Buscar

12705888 Analise de Estabilidade Global de Estruturas de Concreto em Usinas Hidreletricas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 3, do total de 84 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 6, do total de 84 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 9, do total de 84 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Prévia do material em texto

1 
SUMÁRIO 
 
LISTA DE FIGURAS ................................................................................................................................................. 3 
TABELAS.................................................................................................................................................................... 5 
QUADROS................................................................................................................................................................... 5 
FOTOS......................................................................................................................................................................... 5 
GRÁFICOS ................................................................................................................................................................. 5 
1 – INTRODUÇÃO..................................................................................................................................................... 6 
2 – REVISÃO BIBLIOGRÁFICA............................................................................................................................. 8 
2.1 – ESFORÇOS ATUANTES EM ESTRUTURAS HIDRÁULICAS ................................................................................ 8 
2.1.1 – Peso Próprio............................................................................................................................................ 8 
2.1.2 – Empuxos de Terra................................................................................................................................... 8 
2.1.2.1 – Empuxo Ativo .................................................................................................................................................10 
2.1.2.2 – Empuxo Passivo ..............................................................................................................................................12 
2.1.2.3 – Empuxo em Repouso ......................................................................................................................................12 
2.1.3 – Empuxos d´Água .................................................................................................................................. 13 
2.1.4 – Subpressão ............................................................................................................................................ 17 
2.1.4.1 – Determinação da Subpressão.........................................................................................................................19 
2.1.5 – Esforços Sísmicos ................................................................................................................................. 31 
2.1.6 – “Wave Loads” ....................................................................................................................................... 34 
2.1.7 – Cargas Aplicadas .................................................................................................................................. 34 
2.1.8 - Ancoragens ............................................................................................................................................ 34 
2.1.9 – Outros Esforços Atuantes ..................................................................................................................... 35 
2.2 – INTERAÇÃO E INTERFACE ENTRE BASE E ESTRUTURA ............................................................................... 35 
2.3 – ANÁLISE DE ESTABILIDADE GLOBAL ........................................................................................................... 37 
2.3.1 – Tombamento ......................................................................................................................................... 37 
2.3.1.1 – Coeficiente de Segurança Tombamento........................................................................................................38 
2.3.2 – Deslizamento ......................................................................................................................................... 39 
2.3.2.1 – Coeficiente de Segurança Deslizamento........................................................................................................39 
2.3.3 – Flutuação .............................................................................................................................................. 44 
2.3.3.1 – Coeficiente de Segurança Flutuação .............................................................................................................45 
2.4 – ESFORÇOS NA BASE DA ESTRUTURA ............................................................................................................ 45 
2.4.1 – Método do Centro de Rotação de Nigam para Estruturas de Gravidade Complexas. ........................ 47 
2.5 – COMBINAÇÕES DE ESFORÇOS....................................................................................................................... 51 
3 – MÉTODOS DE ANÁLISE DE ESTABILIDADE............................................................................................ 53 
3.1 – MÉTODO DAS FATIAS.................................................................................................................................... 53 
3.2 – MÉTODOS POR ELEMENTOS FINITOS........................................................................................................... 56 
4 – METODOLOGIA PROPOSTA PARA ANÁLISE DE ESTABILIDADE GLOBAL .................................. 58 
4.1 – MODELAGEM TRIDIMENSIONAL .................................................................................................................. 58 
4.2 – OBTENÇÃO DOS ESFORÇOS........................................................................................................................... 60 
4.3 – PARÂMETROS E DADOS DE ENTRADA .......................................................................................................... 62 
4.4 – COEFICIENTES DE SEGURANÇA .................................................................................................................... 62 
4.5 – ANÁLISE DE ESTABILIDADE .......................................................................................................................... 62 
4.5.1 – Tombamento ......................................................................................................................................... 62 
4.5.2 – Deslizamento ......................................................................................................................................... 62 
4.5.3 – Flutuação .............................................................................................................................................. 63 
4.6 – PLANILHA DE ANÁLISE DE ESTABILIDADE................................................................................................... 63 
5 – VERIFICAÇÃO E ANÁLISE COMPARATIVA UTILIZANDO O MAE ................................................... 67 
5.1 – ANÁLISE DE ESTABILIDADE GLOBAL DE VALIDAÇÃO .................................................................................. 68 
5.2 – ANÁLISE DE ESTABILIDADE UTILIZANDO MAE ........................................................................................... 72 
5.3 – COMPARAÇÃO DOS RESULTADOS ................................................................................................................. 73 
6 – COMPARAÇÕES ENTRE METODOLOGIAS.............................................................................................. 73 
 
 
2 
6.1 – ANÁLISE DE ESTABILIDADE GLOBAL PELO MÉTODO DAS FATIAS ............................................................. 73 
6.2 – ANÁLISE DE ESTABILIDADE GLOBAL UTILIZANDO O MAE ........................................................................75 
6.3 – COMPARAÇÃO DOS RESULTADOS................................................................................................................. 79 
7 – CONCLUSÕES ................................................................................................................................................... 81 
REFERÊNCIAS BIBLIOGRÁFICAS .................................................................................................................... 83 
ANEXOS.................................................................................................................................................................... 84 
 
 
 
3 
LISTA DE FIGURAS 
 
Figura 2.1 – Diagrama de empuxos atuantes em estrutura hidráulicas ................................. 9 
 
Figura 2.2 – Níveis notáveis d´água representados na estrutura hidráulica ..........................14 
 
Figura 2.3 – Representação dos esforços de empuxo hidrostáticos para os níveis notáveis..17 
 
Figura 2.4 – Exemplo de condições de contorno .................................................................. 18 
 
Figura 2.5 – Ilustração do fluxo de água na fundação de uma barragem ..............................18 
 
Figura 2.6 – Primeiros diagramas de subpressão propostos...................................................19 
 
Figura 2.7 – Hipóteses de subpressão USACE ..................................................................... 21 
 
Figura 2.8 – Hipótese de subpressão U.S.B.R ...................................................................... 22 
 
Figura 2.9 – Critério de Cruz e Silva (1978) ........................................................................ 23 
 
Figura 2.10 – Critério CRUZ E BARBOSA (1981) ............................................................. 25 
 
Figura 2.11 – Critério AZEVEDO (1993) ............................................................................ 26 
 
Figura 2.12 – Critério de CRUZ (1996) ............................................................................... 27 
 
Figura 2.13 – Critério de Subpressão ELETROBRÁS ......................................................... 29 
 
Figura 2.14 – Diagrama de subpressão para níveis diferenciados de fundação. .................. 30 
 
Figura 2.15 a - Coeficiente de Pressão Cm .......................................................................... 32 
 
Figura 2.15 b – Ações sísmicas sobre estruturas .................................................................. 32 
 
Figura 2.16 – Força hidrodinâmica d´água ........................................................................... 33 
 
Figura 2.17 – Ilustração dos esforços estabilizantes e instabilizantes. ................................. 38 
 
Figura 2.18 – Gráfico de resistência conforme critério de Mohr-Coulomb ......................... 40 
 
Figura 2.19 – Geometria da estrutura e da fundação circundante. ....................................... 42 
 
Figura 2.20 – Diagrama de corpo livre do sistema estrutura/fundação ................................ 42 
 
Figura 2.21 – Potenciais superfícies de ruptura ................................................................... 43 
 
Figura 2.22 – Múltiplas superfícies de falha – Simplificação para dois planos .................. 43 
 
