softwares adequados para SIG 
que, entretanto, podem ter diferenças significativas principalmente na maneira como 
representam e trabalham com dados geográficos e a ênfase dada nas várias 
operações. 
O SIG é constituído de vários módulos, sendo os principais mostrados na 
Figura 2.5.1. 
 
 
FIGURA 2.5.1 - Principais Módulos de um SIG 
 
Nem todos os sistemas possuem todos os módulos mostrados na figura 
acima, mas devem ser compostos por um grupo essencial para ser considerado um 
verdadeiro SIG. 
Os principais componentes de um SIG são: 
a. Banco de Dados Espaciais e de Atributos; 
b. Sistema de Apresentação Cartográfica; 
c. Sistema de Digitalização de Mapas; 
 
 
 
 17 
d. Sistema de Gerenciamento de Banco de Dados; 
e. Sistema de Análise Geográfica; 
f. Sistema de Processamento de Imagens; 
g. Sistema de Análises Estatísticas. 
 
A descrição sucinta de cada um dos módulos é feita a seguir: 
a. Banco de Dados Espaciais e de Atributos 
O banco de dados é o núcleo do sistema e pode ser entendido como uma 
coleção de mapas e informações associadas na forma digital. O banco de dados é 
composto por dois elementos, um banco de dados espaciais descrevendo a 
geografia (forma e posição) das características da superfície do terreno, e um banco 
de dados de atributos descrevendo as características ou qualidades destas 
características. Em alguns sistemas o banco de dados espaciais e o de atributos são 
rigidamente distintos e em outros são integrados em uma entidade simples. 
b. Sistema de Apresentação Cartográfica 
O sistema de apresentação cartográfica é um dos módulos mais básicos 
do SIG; permite a extração de elementos selecionados do banco de dados e a 
produção de mapas no monitor de vídeo, ou cópia impressa utilizando impressora ou 
plotter. 
c. Sistema de Digitalização de Mapas 
O sistema de digitalização de mapas permite que mapas existentes, em 
papel, sejam convertidos para a forma digital. Este sistema além de conter módulos 
para a digitalização é provido de ferramentaspara a edição de mapas. 
d. Sistema de Gerenciamento de Banco de Dados 
Um SIG incorpora não somente um tradicional sistema gerenciador de 
banco de dados mas também uma variedade de utilitários para gerenciar os 
componentes espaciais e de atributos do dado geográfico armazenado. 
e. Sistema de Análise Geográfica 
Com o sistema de análise geográfica é ampliada a capacidade de 
consultas tradicionais ao banco de dados, incluindo a potencialidade da análise de 
dados baseada em sua localização. A componente geográfica dá ao SIG sua 
verdadeira identidade sendo uma função denominada overlay a marca registrada do 
SIG. 
f. Sistema de Processamento de Imagens 
 
 
 
 18 
O sistema de processamento de imagens possibilita a análise de imagens 
de sensoreamento remoto, tais como Landsat e Spot, através da conversão dessas 
imagens em dados de mapas, interpretados de acordo com vários processos de 
classificação. 
g. Sistema de Análises Estatísticas 
Este sistema oferece procedimentos estatísticos tradicionais e rotinas 
especializadas para a análise estatística do dado espacial. 
Um SIG armazena dois tipos de dados que são encontrados em um 
mapa, as definições geográficas das características da superfície da terra e os 
atributos ou qualidades que estas características possuem. 
2.6. Tendência Tecnológica 
 
Recordando as três décadas de desenvolvimento do SIG, verifica-se que 
esta aplicação impõe requisitos específicos, que precisaram ser reunidos antes que 
o SIG pudesse realmente florescer e consolidar-se. 
Embora os desenvolvimentos, como o CGIS - Canada Geographic 
Information System, tenham acontecido, quando muitos dos requisitos não estavam 
disponíveis, ou se estavam, mas a um custo muito alto, os ambientes tecnológicos 
primitivos certamente apresentaram enormes problemas a quem os desenvolveu. 
A natureza exigente da aplicação do SIG está apresentada 
resumidamente nos tópicos que se seguem: 
-interativo: o usuário deve ser capaz de interagir com o sistema 
computacional, expedindo instruções continuamente e recebendo respostas; 
-multiusuário: muitos usuários devem poder acessar o banco de dados 
geográficos simultaneamente; 
-gráfico: o sistema deve ser capaz de permitir a entrada e a saída de 
dados graficamente, caso contrário seria muito difícil para o usuário trabalhar com 
informações geográficas; 
-volume e velocidade: os conjuntos de dados geográficos frequentemente 
são grandes e complexos, necessitando de grandes dispositivos de armazenamento 
digital; ao mesmo tempo o sistema deve ser capaz de processar rapidamente 
grandes volumes e fornecer imediatamente respostas às consultas; 
-memória virtual: até recentemente a memória de acesso randômico 
(RAM) dos sistemas computacionais era muito cara; o desenvolvimento dos 
sistemas de operação virtual, no final da década de 1970, possibilitou aplicações 
para processar grandes volumes de dados utilizando comparativamente pouca 
memória central; 
 
 
 
 19 
-sistemas de gerenciamento de banco de dados: os SIGs são sistemas de 
softwares muito complexos e a maioria dos mais poderosos SIGs contemporâneos 
são projetados para contar com um sistema de gerenciamento de banco de dados 
(DBMS); os SIGs requerem a rápida apresentação de grande quantidade de dados e 
acesso às informações através de localizações e atributos e tem havido dificuldades 
para a natureza multidimensional do dado geográfico (duas ou três dimensões de 
localização mais os atributos) dentro da estrutura de muitos DBMS; 
-custo: a explosão do interesse em SIG na década de 1980 é devido, 
pelo menos em parte, à queda constante e significativa no custo da tecnologia 
computacional nas três últimas décadas. 
2.7. Principais SIG’s e suas características 
 
Como exemplo apresenta-se, a título ilustrativo, um quadro contendo 
algumas informações sobre quatro Sistemas de Informações Geográficas 
comerciais: o ArcInfo, o ArcView, o Idrisi e o Erdas Imagine. 
 