Figura 2.23 – Relação entre a área de compressão da base com a resultante das 
forças Verticais ...................................................................................................................... 46 
 
 
 
4 
Figura 2.24 – Representação da seção transversal de uma Casa de Força de geometria 
complexa. .............................................................................................................................. 48 
 
Figura 2.25 – Representação de corpo rígido de estrutura complexa................................... 48 
 
Figura 3.1 – Seção Transversal de uma Casa de Força de uma PCH que abriga duas turbinas 
Francis ................................................................................................................................... 54 
 
Figura 3.2 – Fatia (Seção Transversal) crítica utilizada para análise de estabilidade da CF da 
Figura 3.1. ............................................................................................................................. 55 
 
Figura 3.3 – Janelas de entrada de dados do CADAM® ; (a)Interface reservatório/barragem; (b) 
Geometria da Barragem; (c) Propriedades dos materiais. .................................................... 56 
 
Figura 3.4 – Modelagem em elementos finitos de uma barragem, os carregamentos e interação 
com a rocha de fundação. ...................................................................................................... 57 
 
Figura 3.5 – Análise de fratura em rocha modelada em elementos finitos. ......................... 57 
 
Figura 3.6 – Tensões verticais ao longo do plano de descontinuidade da fundação obtida por 
análise em MEF. ................................................................................................................... 58 
 
Figura 4.1 – Eixos coordenados ........................................................................................... 59 
 
Figura 4.2 - Modelagem tridimensional da estrutura de uma Câmara de Carga 
 – Vista Isométrica ................................................................................................................. 59 
 
Figura 4.3 – Diagramas bidimensionais dos esforços atuantes na estrutura da Casa 
 de Força. ................................................................................................................................ 60 
 
Figura 4.4 – Sólidos representativos dos esforços da Figura 4.3. ......................................... 61 
 
Figura 4.5 – Módulo Dados de Entrada do MAE. ................................................................. 64 
 
Figura 4.6 – Módulo Esforços do MAE. ............................................................................... 64 
 
Figura 4.7 – Módulo Combinações do MAE......................................................................... 65 
 
Figura 4.8 – Tensões na Base do MAE ................................................................................. 66 
 
Figura 5.1 – Barragem de Gravidade - seção típica, dimensões e esforços. ......................... 67 
 
Figura 5.2 – Dados de entrada dos esforços........................................................................... 72 
 
Figura 5.3 – Combinações dos esforços ................................................................................ 72 
 
Figura 5.4 – Resultados dos coeficientes de Segurança. ....................................................... 72 
 
Figura 5.5 – Tensões nos pontos da base. .............................................................................. 73 
 
Figura 6.1 – Seção da Casa de Força, esforços hidráulicos atuantes e níveis d´água. .......... 74 
 
 
5 
 
Figura 6.2 – Vista isométrica do modelo tridimensional da Casa de Força ........................ 75 
 
Figura 6.3 – Corte longitudinal, geometria complexa da Casa de Força............................. 75 
 
Figura 6.4 – Volume d´água da cunha de montante (a) e dentro da tomada d´água e circuito 
interno de adução (b). ........................................................................................................... 76 
 
Figura 6.5 – Empuxos de montante e jusante. ..................................................................... 77 
 
Figura 6.6 – Sólido modelado para subpressão. .................................................................. 78 
 
 
TABELAS 
 
Tabela 2.1 – Subpressões e Vazões Relativas ao Critério de Cruz, 1996 ........................... 28 
 
 
QUADROS 
 
Quadro2.1 - Condition Probabilities ................................................................................. 15 
 
Quadro 2.2 – Valores de coeficientes de atrito conforme tipo de solo .............................. 36 
 
Quadro 2.3 - Valores de coeficientes e ângulos de atrito entre superfícies ....................... 36 
 
Quadro 2.4 – Cálculos das propriedades geométricas ....................................................... 50 
 
Quadro 4.1 – Parâmetros necessários conforme verificação em análise ........................... 62 
 
Quadro 5.1 – Combinações em análise ............................................................................. 69 
 
Quadro 5.2 – Resultado da verificação de validação ........................................................ 70 
 
Quadro 6.1 - Resumo Do Relatório Estabest .................................................................... 74 
 
Quadro 6.2 – Resumo dos dados ....................................................................................... 78 
 
Quadro 6.3 - Resumo Do Relatório Mãe ........................................................................... 79 
 
FOTOS 
 
Foto 2.1 – Ancoragens passivas para base de um vertedouro. ........................................... 34 
 
GRÁFICOS 
 
Gráfico 6.1 - Comparação CSF .......................................................................................... 80 
 
Gráfico 6.2 - Comparação CSD ......................................................................................... 80 
 
Gráfico 6.3 - Comparação CST ......................................................................................... 80 
 
 
6 
1 – Introdução 
 
A geração de energia elétrica a partir de um potencial hidráulico, seja de um curso d´água ou de 
um reservatório, tem sido preferida pelo modelo de matriz energética do Brasil, tendo em vista o 
grande potencial hidroelétrico disponível. Não por acaso, o país possui grandes obras de 
engenharia, usinas, voltadas a este objetivo. 
 
Em uma usina hidrelétrica, converte-se energia potencial hidráulica em elétrica a partir de 
turbinas hidráulicas que acionam geradores. Conforme MASON (1988), este objetivo, 
aparentemente simples, para ser atingido, exige uma série de obras de engenharia que podem 
assumir grandes proporções. Tudo depende da potência da usina e das condições geológicas, 
topográficas, hidráulicas e das tecnologias empregadas. 
 
A organização de uma usina hidrelétrica, bem como de suas estruturas hidráulicas, é denominada 
Arranjo. Esse contempla todas as estruturas funcionais da usina e é estabelecido conforme 
condições desejáveis e existentes do local de implantação da obra. 
 
Os órgãos essenciais das usinas hidrelétricas são: a barragem, a casa de força e os dispositivos de 
condução do fluxo até esta última. Em alguns casos, algumas destas estruturas, até mesmo a 
barragem, podem ser dispensáveis, citando MASON (1988): os casos de captação direta da água 
para acionamento das turbinas, sem a interposição de barragem, são relativamente raros e só 
ocorrem em pequenos aproveitamentos. 
 
Tendo em vista o mencionado acima, consideram-se como estruturas mais importantes em 
qualquer aproveitamento, segundo MASON (1988), as seguintes: 
 
a) descarga de fundo, vertedouros, comportas, stoplogs, etc., nas barragens; 
 
b) descarregador de cheias, canais de desvio combinados com vertedouros, tomadas d´água, 
etc., nos reservatórios; 
 
 
c) câmaras de válvulas, válvulas de segurança de diversos tipos, nos aproveitamentos com 
condutos forçados; 
 
d) chaminés de equilíbrio, isoladas ou em conjunto, nos aproveitamentos com longos 
penstocks ou condutos forçados. 
 
As estruturas de concreto que compõem um aproveitamento hidrelétrico estão sujeitas à esforços 
que influenciam o seu equilíbrio estático, sendo então necessários estudos e cálculos específicos 
para verificação da estabilidade global. Estes esforços podem ser estabilizantes ou 
instabilizantes. Os primeiros contribuem para a estabilidade da estrutura, mantendo-a imóvel e os 
desestabilizantes atuam de forma a provocar deslocamentos quaisquer da estrutura. 
 
 
 
 
 
 
 
 
 
7 
Entende-se como estabilidade global o comportamento da estrutura hidráulica quando sujeita aos 
esforços solicitantes e a reação desta levando-se em conta as equações de equilíbrio: 
 
∑ = 0Fx Eq. 1.1 
 
 ∑ = 0Fy Eq. 1.2 
 
∑ = 0Fz Eq. 1.3 
 
 ∑ = 0Mx Eq. 1.4 
 
 ∑ = 0My Eq. 1.5 
 
 ∑ = 0Mz Eq. 1.6 
 
O estudo da estabilidade global leva em conta a verificação da estrutura quanto ao tombamento, 
ao deslizamento e à flutuação. O tombamento está relacionado ao equilíbrio de momentos no 
espaço ou em relação a um eixo; a verificação ao deslizamento está relacionada à possibilidade 
da estrutura se deslocar sobre o plano de sua base de apoio, e a flutuação relaciona-se a 
estabilidade vertical, perpendicular ao plano da base de apoio. Todas estas verificações são feitas 
de forma a se obter um índice comparativo entre os esforços estabilizantes e desestabilizantes, 
índices tais que levam em conta a garantia da estabilidade. 
 
As verificações e cálculos necessários à análise de estabilidade podem ser realizados através de 
metodologias diversas, podendo ser as mais simples como a verificação pelo método das fatias 
ou mais sofisticadas como os métodos computacionais baseados em elementos finitos. 
 
Consta como objetivo geral deste trabalho o estudo do comportamento de estruturas de concreto 
em aproveitamentos hidroenergéticos, no que se refere à sua estabilidade global. 
 
Como objetivo específico, buscar-se-á um estudo de metodologias e métodos de análise de 
estabilidade, difundidos no meio técnico e a proposição de uma metodologia de análise baseada 
na modelagem tridimensional da estrutura, comparando ao final esta com métodos 
convencionais. Propõem-se também a elaboração de uma planilha eletrônica para a verificação 
de estabilidade através da metodologia proposta. 
 
Como resultados esperados, procurou-se desenvolver e embasar a metodologia a ser proposta 
através da revisão bibliográfica e da comparação com os métodos convencionais estudados. 
 
 
 
 
 
 
 
 
 
 
 
 
8 
2 – Revisão Bibliográfica 
 
2.1 – Esforços Atuantes em Estruturas Hidráulicas 
 
Conforme USBR (1987) é essencial para o projeto de barragens (e estruturas hidráulicas) o 
conhecimento das forças que se esperam compor os esforços e a estabilidade da estrutura. 
 
As estruturas hidráulicas, devido às suas condições de funcionamento e implantação, estão 
sujeitas à esforços como: empuxos d´água, empuxos de terra, subpressão (esforços ascendentes 
da pressão d´água oriunda da base), esforços sísmicos, “wave loads” (esforços ocasionados pela 
arrebentação das ondas), cargas aplicadas, sobrecargas, dentre outros. 
 
Por outro lado, estas também exercem esforços, especialmente na fundação. 
 
Apresenta-se aqui uma descrição dos principais esforços atuantes nas estruturas hidráulicas 
conforme constam nas bibliografias do assunto, bem como uma abordagem da obtenção dos 
mesmos. 
 
2.1.1 – Peso Próprio 
 
O peso próprio, ou dead load, depende sobremaneira do peso específico do concreto e este por 
sua vez depende dos agregados utilizados. Normalmente, o valor do peso específico está entre 
2,2 a 2,4 tf/m3, cabendo sempre que possível, realizar ensaios para obtenção do valor correto. 
 
Segundo SCHEREIBER (1977) a granulometria do agregado deve ser fixada de modo que se 
obtenha um concreto mais denso possível. A vibração do concreto fresco ajuda seu adensamento 
e reduz a porosidade. Assim pode-se conseguir facilmente concreto com peso específico de 2,4 
tf/m3. 
 
Além do peso da estruturade concreto em si, para o peso próprio, segundo MASON (1988), 
computa-se o peso de todos os acessórios e equipamentos, tais como comportas, pontes de 
serviço, etc. 
 
2.1.2 – Empuxos de Terra 
 
Segundo CEMIG (1994), entende-se por empuxo de terra a ação produzida por maciços 
granulares (enrocamento, solos, sedimentos, sólidos, terrenos desintegrados) sobre as estruturas 
de contenção. 
 
USACE (1995) coloca que os esforços de terra em barragens, podem ocorrer com a deposição de 
material escavado da fundação que preenchem, de forma não uniforme, aterros em volta das 
estruturas. 
 
USACE (1995) cita ainda que, pressões de material siltoso são consideradas em projeto se o 
sedimento suspenso puder ser mensurado e computado. Acerca disto, MASON (1988) coloca 
que no caso de depósito de silte a montante, estes são levados em conta como um líquido, mais 
pesado que a água e de peso específico de 1,6 a 1,9 tf/m3. 
 
Normalmente o silte é considerado com altura de 10% da lâmina d´água na estruturas hidráulicas 
de saneamento. 
 
 
9 
SCHEREIBER (1977) menciona que em todos os reservatórios, deposita-se lodo em frente às 
barragens. Nos reservatórios pequenos, essa sedimentação é maior que nas barragens com grande 
reservatório, onde o lodo se deposita já na desembocadura dos rios. Porém, no decorrer do 
tempo, o lodo alcança, também, o local da barragem. Por outro lado, pode-se constatar que o 
lodo pouco a pouco se compacta, formando uma massa densa, com ângulo de atrito interno 
muito grande, exercendo, assim, empuxo muito pequeno sobre a barragem. 
 
Ainda segundo SCHEREIBER (1977), a influência do empuxo do lodo sobre a estabilidade das 
barragens altas é desprezível, porém, em barragens de pequena altura, deverá ser elevada em 
consideração. Quando faltam dados exatos sobre as quantidades físicas do lodo, o Bureau of 
Reclamation (USBR) aconselha tratá-lo como uma suspensão, exercendo pressão hidrostática no 
sentido horizontal de um fluido com peso específico de cerca de 1.300 kgf/m3. 
 
Segundo CEMIG (1994), os empuxos devidos aos aterros e reaterros dependem das propriedades 
mecânicas dos materiais envolvidos ao seu terrapleno, dos métodos utilizados para lançamento e 
compactação, dos deslocamentos do maciço compactado, bem como da variação daquelas 
propriedades com o tempo. Em função da rigidez relativa entre a estrutura e o terrapleno 
(interação solo-estrutura) e dos respectivos deslocamentos relativos (magnitude e direção), o 
empuxo atuante será considerado nas condições de estado ativo, passivo ou de repouso. 
 
No caso de estruturas consideradas como suficientemente rígidas e que são praticamente 
indeslocáveis em relação ao terrapleno, os empuxos corresponderão à condição de repouso 
conforme CEMIG (1994). 
 
MASON (1988) estabelece que os empuxos de terras (e siltes) provêm de eventuais aterros a 
montante ou a jusante da estrutura. Devem ser considerados de acordo com as teorias usuais, 
adotando-se os pesos específicos submersos [1], quando for o caso. Para aterros a jusante, 
recomenda-se o uso do empuxo de repouso, em vez do empuxo passivo. A Figura 2.1 apresenta 
um diagrama de empuxos de terra atuando em uma estrutura. 
 
 
 
Figura 2.1 – Diagrama de empuxos atuantes em estrutura hidráulicas. 
 