Sistemas ARCINFO ARCVIEW IDRISI ** ERDAS 
 
Características 
 " Processa 
 # Com limitações 
 $ Não processa 
 
Edição Vetorial " " " # 
Geração de Topologia " $ $ $ 
Junção de Mapas " $ $ $ 
Conversão Raster-Vector " " " # 
Superposição Vetorial " $ $ $ 
Análise Multicritério $ $ " $ 
MNT por gradesregulares " " " " 
MNT por triangulação " " $ $ 
Operações sobre MNT " " " " 
Consulta a bancos de dados " " " $ 
Quadro 2.7.1. Potencialidade de alguns SIG’s em “Análises Geográficas” (ênfase em 
análises vetoriais) 
** No caso do IDRISI o processamento de dados vetoriais (topologia, junção de 
cartas, etc.) pode ser feito pelo software CartaLinx. 
 
 
 
 20 
 
Sistemas ARCINFO ARCVIEW IDRISI ERDAS 
 
Características 
 " Processa 
 # Com limitações 
 $ Não processa 
 
Realce " " " " 
Mosaico de imagens $ $ " " 
Filtragem espacial $ " " " 
Conversão Raster-Vector $ $ " " 
Classificação por pixels $ $ " " 
Segmentação $ $ $ $ 
Classificação por regiões $ $ $ $ 
Ortoretificação $ $ $ " 
Geração de mapas $ $ $ " 
Restituição $ $ $ " 
Quadro 2.7.2. Potencialidade de alguns SIG’s em “Processamento Digital de 
Imagens” 
 
O mercado de SIG’s oferece um vasto conjunto de ferramentas que 
variam muito em potencialidade e aplicabilidade bem como em custos. Os sistemas 
comerciais podem variar de US$300,00 a US$60.000,00, ou até mais. 
 
 
 
 
 21 
3. Conceitos sobre Informações Espaciais 
 
3.1. Amostragem do Mundo – Representação da Realidade 
 
A amostragem do mundo real deve considerar: 
!" Que o mundo é infinitamente complexo; 
!" Que o conteúdo do banco de dados espaciais representa uma 
visão particular do mundo real; 
!" Que o usuário vê o mundo real através do banco de dados; 
!" Que os dados contidos no banco de dados devem apresentar 
uma visão o mais completa e precisa possível do mundo real; 
!" Que o conteúdo do banco de dados deve ser relevante em 
termos de: 
- Temas e características armazenadas; 
- Período de tempo coberto; 
- A área de estudo; 
 
A figura 3.1.1 mostra esquematicamente a representação temática de 
dados reais em SIG’s. 
 
 
Adaptado de www.esri.com 
 
Figura 3.1.1: Amostragem e representação de dados reais em SIG’s 
 
 
 
 
 22 
No processo de representação da realidade deve-se observar que o 
banco de dados consiste de representações digitais de objetos discretos. O 
conteúdo dos mapas é armazenado no banco de dados, transformando suas 
características em objetos desse banco de dados. Muitas das 
características mostradas no mapa são fictícias e não existem no mundo real (os 
contornos não existem mas, casas e lagos são objetos do mundo real). Desta forma 
mostra-se que o conteúdo do banco de dados espaciais pode incluir: a versão digital 
de objetos reais; a versão digital de características artificiais do mapa (ex: curvas de 
nível) ou objetos artificiais criados para propósito do banco de dados (ex: pixels). 
3.2. Características Básicas de Dados Espaciais e sua Manipulação 
 
As informações geográficas têm três características básicas 
(DANGERMOND et al, 1990): 
o fenômeno, ou característica propriamente dita, como uma 
variável, sua classificação, seu valor, seu nome,etc.; 
sua localização espacial ou seja, a localização do fenômeno 
no espaço geográfico; 
o tempo. 
Os fenômenos no mundo real podem ser observados sob estes 3 
aspectos, isto é, temático, espacial e temporal. O modo espacial trata da variação 
geográfica; o modo temporal trata da variação em intervalos de tempo e o modo 
temático trata da variação de características. 
Todas as propriedades quantitativas ou qualitativasde qualquer 
fenômeno do mundo real podem ser tratados em um destes aspectos: tema, lugar e 
tempo. 
Os modos de armazenamento das informações no banco de dados 
influenciam a solução dos problemas. 
O Modo espacial da informação é também chamado de localizacional. 
Os atributos armazenados no modo temático definem as diferentes 
características dos objetos. A tabela de atributos associada mostra os atributos dos 
objetos, onde cada objeto corresponde a uma linha da tabela e cada característica 
ou tema corresponde a uma coluna da tabela. 
 
O modo temporal pode ser armazenado de várias maneiras: 
• Especificando o intervalo de tempo em que os objetos existem; 
• Armazenando as informações em determinados pontos, no tempo; 
• Especificando a variação no movimento dos objetos. 
 
Dependendo de como o modo temporal é armazenado, pode-se incluir uma 
tabela de atributos simples ou representar, para um mesmo objeto, uma série de 
tabelas de atributos. 
 
 
 
 23 
Para a amostragem da realidade os valores numéricos podem ser definidos 
com relação a escalas de medidas: nominais, ordinais, intervalos, etc. 
É importante reconhecer as escalas de medidas utilizadas para os dados 
do SIG pois isto determina as várias operações matemáticas que podem ser 
realizadas com os mesmos. 
Como pode ser observado na Figura 3.2.1, as três variáveis, anteriormente 
mencionadas, relacionam-se entre si. Contudo, a manipulação de dados espaciais 
pode tornar-se complexa uma vez que os atributos e a localização espacial sofrem 
mudanças individuais ao longo do tempo. Conseqüentemente, a manipulação efetiva 
de dados espaciais requer que dados de localização e descritivos sejam variáveis 
independentes umas das outras. Isso quer dizer que características podem ter 
mudado seus atributos e não a sua localização espacial e vice-versa. 
Portanto, dados geográficos são complicados pelo fato de que devem 
incluir informações sobre posição, possíveis conexões topológicas e atributos dos 
objetos armazenados. As duas primeiras características distinguem os verdadeiros 
SIGs dos sistemas úteis na elaboração de inventários (BURROUGH, 1994). 
 
 
 
FIGURA 3.2.1. - Componentes conceituais de um SIG (DANGERMOND, 1990) 
 
3.3. Tipos de Dados Geográficos e sua Representação em SIGs 
 
Qualquer fenômeno gráfico pode ser reduzido a um dos três conceitos 
topológicos básicos: pontos, linhas e polígonos. 
 
 
 
 24 
A Figura 3.3.1. apresenta sete tipos de técnicas de representação 
espacial de dados geográficos para cada um dos três conceitos anteriormente 
mencionados (DANGERMOND, 1990): 
feição do dado; 
informação da área da unidade; 
dados topológicos em rede; 
dados de amostragem; 
informações de superfície; 
informação do texto; 
dados de símbolos gráficos. 
Pontos, linhas e polígonos são comumente definidos, nos mapas, 
usando-se um sistema de coordenadas cartesianas X,Y, como latitude e longitude, 
baseado nos princípios da geometria euclidiana. Esse sistema de coordenadas 
cartesianas é o mais utilizado como ferramenta para medir localizações espaciais e 
analisar suas várias propriedades, como distâncias. Na Figura 3.3.2 pode-se ver 
como esses elementos são representados no sistema de coordenadas cartesianas e 
subseqüentemente como são transferidos para um sistema de coordenadas X,Y em 
um arquivo SIG (DANGERMOND, 1990). 
Portanto, todo fenômeno geográfico pode, a princípio, ser representado 
por um desses três objetos e um rótulo. Por exemplo: uma árvore de jacarandá pode 
ser representada por um ponto com um único par de coordenadas X,Y e um rótulo 
"jacarandá". Já uma secção de ferrovia será representada por dois pares de 
coordenadas X,Y (um inicial e outro final) e um rótulo "ferrovia". Similarmente, uma 
planície de inundação será representada por uma área cobrindo um conjunto de 
coordenadas X,Y (com coordenadas de início e fim idênticas) mais um rótulo 
"planície de inundação". 
 
 
 
 25 
 
 
FIGURA 3.3.1 - Decomposição de tipos de dados geográficos e métodos de 
representação. 
 
 
 
 
 
 
 
 26 
 
 
Figura 3.3.2 - Arquivo com coordenadas X,Y (DANGERMOND, 1990) 
 
Além do sistema de coordenadas cartesianas, fenômenos geográficos 
podem ser expressos usando-se a teoria gráfica e envolvendo relações topológicas 
para expressar a localização relativa de vários elementos do mapa. A Figura 3.3.3 
apresenta um típico mapa de polígonos em rede, que pode ser abstraído em 7 nós e 
11 elos (ou segmentos de linhas ou arcos) que conectam 5 polígonos básicos. Pode 
ser construído um mapa-base numerando os arcos e associando-os a nós e aos 
polígonos da esquerda e direita que estes definem. Adicionando as coordenadas 
X,Y de cada nó, tem-se um sistema duplo para identificar cada elemento do mapa. O 
sistema que primeiro utilizou este método foi o Dual Independent Map Encoding 
(DIME/Bureau of Census/USA ), sendo que o TOSCA (input de dados, via 
digitalização, para o IDRISI) baseia-se no mesmo princípio. Esse sistema apresenta 
a vantagem de eliminar os defeitos causados pela compartilhação das mesmas 
fronteiras entre polígonos vizinhos distintos. 
 
 
 
 
 
 27 
 
 
Figura 3.3.3 - Polígonos em rede 
 
Outra técnica muito utilizada envolve o uso de uma grade para definir uma 
"moldura" regular, porém arbitrária, de polígonos que contêm os dados geográficos. 
Essa técnica em grade é, necessariamente, uma associação com um sistema de 
coordenadas, mas não uma associação precisa. Nesse sistema, uma matriz 
representa as variações geográficas para o computador em linhas e colunas (Figura 
3.3.4). 
 
 
 
 
 28 
 
 
Figura 3.3.4- Matriz de linhas e colunas 
 
Existem dois métodos para identificar espacialmente estas informações. O 
primeiro usa as medidas reais na forma de coordenadas X,Y, enquanto o segundo 
envolve a definição de fenômenos geográficos por relações entre pontos e linhas, 
redes, polígonos adjacentes e células contíguas vistas na Figura 3.3.4. 
 
 
 
 
 29 
4. Representação de Dados de Mapas 
 
Um SIG armazena dois tipos de dados que são encontrados em um 
mapa: 
a) as definições geográficas das características da superfície da terra; e 
b) os atributos ou as qualidades que estas características possuem. 
Existem duas técnicas de representação em SIG: vector e raster. 
Na representação vector, os limites das características são definidos por 
uma série de pontos, que, quando interligados com retas, formam a representação 
gráfica daquela característica. Os pontos são codificados com um par de números 
que dão as coordenadas x e y no sistema (latitude/longitude, coordenadas UTM , 
etc.), Figura 4.1. 
A segunda principal forma de representação é a raster. Neste sistema a 
representação gráfica das características e dos atributos que elas possuem é 
armazenada em arquivos de dados unificados, Figura 4.1. 
 
Fonte: ESRI 
 
% Representação 
Matricial 
 
 
% Representação 
Vetorial 
 
 
% Realidade 
Modelada 
Figura 4.1 - Representação Vetorial e Matricial 
 
 
 
 30 
4.1. A Representação Vetorial 
 
Com a representação vetorial, os limites das características são definidas 
por uma série de pontos interligados com linhas retas formando a representação 
gráfica daquela característica. Os pontos são codificados com um par de números, 
representando as coordenadas (X,Y) nos sistemas de coordenadas 
Latitude/Longitude, Universal Transverse Mercator - UTM, etc. Os atributos das 
características são armazenados em um tradicional sistema gerenciador debanco 
de dados (DBMS). 
 
 Figura 4.1.1 - Representação Vetorial com tabelas de atributos 
4.2. A Representação Matricial 
 
A segunda principal forma de representação é a raster ou matricial. O 
termo raster por ser amplamente difundido e corriqueiramente utilizado será adotado 
para este texto. Com o sistema raster, a representação gráfica das características e 
atributos que elas possuem são armazenados em arquivos de dados unificados. 
A área estudada é subdividida em uma fina malha de células onde são 
registradas a condição ou atributo da superfície do terreno naquele ponto. 
 