 
[1] O peso específico submerso (γsub) é estimado como sendo o peso específico saturado (γsat) do solo, menos o peso específico 
da água (γw). γw = 1,0 t/m3. ROCHA (1978) propõem para o peso específico submerso a seguinte relação: γsub = γsat – m. γw; 
onde m é um coeficiente relacionado ao índice de vazios (e) do solo. Para o caso de argilas e terras compactas, m varia de 0,8 a 
0,9 e para areia assume o valor de 0,6. 
 
 
10 
Os valores do empuxo de terra, conforme já citado acima, devem ser estimados através das 
teorias usuais de esforços de terra. Estes esforços, podem ser ativos, passivos ou em repouso, 
conforme definições das teorias existentes. As mesmas teorias estabelecem que, levando-se em 
conta o carregamento triangular (conforme apresentado na Figura 2.1), o ponto de aplicação da 
resultante do empuxo estará a 1/3 da altura (Z) do solo em relação à base. 
 
As principais estruturas para as quais é necessário o cálculo de empuxo de terra são, conforme 
CEMIG (1994): 
 
a) muros de transição; 
b) muros laterais de calhas de vertedouro; 
c) muros de contenção de pé de aterro; 
d) muros-ala ou de encontro; 
e) muros laterais de eclusa 
 
As estruturas correspondentes aos itens “a, d, e” são geralmente do tipo gravidade, de grande 
inércia e rigidez. Desta forma, para estes tipos de estruturas, os empuxos deverão ser calculados 
em princípio na condição de repouso. Especificamente, para os muros de transição, esta 
suposição será válida para os empuxos nas faces de montante, jusante e lateral. 
 
Muros laterais de calhas de vertedouro, ligados à laje de fundo, poderão ser considerados como 
indeslocáveis, caso sejam estruturas de gravidade, correspondendo nesta situação a empuxos de 
repouso. Paredes estruturais esbeltas (tipo catilever), com possibilidade de deslocamento ou 
rotação na base, poderão ser calculadas considerando empuxos para a condição ativa. 
 
Muros de contenção de pé de aterros de solo e/ou enrocamento terão em princípio seus empuxos 
calculados para condição ativa. 
 
Os empuxos nas condições ativa e passiva de cunhas de rocha sobre estruturas serão calculados 
utilizando o método de Coulomb, porém considerando as inclinações de cunhas condicionadas 
por planos de fraqueza estrutural (falhas, acamamento, etc.). Para o caso de maciços rochosos 
muito fraturados/decompostos, serão utilizados os mesmos procedimentos que para terraplenos 
em solo, CEMIG (1994). 
 
2.1.2.1 – Empuxo Ativo 
 
Segundo CEMIG (1994), nos casos em que os esforços cisalhantes do terrapleno são 
mobilizados a favor de manter o equilíbrio contra a ação da gravidade, resulta a condição de 
Empuxo Ativo: o valor do empuxo é sempre reduzido por motivos de cooperação dos esforços 
cisalhantes. 
 
As pressões ativas, horizontais (ph) e verticais (pv), pela Teoria de Coulomb, em um ponto do 
tardoz situado a uma profundidade Z, são obtidos através das Equações 2.1 e 2.2 abaixo: 
 
 
Zhph ..γλ= Eq. 2.1 
 
Zvpv ..γλ= Eq. 2.2 
 
 
 
 
11 
Onde, 
 
ph – pressão horizontal; 
pv – pressão vertical; 
γ – peso específico do solo 
Z – altura do Solo; 
λh – coeficiente de Empuxo Ativo horizontal; 
 Eq. 2.3 
 
λv - Coeficiente de Empuxo Ativo vertical; 
 
 Eq. 2.4 
 
Onde ainda, 
 
α – ângulo do paramento com a horizontal; 
δ – ângulo de atrito entre solo e paramento; 
φ – ângulo de atrito interno do solo; 
β – ângulo do talude feito pelo solo. 
 
No caso de se considerar coesão do solo, temos (como mostra a Equação 2.5) para a pressão 
horizontal: 
 
δλλγ cos...2.. hchZPh −= Eq. 2.5 
 
Onde c é a coesão do solo. 
 
A força que representa o empuxo ativo (Ea) atuante na estrutura é obtida integrando-se a pressão 
obtida, através das Equações 2.1 a 2.5, ao longo da altura (Z). Sendo assim temos, conforme a 
Equação 2.6: 
 
∫=
Z
dZphEa
0
. Eq. 2.6 
 
De forma simplificada, a resultante do empuxo ativo horizontal (Eh) pode ser obtida através da 
relação apresentada na Equação 2.7, abaixo: 
 
 
2
..
2ZkaEa γ= Eq. 2.7 
 
 Onde, 
 
 ka = tg2(45- φ/2); 
 
φ – ângulo de atrito interno do solo. 
 
 
12 
2.1.2.2 – Empuxo Passivo 
 
Segundo CEMIG (1994), em condições que o movimento da parede de contenção empurra o 
terrapleno, de modo que o volume destinado a romper tende a subir, e assim os esforços 
cisalhantes são mobilizados somando-se ao peso do volume arrimado, os empuxos são 
obviamente aumentados por motivo das deformações cisalhantes geradas, resultandoa condição 
de Empuxo Passivo. 
 
O cálculo do Empuxo Passivo é feito de forma similar ao Ativo, bastando apenas, no cálculo da 
pressão atuante em uma altura Z, mudar o sinal do ângulo de atrito interno do solo (φ). 
 
No caso de se considerar a coesão do solo, temos: 
 
 δλλγ cos....2.. hchZPh += Eq. 2.8 
 
Da mesma forma que o empuxo ativo, a força que representa o empuxo passivo (Ep) pode ser 
obtida integrando-se a pressão obtida ao longo da altura (Z). Assim temos, conforme a Equação 
2.9: 
 
∫=
Z
dZphEp
0
. Eq. 2.9 
 
De forma simplificada, a resultante do empuxo passivo horizontal (Eh) pode ser obtida através 
da relação apresentada na Equação 2.10, abaixo: 
 
 
2
..
2ZkpEp γ= Eq. 2.10 
 
 Onde, 
 
 kp = tg2(45+ φ/2); 
 
φ – ângulo de atrito interno do solo 
 
 
2.1.2.3 – Empuxo em Repouso 
 
Os empuxos na condição de repouso em terraplenos homogêneos serão calculados utilizando-se 
as expressões do método das cunhas de Coulomb. Porém utilizando um ângulo de atrito reduzido 
φ’, dado pela expressão proposta por Myslivec. 
 






−
= )2(sen '
1-
ϕ
ϕϕ
sen
sen
 Eq. 2.11 
 
Conforme CYPE (2007), a pressão relacionada ao empuxo de repouso (Prep) é obtida pela Teoria 
de Jaky e calcula-se conforme a Equação 2.12 a seguir: 
 
 
 
 
13 
KrepZep ..Pr γ= Eq. 2.12 
 
Onde, 
 
Krep = 1- sen(φ); 
 
γ – peso específico do solo; 
 
Z – altura do solo. 
 
2.1.3 – Empuxos d´Água 
 
Os empuxos hidrostáticos são solicitações que atuam nas estruturas hidráulicas devido 
essencialmente a altura (nível) d´água em relação a uma elevação de referência (datum). A 
determinação do módulo do empuxo d´água pode ser obtida através da integração da função 
pressão (Equação 2.13) ao longo da altura considerada. 
 
 zwzP .)( γ= Eq. 2.13 
 
 Onde, 
 γw – Peso específico da água (1,0 tf/m3); 
 z – Diferença de cota entre as elevações do nível d´água e de um datum de referência. 
 