 
 
 31 
A cada célula é atribuído um valor numérico que pode representar uma 
característica identificadora, um código de atributo qualitativo ou um valor 
quantitativo de atributo. 
Em uma apresentação raster, tal como no monitor de vídeo do 
computador, existe também uma malha de pequenas células denominadas pixels 
(pixel é a contração do termo picture element). 
 
Figura 4.2.1 - Representação Vetorial com tabelas de atributos 
 
O pixel pode ser variado em sua forma, cor ou tonalidade de cinza. Para 
compor uma imagem, os valores nas células da malha de dados são utilizados para 
regular diretamente a aparência do gráfico de seus pixels correspondentes. Em um 
sistema matricial o dado controla diretamente a forma visível no monitor de vídeo. 
4.3. Raster & Vector 
 
A vantagem do sistema raster é que o espaço geográfico é 
uniformemente definido em um simples e previsível uso. Como resultado, o sistema 
raster tem substancialmente mais poder analítico do que o vetorial em análises do 
espaço contínuo e são adequados para o estudo de dados que variam 
continuamente sobre o espaço como solo, biomassa vegetal, chuva, etc. 
 
 
 
 32 
Outra vantagem do sistema raster é que sua estrutura esta mais próxima 
da arquitetura dos computadores digitais. Como resultado o sistema raster tende a 
ser mais rápido na estimativa de problemas que envolvem combinações 
matemáticas de dados em células múltiplas. 
Os sistemas raster são excelentes para avaliar modelos ambientais tais 
como potencial erosivo do solo, cartas de uso e ocupação do solo, adequabilidade 
ao manejo de solos, bacias hidrográficas, pastagens, florestas, etc. Além disso, 
como as imagens de satélites utilizam a estrutura raster, a maioria dos sistemas 
raster podem facilmente incorporar estes dados e realizar o processamento de 
imagens. 
Enquanto sistemas raster são predominantemente análises orientadas, os 
sistemas vetoriais tendem a ser gerenciamento de banco de dados orientado. Os 
sistemas vetoriais são mais eficientes no armazenamento de dados de mapas 
porque eles armazenam somente os contornos das características e não o que está 
dentro destes contornos. 
Comparado com os sistemas raster, os sistemas vetoriais não têm grande 
capacidade para análise sobre o espaço contínuo; seu principal atrativo são as 
funções de gerenciamento de banco de dados. 
Os vetores funcionam bem quando as condições espaciais do mundo real 
podem ser precisamente definidas como linhas ou limites. A representação de 
qualquer fenômeno espacial linear é, quase sempre, desenvolvida de modo 
grosseiro no formato raster. Essa representação torna-se um problema ainda mais 
acentuado com relação ao ângulo. Para representar um plano inclinado, este 
sistema utiliza uma verdadeira escada de pixel. 
A abordagem vetorial permite ao usuário obter informações topológicas 
importantes, difíceis de atingir no formato raster. Se, por exemplo, uma rede 
hidrográfica fosse representada como vetores, a estrutura topológica resultante 
poderia ser usada para descrever a contribuição de cada tributário na drenagem 
geral do sistema. 
Quando se analisam imagens de uma região, muitas vezes nota-se que 
as fronteiras entre os objetos representados não são bem definidas. Quando são 
impostas linhas, ou seja, vetores, à imagem para delimitar tais fenômenos, introduz-
se um elemento interpretativo altamente preciso nos dados, o que é errôneo. Nesse 
caso, o formato raster é a melhor alternativa. 
Por outro lado, a principal limitação no uso do formato vetorial está nas 
operações que envolvem álgebra booleana e sobreposição de mapas. Nessas 
operações, fundamentais em estudo do ambiente, o formato raster é mais 
recomendado. O formato vetorial se aplica melhor às áreas de cartografia e 
engenharia pela sua precisão na representação do mundo real. 
 
 
 
 33 
Esses dois formatos não são necessariamente exclusivos, podendo ser 
utilizados de acordo com as operações que serão definidas pelo usuário. 
O olho humano é altamente eficiente no reconhecimento de contornos e 
formas, mas o computador necessita ser instruído, com exatidão, sobre a 
manipulação e a apresentação dos padrões espaciais. Existem, essencialmente, 
duas maneiras contrastantes, porém complementares, de representar dados 
espaciais no computador, uma explícita (ou raster) e outra implícita (ou vetorial). 
A Figura 4.3.1 apresenta as duas maneiras de representar dados no 
computador. Na primeira, as formas do objeto são construídas a partir de um 
conjunto de pontos sobre uma grade ou raster. O computador reconhece que este 
conjunto de pontos representa um objeto determinado por meio de um código 
numérico que será equivalente a um conjunto de cores ou de níveis de cinza. 
No modo implícito, a representação é efetuada por um conjunto de linhas, 
definidas por pontos de início e fim e alguma forma de conexão. Os pontos de início 
e fim das linhas definem os vetores que representam o objeto desejado. Os 
indicadores, entre as linhas, mostram ao computador como acontece a conexão 
entre elas para se formar o objeto. 
 
 
Figura 4.3.1. - Representações raster e vector 
Existem várias diferenças entre os dois sistemas. Primeira: a 
representação implícita requer menos números, o que implica menor espaço de 
armazenamento. Segunda: a representação vetorial é esteticamente melhor do que 
 
 
 
 34 
a representação raster. Terceira: as informações de conexão possibilitam buscas 
espaciais diretas nos objetos representados. Por outro lado, se a forma, ou o 
tamanho, do objeto deve ser mudada, isto pode ser realizado mais rápido e mais 
facilmente na representação raster. Nesse tipo de representação, a atualização de 
dados ocorre apenas substituindo certos valores por novos. No módulo vetorial, 
além da atualização das coordenadas, é necessario reconstruir a conectividade. 
Em suma, a representação raster é um conjunto de células localizadas 
por coordenadas; cada célula é endereçada independentemente com o valor de um 
atributo. Na representação vetorial, existem três entidades geográficas principais: 
pontos, linhas e áreas, que têm conectividade e atributos. 
A estrutura de dados raster é a mais simples desse sistema. Consiste de 
um array de células em forma de malha ou grade. Essas células são chamadas com 
freqüência, de elementos pictóricos (picture elements) ou pixels e representam a 
menor unidade possível encontrada. Cada pixel é referenciado pelos números da 
linha e da coluna que ocupa na malha, além de outro número representando o tipo 
ou o valor do atributo mapeado. Na estrutura raster, um ponto é representado por 
uma única célula; uma linha, por um conjunto de células vizinhas que se estendem 
em dada direção; uma área é o aglomerado de células vizinhas, conforme visto 
anteriormente na Figura 4.3.1. Essa estrutura, em forma de malha, significa que a 
superfície bidimensional, na qual os dados são representados, não é contínua, mas 
quantizada. Este fato tem importância vital no cálculo de distâncias e áreas, 
principalmente quando o tamanho do pixel é grande em relação ao objeto 
representado (Figura4.3.2a e b). 
A Figura 4.3.2a mostra que a distância euclidiana entre a e c é de cinco 
unidades, enquanto na Figura 4.3.2b poderia ser de sete ou quatro unidades, se 
forem quantificadas apenas as células da extremidade ou se todas as células forem 
atravessadas. 
 
 
FIGURA 4.3.2 - A representação raster pode afetar a estimativa de distância e área, 
dependendo da quantificação das células 
Na representação raster, o espaço geográfico pode ser tratado como se 
fosse uma superfície cartesiana achatada. Cada pixel está associado a uma parcela 
 
 
 
 35 
quadrada da superfície da Terra. Portanto, a resolução, ou escala dos dados raster, 
está na relação entre o tamanho do pixel no banco de dados e o da célula no solo. 
Na estrutura vetorial, o espaço é contínuo, ao contrário de quantizado 
como na representação raster. Isso permite definir com precisão posições, 
comprimentos e dimensões. Os dados geográficos são representados na forma de 
pontos, linhas e áreas. 
Os pontos são representados por apenas um par de coordenadas X,Y. A 
cada ponto estão associadas informações sobre orientação, atributo, símbolo, etc. 
As linhas são segmentos de reta construídos com duas ou mais 
coordenadas. Cada linha tem os mesmos tipos de informações associadas aos 
pontos. Um arco é um conjunto de pares de coordenadas que descrevem uma linha 
contínua complexa. Quanto menor o segmento e maior o número de pares de 
coordenadas X,Y, mais se aproxima de uma curva. 
As áreas de polígonos podem ser representadas de várias maneiras em 
um banco de dados vetorial. O objetivo dos dados estruturados em polígonos é o de 
descrever as propriedades topológicas de áreas, isto é, contornos, vizinhança e 
hierarquia, de tal maneira que as propriedades associadas a esses blocos 
espacialmente construídos possam ser apresentadas e manipuladas como um mapa 
temático. Cada componente de um polígono terá uma forma única, um perímetro e 
uma área. Não existe, como na representação raster, uma unidade básica. A análise 
geográfica requer que a estrutura dos dados seja capaz de armazenar os dados 
vizinhos. 
Fonte: ESRI 
FIGURA 4.3.3 – Feições cartográficas representadas pelos formatos matricial e 
vetorial 
 
 
 
 36 
5. Conceitos de Banco de Dados Geográficos 
 
5.1. Organização 
 
Do ponto de vista da lógica usada na representação espacial, raster ou 
vector, pode-se notar que o banco de dados geográficos está organizado de maneira 
similar a uma coleção de mapas. 
 Fonte: ESRI 
FIGURA 5.1.1 – Organização de temas cartográficos em SIG 
 
Os sistemas vetoriais estão muito perto desta lógica com as coverages, 
entendidas como coleções de mapas que contém definições geográficas de um 
conjunto de características e sua tabela de atributos associados. As coverages 
diferem dos mapas de duas maneiras: elas conterão um tipo simples de 
característica e, podem conter um conjunto de atributos que pertencem àquelas 
características. 
O sistema raster também utiliza a lógica de mapa, mas usualmente divide 
um conjunto de dados em layers unitários. Um layer contém todos os dados para um 
atributo simples, por exemplo, layer solo, layer estrada, e layer uso do solo. O 
sistema raster pode lincar um layer identificador da característica com tabelas de 
atributos. 
Geralmente existirão layers separados para cada atributo e serão 
produzidos mapas interpretativos a partir de uma combinação de layers de mapas. 
 
 
 
 37 
A diferença básica entre raster layers e vector coverages está na 
organização do banco de dados em temas elementares de mapas. 
5.2. Georeferenciamento 
 
Todos os arquivos de dados em um SIG são georeferenciados. 
Georeferenciamento refere-se a localização de um layer ou coverage no espaço 
pelo sistema de coordenadas. 
 
 Sistema geográfico Sistema cartesiano 
 
 
Fonte: ESRI 
FIGURA 5.2.1 – Georeferenciamento de dados em SIG 
 
Com imagens raster, uma forma comum de georeferenciamento é a 
indicação do sistema de coordenadas (latitude/longitude, UTM, etc.), as unidades de 
referência e as posições das coordenadas: esquerda, direita, topo e fundo da 
imagem. 
O mesmo acontece com arquivos de dados vetoriais, embora esquerda, 
direita, topo e fundo referem-se agora ao retângulo de contorno da coverage, um 
retângulo que define os limites da área mapeada. 
 
 
 
 38 
5.3. Topologia 
 
Para a elaboração de alguns tipos de análises os SIG’s necessitam 
conhecer, além da representação gráfica das entidades mapeadas (pontos, linhas e 
polígonos), o relacionamento espacial entre estas entidades. Em mapas digitais, os 
relacionamentos espaciais são descritos usando-se a topologia. 
Segundo PAREDES (1994), a topologia é um processo matemático que 
define explicitamente os relacionamentos espaciais tais como, conectividade, 
circunscrividade, contigüidade e orientação. 
A conectividade permite que arcos sejam ligados um a outro por nós; a 
circunscrividade permite que arcos possam circunscrever uma área, definindo um 
polígono; a contigüidade permite que arcos possuam direção e lados como esquerda 
e direita; e a orientação permite a orientação do fluxo de identificação dos atributos, 
como “de-nó” e “para-nó”. 
O uso dos conceitos topológicos, além de permitir um armazenamento 
mais eficiente (com manipulação mais rápida de grandes quantidades de dados), é 
fundamental na execução de funções de análise tais como: modelagem de fluxo 
através de linhas conectadas numa rede; combinação de polígonos adjacentes com 
características similares e recobrimento de diferentes entidades geográficas 
(PAREDES, 1994). 
 