Desta forma, o empuxo d´água (Ew) fica definido como: 
 
 ∫=
z
dzzPEw
0
)( Eq. 2.14 
 
USBR (1987) cita que os carregamentos das elevações d´água são obtidos através de estudos 
hidrológicos e estes por sua vez determinam as elevações notáveis referentes ao volume de água 
a montante da estrutura. 
 
O mesmo é abordado pelo USACE (2005) que discorre que todas as condições de carregamentos 
hidrostáticos são baseadas em informações hidrológicas que fornecem as elevações médias de 
água em função de períodos de retorno. 
 
Os níveis notáveis d´água em relação a uma estrutura hidráulica são ilustrados na Figura 2.2 a 
seguir. 
 
 
 
 
14 
 
Figura 2.2 – Níveis notáveis d´água representados na estrutura hidráulica. 
 
 
Segundo NAGHETTINI (1999) os níveis notáveis em uma estrutura são: 
 
 
- NA Normal: cota máxima até a qual as águas se elevam, nas condições normais de 
projeto; 
 
- NA Mínimo Normal: cota mínima até a qual as águas se abaixam, em condições 
normais de operação. 
 
- NA Máximo Maximorum: cota máxima até a qual as águas se elevam quando da cheia 
máxima calculada. 
 
O USACE (2005) estabelece os níveis notáveis conforme abaixo: 
 
 - Coincidente Pool: representa a elevação de água que será utilizada para a combinação 
com eventos sísmicos. É a elevação que se espera que a água estará, ou abaixo, durante a metade 
do tempo a cada ano; 
 
 - Normal Operation: no passado, o carregamento da condição normal de operação era 
usado para descrever carregamentos com várias probabilidades de ocorrência, incluindo eventos 
raros com longos períodos de retorno. Para estar coerente com o Quadro 2.1, as circunstâncias de 
operação normal, agora definidas, como a máxima condição de carregamento com um período de 
retorno de dez anos. Em estruturas de Casa de Força, a elevação será razoavelmente elevada para 
a condição de operação normal, enquanto quando ocorrer algum controle de cheia na barragem, a 
elevação será abaixada para condição de operação normal. Para projetos da navegação, o 
carregamento máximo para a operação normal pode corresponder à elevação usual da navegação, 
combinado com a mais baixa elevação esperada para um período do retorno de dez anos. Os 
carregamentos d´água definidos pela condição de carregamento da operação normal são 
combinadas às vezes com outros tipos de eventos (tais como impactos da barca). 
Normal, J 
FLUXO 
 
 
15 
 - Infrequent Flood: a Infrequent Flood (IF) representa as elevações de superfície da água 
ou da elevação de cheia associadas com os eventos de período do retorno de não mais que 300 
anos (probabilidade anual de 0,33%), fazendo IF um carregamento incomum pelo Quadro 2.1. 
Esta condição de carregamento substitui carregamentos tais como a água acima das comportas 
dos spillways. Substitui também a elevação da cheia do projeto (elevação da crista menos 
freeboard) usada para o projeto e a avaliação dos muros alas. 
 
 - Probable maximum flood: a Probable maximum flood (PMF) é a que tem as 
características do pico de cheia, do volume e do hidrograma que são considerados conservadores 
em uma determinada localização, baseada em análises hidro-meteorológicas relativamente 
detalhadas de precipitação, derretimento da neve e fatores hidrológicos favoráveis para uma 
cheia máxima da inundação. A condição de carga de PMF representa a condição hidráulica mais 
severa, mas por causa dos efeitos possíveis overtopping e de tailwater, não pode representar a 
condição de carregamento estrutural mais severa, que é representada pela inundação máxima do 
projeto descrita abaixo. Conseqüentemente, a condição de PMF não será examinada 
necessariamente para a estabilidade estrutural. 
 
- Maximum design flood: maximum design flood (MDF) é a designação usada para 
representar a condição de carregamento estrutural máxima (considerando o fator mínimo de 
segurança) e deve ser determinada para cada estrutura ou para cada elemento da estrutural. A 
MDF pode ser elevada para PMF. Para floodwalls, MDF é usada geralmente quando o nível de 
água está ligeiramente acima da cota mais elevada do muro. A elevação até níveis de água mais 
elevados resultaria em níveis de água levantando-se no lado protegido, assim reduzindo as forças 
laterais líquidas. A mesma situação pode ser verdadeira para represas, mas overtopping 
frequentemente significativo pode ocorrer sem aumentos significativos em níveis máximos. O 
coordenador do projeto deve consultar o coordenador da hidráulica para pesquisar as 
combinações possíveis do headwater e do tailwater e seus efeitos na estrutura. Algumas 
estruturas (tais como vertedouros ou bacias de dissipação) são carregados diferentemente dos 
elementos principais da represa. Para tais elementos, as condições diferentes do fluxo produzirão 
o carregamento estrutural máximo. Quando não for óbvio o carregamento, o fator de segurança a 
ser adotado será o mais baixo. O deslizamento é a modalidade de falha mais provável para a 
maioria de estruturas de gravidade, e assim, a MDF pode geralmente ser usada para determinar 
as máximas forças de escorregamento. Entretanto, devido às condições de subpressão variável, 
um esforço de escorregamento menor poderia ser utilizado com fator segurança mais baixo. Uma 
vez que o MDF é determinado, deve ser classificado como usual, unusual, ou extreme pelo 
Quadro 2.1. baseada em seu período do retorno. 
 
Quadro 2.1 - Condition Probabilities - Fonte: USACE (2005) 
 
 
 
 
16 
USACE (1995) menciona que os carregamentos the headwater e tailwater atuantes em barragens 
são determinados pela hidrologia, meteorologia e estudos de controle de volume do reservatório. 
A freqüência de variação dos diferentes níveis serão necessárias pra determinar os cálculos comas várias condições de carregamento. 
 
Ainda segundo USACE (1995), a pressão hidrostática contra uma barragem é função da altura d 
água e às vezes na unidade de peso. Nos casos em que ocorrerem jato de água, estes exerceram 
pressão sobre a estrutura. Normalmente, estas forças são negligenciadas na análise de 
estabilidade, prática esta não aconselhável. 
 
CEMIG (1994) define os níveis d´água conforme abaixo: 
 
- Nível Máximo Normal no Reservatório: nível de água máximo no reservatório (ou 
estrutura) para fins de operação normal da usina (ou estrutura);. 
 
 - Nível Mínimo Normal no Reservatório: nível de água mínimo no reservatório (ou 
estrutura) para fins de operação normal da usina (ou estrutura); 
 
 - Nível Máximo de Enchente no reservatório: nível máximo atingido no reservatório 
resultante da passagem da cheia de projeto da barragem em condições de operação dos órgãos 
extravasores como definido no projeto; 
 
 - Nível Máximo Operativo no Canal de Fuga: nível de água a jusante da Casa de 
Máquinas para a vazão correspondente ao somatório dos engolimentos máximos de todas as 
turbinas; 
 
 - Nível Mínimo Operativo no Canal de Fuga: nível de água a jusante da Casa de 
Máquinas para a vazão correspondente ao engolimento nominal da máquina de menor 
capacidade; 
 
 - Nível Mínimo no Canal de Fuga: nível mínimo de água a jusante da Casa de Máquinas 
com vazão nula através das turbinas, com os órgãos extravasores liberando a vazão mínima 
garantida. 
 