 
 Adaptado de ESRI 
FIGURA 5.3.1 – Uso de conceitos topológicos para o armazenamento 
eficiente de feições (polígonos adjacentes com arcos comuns) 
 
 
 
 39 
5.4. Precisão e Exatidão de Bancos de Dados Espaciais 
 
Segundo CHRISMAN (1991), dentre os mais diversos assuntos técnicos 
em GIS, exatidão é talvez o mais importante, cobrindo preocupações sobre a 
qualidade de dados, erro, incerteza, escala, resolução e precisão em dados 
espaciais e afetando os modos nos quais os dados poderão ser usados e 
interpretados. 
 
De modo geral pode-se afirmar que todos os dados espaciais são, até 
certo ponto, inexatos, mas geralmente são representados no computador a altas 
precisões. 
Para entendimento dessa afirmação é importante conceituar os termos 
exatidão e precisão. 
A exatidão é definida como a proximidade dos resultados, cálculos ou 
estimativas para valores verdadeiros. Uma vez que dados espaciais normalmente 
são uma generalização do mundo real, é geralmente difícil identificar um valor 
verdadeiro, e trabalha-se, ao invés disso, com valores que são aceitos como 
verdadeiros. Por exemplo, medindo a exatidão de um contorno em um banco de 
dados digitais, nós comparamos o contorno com o desenhado no mapa fonte, uma 
vez que o contorno não existe como uma linha real na superfície da terra 
(CHRISMAN,1991). 
A precisão é definida como o número de casas decimais ou dígitos 
significativos em uma medida (CHRISMAN,1991). 
Obviamente precisão é diferente de exatidão, isto é, um grande número 
de dígitos significativos não necessariamente indica que a medida é exata. Um SIG 
trabalha a alta precisão, muito mais alta do que a própria exatidão de seus dados. 
 
Uma vez que todos os dados espaciais são de limitada exatidão, inexatos 
até certo ponto, perguntas importantes a serem feitas são: 
- como medir precisão ? 
- como localizar os modos de propagação de erros por operações de 
SIG? 
- como assegurar que os usuáriosnão atribuem maior exatidão a que os 
dados merecem? 
 
Vários modelos ou padrões de controle de qualidade estão sendo 
discutidos e aplicados a nível internacional. Segundo CHRISMAN (1991), foi 
desenvolvido nos E.U.A. um modelo padrão para descrever exatidão de dados 
digitais considerando os seguintes componentes de qualidade: 
- exatidão posicional; 
- exatidão de atributo; 
- consistência lógica; 
- perfeição; 
- linhagem; 
 
 
 
 
 40 
A exatidão posicional é definida como a proximidade da informação 
localizacional (usualmente coordenada) para a posição verdadeira. 
Convencionalmente, mapas são exatos a grosseiramente uma largura de linha ou 
0,5 mm. Estes valores são equivalentes a 12 m em mapas na escala 1:24.000, ou 
125 metros na escala 1:250.000. 
 
Para testar a exatidão posicional é preciso usar uma fonte independente 
de exatidão mais alta, encontrar um mapa de escala maior, usar o Sistema de 
Posicionamento Global (GPS), usar dados brutos de pesquisa ou usar evidência 
interna, isto é, polígonos abertos, linhas que excedem ou não chegam às junções, 
que são indicações de inexatidão (os tamanhos de intervalos, que não chegam ou 
ultrapassam as junções podem ser usados como uma medida de exatidão 
posicional). 
 
Outra forma de avaliação da exatidão posicional é calcular seu valor a 
partir do conhecimento dos erros introduzidos por diferentes fontes , por exemplo: 
- 1 mm no documento fonte 
- 0.5 mm no registro do mapa para digitalização 
- 0.2 mm na digitalização 
Se neste caso as fontes combinam-se independentemente, pode-se obter 
uma estimativa da exatidão global somando-se os quadrados de cada componente e 
extraindo a raiz quadrada da soma: 
 ( 12 + 0.52 + 0.22 )0.5 = 1.14 mm 
 
A exatidão de atributo é definida como a proximidade dos valores de 
atributo para seus valores verdadeiros. É importante notar que enquanto a 
localização não varia com o tempo, atributos freqüentemente variam. 
A exatidão de atributo deve ser analisada de diferentes maneiras 
dependendo da natureza dos dados. Por exemplo, para atributos contínuos 
(superfícies) como em um DEM (Digital Elevation Model) a exatidão deve ser 
expressa como erro de medida. Já para atributos categóricos, tais como os 
polígonos classificados, é importante considerar: 
- São as categorias mapeadas, suficientemente definidas e detalhadas? 
- Erros grosseiros, como um polígono classificado como A quando deveria 
ter sido como B, são simples mas indesejáveis ; 
- é mais provável que o polígono seja heterogêneo, por exemplo, zonas 
de vegetação onde a área poderia ser 70% A e 30% B . 
 
Para teste da exatidão de atributos é preciso preparar uma matriz de 
classificação, executando as seguintes atividades: 
- escolher randomicamente vários pontos de amostragem; 
- determinar a classe de acordo com o banco de dados; 
- determinar a classe no campo; 
- completar a matriz: 
 
 
 
 
 
 
 41 
 
Classe no terreno Classe no 
Banco de 
Dados 
A B C D 
A . . . . 
B . . . . 
C . . . . 
D . . . . 
 
Se todos os pontos recairem na diagonal da matriz significa que a mesma 
classe observada no terreno é registrada no banco de dados. 
Ocorre um erro de omissão quando a classe de um ponto no terreno é 
registrada incorretamente no banco de dados. O número de pontos da classe B 
registrados incorretamente é a soma da coluna B linha A, coluna B linha C e coluna 
B linha D, i.e. o número de pontos que são B no solo mas qualquer outra coisa no 
banco de dados, isto é, a soma de coluna menos a celula diagonal. 
Um erro de omissão acontece quando a classe registrada no banco de 
dados não existe no solo. Por exemplo, o número de erros de omissão para classe A 
é a soma da linha A coluna B, linha A coluna C, linha A coluna D, i.e. os pontos 
falsamente registrados como A no banco de dados ,isto é, a soma de linha menos a 
celula diagonal. 
 
A consistência lógica se refere à consistência interna da estrutura de 
dados, particularmente aplicada à sua consistência topológica. Desta forma 
procura-se identificar se o banco de dados é consistente em suas definições, se 
todos os polígonos mapeados são entidades gráficas fechadas, se existe um label 
(identificação) exatamente dentro de cada polígono, se existem nós cruzando arcos, 
ou arcos que se interceptam sem formar nós, etc. 
 
Outro ítem a ser observado é a perfeição que está relacionada ao grau 
em que os objetos esgotam todos os ítens possíveis do universo, isto é, se todos os 
possíveis objetos existentes em campo estão incluídos dentro do banco de dados. A 
perfeição é afetada por regras de seleção, generalização e escala. 
 
 A Linhagem é um registro das fontes de dados e das operações que 
criaram o banco de dados. Neste contexto são examinados os processos de 
digitalização, os documentos fonte, o momento em que os dados foram coletados, a 
agência que levantou e colecionou os dados, os passos usados para processar os 
dados. 
 
 
 
 
 
 42 
6. Cartografia Digital 
 
Segundo SANTANA (1999), analisar os diversos tipos de representação 
da superfície terrestre, sem que a confecção de seus resultados passem pela 
cartografia clássica, resulta que, o observado, descrito ou visto, não conseguirá ser 
relatado da mesma forma ou proporções nos quais os encontramos no ambiente 
pesquisado. Essa ligação latente entre a cartografia e as ciências que estudam, 
analisam e representam o meio físico tornam os conceitos cartográficos importantes 
a qualquer profissional ligado à hidrologia, geologia, pedologia, geotecnia, 
topografia, geografia, agronomia entre outras. 
Em OLIVEIRA (1993) encontramos algumas definições do termo 
cartografia: Dicionário Contemporâneo da Língua Portuguesa : “Arte de traçar ou 
gravar cartas geográficas ou topográficas”; Novo Dicionário da Língua Portuguesa, 
de Aurélio Buarque de Holanda Ferreira: “Arte ou ciência de compor cartas 
geográficas; tratado sobre mapas”; O Webster: “Arte ou prática de fazer cartas ou 
mapas”; O Larousse descreve mais: “Arte de desenhar os mapas de geografia: 
Mercátor criou a cartografia científica moderna”; Der Volks Brockhaus: Projeto e 
desenho de cartas geográficas, plantas de cidade, etc.”. As Nações Unidas em 
1949: “A cartografia é a ciência que se ocupa da elaboração de mapas de toda 
espécie. Abrange todas as fases dos trabalhos, desde os primeiros levantamentos 
até a impressão final dos mapas”. ACI em 1964 (Associação Cartográfica 
Internacional): “Conjunto de estudos e operações científicas, artísticas e técnicas, 
baseado nos resultados de observações diretas ou de análise de documentação, 
com vistas à elaboração e preparação de cartas, projetos e outras formas de 
expressão, assim como a sua utilização”. 
Para que se entenda adequadamente o processo de elaboração de um 
produto cartográfico é importante o conhecimento de conceitos próprios tais como 
escalas cartográficas, sistemas de projeções, tipos de mapas ou cartas, 
representações cartográficas dentre outros. A seguir apresenta-se sucintamente 
alguns desses conceitos. 
6.1. Escalas 
Como definição básica pode-se dizer que escala é a relação entre a 
distância de dois pontos quaisquer do mapa com a correspondente distância na 
superfície da Terra. É traduzida em geral por uma fração que representa a relação 
entre as distâncias lineares da carta e as mesmas distâncias da natureza. Além 
disso pode-se definir que escala é uma relação que torna uma grandeza real 
reduzida ou ampliada de seu tamanho natural. No caso dos levantamentos 
encontramos sempre o primeiro caso, ou seja, a redução do tamanho natural. 
A classificação cartográfica de escalas (segundo OLIVEIRA, 1993) é:43 
Quadro 01 - Classificação cartográfica de escalas. 
Escala Denominação Classificação 
1:500 à 1:5.000 Grande Cadastral 
1:25.000 à 1:250.000 Média Topográfica 
1:500.000 ou menores Pequena Geográfica 
 
Como regem as normas cartográficas, a escala sempre deve estar 
presente nos materiais produzidos, seja na forma numérica ou na forma gráfica, 
sendo recomendável a presença de ambas. 
 
FIGURA 6.1.1 – Formas de representação de escalas (gráficas e descritivas) 
6.2. Projeções de mapas 
 
No processo de construção de mapas ou cartas, por menor que seja a 
extensão levantada, está-se representando uma superfície curva, a superfície 
terrestre, em uma unidade plana que é inicialmente o papel. Qualquer que seja a 
representação da superfície terrestre essa é uma simplificação de um modelo de 
maior complexidade. 
As projeções cartográficas formulam matematicamente uma superfície 
terrestre representado-a, mas distorcendo algumas de suas características em 
função da projeção. 
Cada projeção conserva uma propriedade encontrada em seu modelo real, 
a forma (ângulos), a proporção (áreas), as distâncias entre os pontos, dentre outras. 
Uma carta ideal seria aquela em que se pudesse encontrar todas essas 
propriedades. Esse modelo não é possível de ser criado, devido ao fato de que a 
representação espacial é feita em um plano como são os mapas ou as cartas. 
No estudo das projeções e suas características, nota-se que a cartografia 
em si e as projeções cartográficas tem seus conceitos criados já há algum tempo, 
não sendo estranho nos reportarmos a bibliografias de décadas passadas ou 
mesmo de séculos passados com é por exemplo a projeção cônica de Lambert de 
1774 ou a de Mercator de 1569. Atualmente essas projeções sofrem tratamentos 
 