 - Nível de Máxima Enchente no Canal de Fuga: nível de água a jusante da Casa de 
Máquinas resultante da passagem da cheia de projeto da Casa de Máquinas; 
 
 - Nível de Máxima Enchente a Jusante da Barragem: nível de água imediatamente a 
jusante da barragem resultante da passagem da cheia de projeto; 
 
 - Nível Mínimo a Jusante da Barragem: nível mínimo de água que pode ocorrer a jusante 
da barragem; 
 
 - Nível de Máxima Enchente a Jusante do Vertedouro: nível máximo de água a jusante do 
vertedouro resultante da passagem da cheia de projeto da barragem; 
 
 - Nível Mínimo a Jusante do Vertedouro: nível mínimo de água a jusante do vertedouro 
sem vertimento, considerando, quando houver, a influência da vazão nominal de uma máquina 
pelo Canal de Fuga. 
 
 
 
17 
De forma geral, todos os critérios relacionam os esforços de empuxo d´água com a elevação dos 
níveis notáveis. Assim o carregamento de empuxo hidrostático fica determinado utilizando-se a 
Equação 2.14. A Figura 2.3 ilustra os carregamentos de empuxo em uma situação semelhante a 
apresentada na Figura 2.2. 
 
Figura 2.3 – Representação dos esforços de empuxo hidrostáticos para os níveis notáveis. 
 
2.1.4 – Subpressão 
 
A subpressão, pressão d´água no plano da fundação, pode ser entendida como um esforço 
ascendente proveniente da percolação da água através do maciço da fundação, seja ela de 
concreto, rocha ou solo. 
 
Segundo LEVIS (2006) até o final do século XIX, este esforço não era levado em consideração 
ao se projetar uma estrutura hidráulica. Os cálculos de estabilidade da Barragem de Vérut, na 
França, é um exemplo. Foi somente após o acidente de Bouzey, em 1895, que Maurice Levy 
indicou as pressões de água instaladas na rocha e a força de subpressão atuante sob a fundação 
da barragem como causas da catástrofe. 
 
É comum encontrar na literatura técnica a nomenclatura de Upflit Load ou seepage, designando a 
subpressão. USACE (1995) define a upflit como uma força ativa que mais irá influenciar na 
análise de estabilidade e na pressão na fundação. Esta pressão varia ao longo do tempo e está 
ligada às condições de contorno e permeabilidade do material. A Figura 2.4 apresenta a 
ilustração das condições limites de contorno e a Figura 2.5 o fluxo d´água abaixo de uma 
estrutura. 
 
A determinação da subpressão ao longo da base da estrutura está relacionada com a 
permeabilidade do material constituinte da fundação e a ocorrência de fraturas na rocha de 
fundação. Diversas são as contribuições acerca desta determinação, principalmente as feitas por 
Casagrande (1937), Cedergren (1967), Harr (1962) e EPRI (1992) conforme mencionado por 
USACE (2005). 
 
 
FLUXO 
 
 
18 
 
Figura 2.4 – Exemplo de condições de contorno – Fonte: USACE (1993) 
 
 
 
Figura 2.5 – Ilustração do fluxo de água na fundação de uma barragem – Fonte: USACE (1993) 
 
Ainda que a permeabilidade do material esteja relacionada ao fluxo e à pressão ascensional da 
d´água, a conhecida Lei de Darcy nem sempre pode ser utilizada para análise. GRISHIN (1982) 
menciona que a seepage através da fundação de rocha não segue a Lei de Darcy como água 
percolando, principalmente através de fraturas que podem começar a ser preenchidas por 
pequenas partículas de rocha. Mas determinadas fraturas permanecem abertas por não serem 
preenchidas com o material. 
 
Ainda segundo GRISHIN (1982), a teoria do movimento potencial das águas em terra não é 
aplicável às rochas, sendo válida apenas quando considerando uma massa grande da rocha e 
havendo um mosaico de finas rachaduras. 
 
CEMIG (1994) coloca que, para a avaliação da subpressão, no contato concreto/fundação, serão 
consideradas as condições de percolação pela fundação diretamente influenciadas pela condição 
geológica e pelos elementos de impermeabilização e de drenagem projetados, com as eficiências 
que lhes caibam atribuir nas posições e intensidades adotadas. O diagrama de subpressão será 
considerado atuante em 100% da superfície de contato da fundação e nas diferentes hipóteses de 
carregamento. 
 
 
19 
2.1.4.1 – Determinação da Subpressão 
 
Devido a todas estas condições, a determinação da subpressão se coloca como uma tarefa não 
muito fácil, principalmente quando não são realizados em campo ensaios de permeabilidade, 
medições piezométricas e ensaios de perda d´água. Assim, diversos órgãos técnicos ao longo dos 
anos e de experiências, desenvolveram metodologias para a obtenção da subpressão, os 
chamados critérios de subpressão. 
 
Segundo ANDRADE (1982), a primeira hipótese para estabelecer a subpressão atuante em uma 
barragem foi proposta por Lieckfeldt em 1898. Nela o diagrama de subpressão se apresenta em 
forma retangular (Figura 2.6-a). Posteriormente, Levy em 1899, propôs um diagrama onde a 
subpressão se estabelecia linearmente de montante para jusante (Figura 2.6-b). 
 
 
 
Figura 2.6 – Primeiros diagramas de subpressão propostos. (ANDRADE, 1982) 
 
SCHEREIBER (1977) discorre, se tratando de barragens, que a subpressão corresponde à altura 
do nível d´água na represa no paramento de montante e o nível d´água de jusante. A pressão 
d´água a montante é reduzida, geralmente, por injeções e drenagem. A redução da pressão pela 
drenagem podem ser determinada por pesquisas, no campo, durante a elaboração do projeto. 
Medições em barragens existentes mostram reduções de 40 a 60 %. 
 
MASON (1988) cita que, com base em numerosos estudos teóricos e medições de subpressões 
em muitas barragens, foram adotados diagramas simplificados por regulamentos de diversos 
países, levando em conta a presença de linhas de drenos ou cortinas de injeção. 
 
LEVIS (2006) apresenta em seu texto uma abordagem sobre os diversos critérios adotados por 
órgãos regulamentadores e estudiosos. A seguir apresentam-se estes critérios: 
(a) 
(b) 
 
 
20 
• CRITÉRIO SUECO: adota o valor de 100% ou 1,0 para os fatores de área e 
intensidade, resultando em um diagrama triangular ou trapezoidal, dependendo do 
nível de jusante. Cortinas de injeção e drenagem não são levadas em 
consideração. 
 
• CRITÉRIO ITALIANO: as subpressões devem decrescer linearmente, desde o 
valor igual à pressão hidrostática no paramento de montante, até uma fração “f” 
desta pressão na linha de drenos e daí até zero ou até o valorigual à carga de 
jusante. O valor da fração “f” varia entre 0,3 e 0,5, dependendo das características 
de permeabilidade da rocha e distância entre drenos. 
 
• CRITÉRIO ALEMÃO: recomenda que, junto à cortina de injeção seja admitida a 
carga do reservatório (diagrama retangular) e, junto aos drenos considere-se um 
fator de redução de pressão de 0,4. 
 