 
 
 44 
computacionais, mas seus princípios se conservam em suas formulações 
matemáticas originais. 
BAKKER, citado em OLIVEIRA (1993), apresenta a seguinte classificação 
modificada das projeções: 
 
Quadro 6.2.1 - Classificação das projeções cartográficas 
1. Quanto ao método geométricas perspectivas 
 pseudoperspectivas 
 simples ou regulares 
 modificadas ou irregulares 
 analíticas 
 convencionais 
2. Quanto à situação do gnomônica 
ponto de vista estereográfica 
 ortográfica 
3. Quanto à superfície por desenvolvimento cônicas e policônicas 
de projeção cilíndricas 
 poliédricas 
 planas ou azimutais polares 
 equatoriais ou meridianas 
 horizontais ou oblíquas 
4. Quanto à situação da cônicas e policônicas Normais 
superfície de projeção transversas 
 horizontais ou oblíquas 
 cilíndricas equatoriais 
 transversas ou meridianas 
 horizontais ou oblíquas 
5. Quanto às eqüidistantes meridianas 
propriedades transversais 
 azimutais ou ortodrômicas 
 equivalentes 
 conformes 
 afiláticas 
 
 
 
 
 45 
A noção precisa, da existência de várias projeções e suas características 
leva o profissional da área de levantamento, a fazer uso daquela que mais satisfaça 
aos objetivos do trabalho em questão. 
 
 
 
Estereográfica polar 
 
Cilíndrica 
 
Cônica 
 
 
 
Outras 
Fonte:ESRI 
Figura 6.2.1 - Representação da superfície terrestre segundo algumas projeções. 
 
6.3. A Cartografia Digital e os Sistemas de Informações Geográficas 
 
Um passo inicial na transformação dos dados analógicos, como os mapas 
em papel, para o formato digital, surgiu com a cartografia digital. Essa tecnologia 
tem como meta inicial, o desenvolvimento de materiais, equipamentos e 
metodologias para a confecção de moldes cartográficos digitais, que possam ser 
armazenados, modificados e reproduzidos com maior rapidez e facilidade 
(SANTANA, 1999). 
A diferença primordial da cartografia digital e os SIG’s, é que neste último, 
além da fiel reprodução dos modelos do terreno, ou seja os mapas, foi incorporado o 
conceito de manipulação e análise dos dados introduzidos, tornando-o uma 
poderosa ferramenta de estudo do meio físico. Em um conceito mais amplo dos 
SIG’s pode-se afirmar que estes utilizam a cartografia digital como formadora de sua 
base cartográfica. 
 
Figura 6.3.1 – SIG’s tratando dados cartográficos digitais. 
 
 
 
 
 
 
 46 
 
 
 
 47 
7. Conversão Digital de Dados 
 
A digitalização é o processo de conversão de feições gráficas de um mapa 
convencional (pontos, linhas e polígonos) para um formato compatível para uso em 
computador. Este processo pode ser executado segundo duas técnicas básicas: a 
digitalização ou vetorização manual (com o uso de mesas digitalizadoras) e a 
digitalização ou vetorização automática (com o uso de scanners). 
7.1. Digitalização 
O processo de digitalização manual tem como equipamento básico a mesa 
digitalizadora, composta por três partes principais: 
uma superfície plana,sobre a qual se fixa o mapa; 
um dispositivo que mede coordenadas; 
um cursor, que indica cada posição da mesa em relação ao 
sistema de referência adotado (sistema de coordenadas). 
 
Figura 7.1.1 – Componentes da mesa digitalizadora. 
 
São usados dois indicadores de exatidão para aferir a qualidade de 
digitalização: a resolução e a precisão. 
 
 
 
 48 
Resolução é a menor distância que pode ser medida ao longo 
dos eixos horizontal e vertical da mesa. Depende do 
espaçamento entre os fios que formam a malha, em torno de 
0,025 a 0,0025 mm. 
Precisão é o erro máximo decorrente de uma série de 
medidas sobre um mesmo ponto (repetibilidade), em torno de 
+/- 0,25 mm e +/- 0,025 mm dependendo do equipamento. 
A digitalização pode ser feita de dois modos: ponto-a-ponto (point mode) 
ou contínuo (stream mode). 
 No ponto-a- ponto, as coordenadas são lidas pela mesa e 
enviadas ao computador cada vez que um dos botões do 
cursor é pressionado. O operador tem a liberdade de escolher 
e digitalizar os vértices que melhor definam as feições 
cartográficas de interesse. 
No modo contínuo, as coordenadas são lidas continuamente, 
à medida que o operador percorre uma feição com o cursor e 
enviadas sequencialmente ao computador. O processo só 
pára quando se pressiona uma tecla especial. O intervalo 
entre o registro de pares de coordenadas consecutivos é 
monitorado pelo software, que usa um algorítmo específico, 
baseado no incremento de distância ou tempo. 
O modo contínuo é ideal para a digitalização de arcos extensos, como 
curvas de nível. É desaconselhável para feições poligonais, pois pode perder pontos 
notáveis que melhor definiriam o polígono. 
Uma desvantagem do método é o volume final dos arquivos, que podem 
atingir tamanhos bastantes superiores aos gerados no ponto-a-ponto. Isto pode ser 
contornado pela suavização pós-digitalização das linhas. Outra opção seria usar um 
software de digitalização que altere automaticamente o incremento em função da 
geometria da feição digitalizada - incremento maior para uma porção retilínea de 
uma linha e incremento menor para uma curva. 
O processo de digitalização compreende uma série de atividades 
preliminares que irão garantir a qualificação do processo de conversão digital. 
7.1.1. Preparação dos Mapas 
 
A fase de preparação dos mapas incorre nas seguintes sub-fases: 
identificação de características cartográficas do mapa como 
escala, sistema de projeção e sistema geodésico; 
anotações de informações complementares no mapa a ser 
digitalizado, como o código das entidades gráficas; 
 
 
 
 49 
compilação de outras informações e atualização do 
documento; 
identificação de no mínimo três pontos no mapa com 
coordenadas conhecidas, para a orientação da mesa 
digitalizadora. 
 
Figura 7.1.1.1

Outros materiais