• CRITÉRIO DO USACE: faz considerações de subpressão ao longo da base e na 
fundação. A subpressão age em 100% da base. Sua distribuição depende da 
eficiência dos drenos e da cortina de injeção, onde aplicáveis, e de feições 
geológicas como: permeabilidade da rocha, fendas, falhas e juntas. A subpressão 
em qualquer ponto abaixo da estrutura será a pressão do nível d´água de jusante 
mais a pressão medida com uma ordenada do nível d´água de jusante ao gradiente 
hidráulico entre os níveis de montante e jusante. A Figura 2.7 apresenta as 
hipóteses. 
 
 
 
21 
 
Figura 2.7 – Hipóteses de subpressão USACE - Adaptado LEVIS (2006) 
 
 
 
 
 
22 
• CRITÉRIO DO U.S. BUEREAU OF RECLAMETION: considera a subpressão atuando 
em 100% da área da base e um fator de intensidade de 1/3 da carga hidrostática imposta à 
estrutura na linha de drenos, Figura 2.8. 
 
 
Figura 2.8 – Hipótese de subpressão U.S.B.R – Adaptado LEVIS (2006) 
 
 
Ainda segundo LEVIS (2006), GUIDICINE e ANDRADE (1983), baseando-se principalmente 
na observação de barragens brasileiras fundadas em basalto, acreditam que hipóteses de 
subpressão como as do USACE e do USBR mostram-se muito distanciadas do comportamento 
efetivo dos protótipos e se revelaram sempre muito conservadoras, sobretudo ao serem aplicadas 
a estruturas dotadas de dispositivos múltiplos de drenagem. Este fato levou vários autores a 
elaborarem novos critérios de subpressão, como os posteriormente apresentados. 
 
• CRITÉRIO DE CRUZ E SILVA (1978): adotam um método observacional, para 
introduzir um critério para emprego em fundações basálticas de estruturas tipo gravidade 
e para os horizontes de percolação preferencial neles contidos. Nas 23 estruturas 
observadas, a envoltória correspondente a uma eficiência de drenagem de 67% cobre 
mais de 90% dos casos de 100% das barragens. A partir de uma análise detalhada do 
comportamento dos piezômetros locados em pontos estratégicos, com relação à posição 
de cortinas de vedação e linhas de drenagem, concluem pela inexistência de efeitos 
devidos à formação de “fendas de tração” e propõem a adoção de um critério de 
coeficiente de perda de carga a montante (Figura 2.9). O diagrama de empuxos, devidos a 
subpressão, à montante sofre reduções graduais, à medida que o plano de análise se 
aprofunda para o interior do maciço rochoso. O diagrama de subpressão também sofre 
reduções, em virtude destas perdas de cargas que o maciço propicia. 
 
 
 
23 
 
Figura 2.9 – Critério de Cruz e Silva (1978) - Adapatado – LEVIS (2006) 
 
 
24 
 
• CRITÉRIO DE CRUZ E BARBOSA (1981): utilizam observações de obras no Brasil e 
no exterior para apresentar critérios para determinação de subpressão no contato 
concreto-rocha e em planos de fraqueza estrutural existente na rocha de fundação de 
barragens concreto-gravidade (Figura 2.10). 
 
 
- a - 
 
 
 
25 
 
 
- b - 
 
Figura 2.10 – Critério CRUZ E BARBOSA (1981) - Adapatado – LEVIS (2006) 
 
 
• CRITÉRIO DE AZEVEDO (1993): esse autor também analisou a subpressão em 
fundações em rochas basálticas, na barragem de Taquaruçu, chegando ao diagrama de 
subpressão apresentado na Figura 2.11. 
 
 
 
26 
 
 
Figura 2.11 – Critério AZEVEDO (1993) - Adapatado – LEVIS (2006) 
 
• CRITÉRIO DE CRUZ (1996): Cruz apresenta, em seu livro, esquemas de redução de 
subpressão numa feição permeável de uma barragem de concreto hipotética apoiada em 
rocha, considerando casos de tratamento somente com drenagem, somente com injeção e 
com drenagem e injeção, para uma ou duas galerias (Figura 2.12). 
 
 
27 
 
Figura 2.12 – Critério de CRUZ (1996) - Adapatado – LEVIS (2006) 
 
 
28 
Esse autor ainda mostra (Tabela 2.1) os valores das subpressões totais no plano da 
descontinuidade, e as reduções previstas para os vários tratamentos, considerando eficiência de 
100% (teórica) e 67% (comum em critérios de projeto). Para as vazões, admitindo gradiente 
linear na fundação para a condição sem tratamento, pode-se estimar a redução ou o aumento das 
vazões resultantes dos tratamentos. 
 
Tabela 2.1 – Subpressões e Vazões Relativas ao Critério de Cruz, 1996 
 
Adapatado – LEVIS (2006) 
 
 
• CRITÉRIO DA ELETROBRÁS (2001): a ELETROBRÁS elaborou critérios, com o 
auxílio do Comitê Brasileiro de Grandes Barragens, de modo a tentar uniformizar os 
utilizados no Brasil. Para tanto, seguiu-se o molde do USBR. A seguir (Figura 2.13) 
apresentam-se os principais critérios. 
 
 
 
 
29 
 
Figura 2.13 – Critério de Subpressão ELETROBRÁS - Adapatado – LEVIS (2006) 
 
 
 
 
30 
Quando da ocorrência de estruturas com diferentes níveis de fundação, um critério de subpressão 
a ser adotado pode ser o apresentado na Figura 2.14 abaixo. Nesse o diagrama final de 
subpressão é uma composição dos diagramas de cada nível da base. 
 
 
Figura 2.14 – Diagrama de subpressão para níveis diferenciados de fundação. 
 
 
 
 
 
 
31 
2.1.5 – Esforços Sísmicos 
 
USACE (2005) define que os carregamentos sísmicos são usados de forma a representar um 
efeito inercial atribuído à estrutura, ao solo e à água do reservatório circundante. 
 
MASON (1988) coloca que, nas regiões susceptíveis a abalos sísmicos, a sua ação deverá ser 
levada em conta. Em geral, adota-se certa fração da aceleração da gravidade, 0,05g, 0,10g ou 
mais, conforme o caso, carregando horizontalmente o maciço de concreto da barragem (ou 
estrutura hidráulica). O sismo provoca também o aumento da pressão hidrostática sobre a face da 
estrutura, o mesmo citado por CEMIG (1994). 
 
O fenômeno completo de terremoto, desde a movimentação errática do terreno até a resistência 
das estruturas a este movimento, é muito complexo. Para as finalidades de projeto, a prática 
comum atual consiste em reduzir este complexo problema dinâmico a um problema equivalente 
de forças estáticas, CEMIG (1944). 
 
SCHEREIBER (1977) coloca que apesar de quase todo território brasileiro pertencer a uma zona 
tectonicamente acalmada, salvo, talvez a região do Alto Amazonas, perto das encostas Andinas, 
aconselha-se levar em conta esforços sísmicos da seguinte maneira: 
 
 - Redução ou acréscimo de 3% no peso da estrutura, conforme a aceleração seja 
ascendente ou descendente. 
 
- Na direção horizontal atua uma força “Fi”, no centro de gravidade da estrutura, dada 
pela Equação 2.15 abaixo: 
 
 )03,0(05,0 PcPcFi ±= Eq. 2.15 
 
 Onde, 
 
 Pc – peso da estrutura. 
 
CEMIG (1994) define que, para estruturas de concreto assentes em rocha, poderão ser 
considerados os esforços assumidos para abalos sísmicos de pequena intensidade, que 
correspondem às acelerações de ah = 0,05g e av = 0,03g, nas direções horizontal e vertical, 
respectivamente, sendo “g” o valor da aceleração da gravidade local. Os esforços estáticos 
correspondentes serão obtidos a partir das expressões fornecidas a seguir, onde P representa a 
resultante de todas as cargas envolvidas. Da mesma forma, considera-se que o ponto de 
aplicação dos carregamentos, concentra-se no centro de gravidade da estrutura. 
 
No caso de análise dos esforços sísmicos atuando no reservatório ou sobre a água, surge uma 
pressão hidrodinâmica no corpo da estrutura, atuando nas faces da mesma e seu valor, segundo 
CEMIG (1994) é dado pela Equação 2.16. 
 
 HwCPd ..γ= Eq. 2.16 
 
 Sendo,Pd – variação da componente normal da carga de água devido ao abalo sísmico; 
 
 
 
32 
 
H
z
H
z
H
z
H
zCmC −+





−= 2(2(.
2
 Eq. 2.17 
 
 Onde ainda, 
 
 Cm – coeficiente adimensional. É o máximo valor de C para uma dada inclinação do 
paramento de montante. Os valore são obtidos no gráfico apresentado na Figura 2.15a. 
 
 γw – peso específico da água; 
 
 Z – adotado 0,05; 
 
 H – profundidade máxima do reservatório; 
 
 z – distância vertical da superfície do reservatório até a seção em estudo. 
 
 
 
Figura 2.15 a - Coeficiente de Pressão Cm – Adaptado CEMIG (1994) 
 
 
Figura 2.15 b – Ações sísmicas sobre estruturas - Adaptado CEMIG (1994) 
 
 
INC
LIN
AÇÃO
 PA
R
A
M
EN
TO
 
 
 
33 
A resultante e o momento a uma profundidade “Z” podem ser calculados pelas expressões 
indicadas nas Equações 2.16 e 2.17. 
 
 zPdHt ..726,0= Eq. 2.16 
 
 
2
..299,0 zPdHt = Eq. 2.17 
 
Os esforços de um reservatório produzidos por abalos sísmicos podem ainda ser estimados 
utilizando a consagrada equação de Westergaard. O USACE (1995) apresenta, como mostrado 
na Equação 2.18, a seguinte formulação: 
 
 
2
..).12/7( hwkhPe γ= Eq. 2.18 
 
 Onde, 
 
 Pe – força hidrodinâmica do reservatório por unidade de comprimento; 
 
kh – coeficiente horizontal sísmico; 
 
 γw – peso específico da água; 
 
 h – altura d´água. 
 
A Figura 2.16 ilustra a pressão hidrodinâmica em uma estrutura baseada na formulação de 
Westergaard. 
 
 
Figura 2.16 – Força hidrodinâmica d´água – USACE (1995) 
 
 
 
 
 
 
34 
2.1.6 – “Wave Loads” 
 
Entende-se por wave load os esforços oriundos do impacto de ondas produzidas principalmente 
em reservatórios. Os esforços produzidos pelas ondas dependem de sua altura, que por sua vez 
está relacionada com a área do reservatório adjacente, orientada na direção do Vento. 
 
O USACE (1995) coloca que os esforços produzidos pelas ondas possuem pequenos efeitos na 
análise de estabilidade da estrutura. Desta forma não será dará uma ênfase maior sobre este tipo 
de esforço neste trabalho. 
 
Uma sistemática para determinação de esforços de ondas pode ser encontrada em SCHEREIBER 
(1977), página 54. 
 
2.1.7 – Cargas Aplicadas 
 
Tratam-se de esforços oriundos de ações como impacto de jatos d´água, impacto de 
equipamentos e impactos de corpos diversos. Podem assim se considerar os esforços de 
equipamentos existentes sobre a estrutura. 
 
2.1.8 - Ancoragens 
 
As ancoragens são utilizadas com o objetivo de acrescentar esforços que contribuem para a 
estabilização da estrutura. 
 
A ancoragem pode ser do tipo Ativa (protendida) ou Passiva, sendo esta última, função do 
aparecimento de minúsculas deformações aceitáveis no maciço. O mecanismo de aderência é 
preponderante no dimensionamento do sistema de ancoragem, sendo então relacionado 
diretamente ao comprimento do embutimento da barra de aço no maciço. 
 
CEMIG (1994) coloca que além do dimensionamento do comprimento da barra de aço a ser 
embutido no maciço, no caso de rocha, deve-se verificar a capacidade do maciço para resistir aos 
esforços de tração transmitidos pelo conjunto de ancoragens. A superfície resistente será 
constituída de um cone, com vértice voltado para o extremo da ancoragem e a geratriz formando 
um ângulo com esta direção. Na falta de dados experimentais, adota-se o valor de 30º. 
 
CEMIG (1994) indica um valor de resistência de uma barra de ancoragem passiva igual a 20 
toneladas, utilizando-se aço com diâmetro de 20.0 mm, CA-50. No entanto, à favor da 
segurança, o mesmo adota o valor de 17 toneladas por barra de ancoragem passiva. 
 
Vale ressaltar que é de extrema importância a realização de testes de arrancamento em campo, de 
forma a se obter parâmetros mais confiáveis para determinação da capacidade das ancoragens 
passivas. 
 
Recomenda-se ainda que as forças resistentes das ancoragens passivas só sejam consideradas nas 
condições de carregamento excepcional e de construção. 
 
A Foto 2.1 mostra a colocação de ancoragens passivas na base de um vertedouro. 
 
 
 
35 
 
Foto 2.1 – Ancoragens passivas para base de um vertedouro. 
 
 
2.1.9 – Outros Esforços Atuantes 
 
Além dos esforços mencionados acima, deve-se ter em mente que outros esforços também 
podem ocorrer, conforme condições locais. Citam-se, abaixo, outros esforços passivos de 
ocorrência, sendo a determinação dos mesmos conforme bibliografias especializadas. 
 
 - Temperatura; 
 
 - Esforços de Retração e Deformações; 
 
 - Pressões de Gelo; 
 
 - Pressões Intersticiais nos Poros do concreto, vide MASON (1988); 
 
- Ações devidas ao Vento – Segundo CEMIG (1994) podem ser determinadas conforme 
NBR-6123 da ABNT. 
 
2.2 – Interação e Interface entre Base e Estrutura 
 
A interação entre a estrutura de base e a estrutura hidráulica se faz muito importante, tendo em 
vista que são necessárias as avaliações de escorregamento da estrutura e de tensões na base. 
 
USACE (1995) ressalta a importância do conhecimento dos parâmetros da base citando a 
interação entre engenheiros de estruturas e geólogos, quando, por exemplo, na determinação do 
módulo de elasticidade da rocha de fundação e dos parâmetros de coesão e ângulo de atrito. 
 
Quando da análise da resistência ao escorregamento de uma estrutura sobre o plano de sua base, 
deve-se levar em conta o ângulo de atrito específico entre as duas superfícies e não o ângulo de 
atrito do material da fundação. Este por sua vez deve ser levado em conta quando da verificação 
 
 
36 
de ruptura do maciço em si. O Quadro 2.2 apresenta valores dos coeficientes de atrito entre 
várias estruturas conforme o tipo de solo, já o Quadro 2.3 apresenta valores de ângulo e 
coeficientes de atrito entre alguns tipos de materiais. 
 
Quadro 2.2 – Valores de coeficientes de atrito conforme tipo de solo 
Fonte: FINE (2005) 
 
 
Quadro 2.3 - Valores de coeficientes e ângulos de atrito entre superfícies 
Fonte: FINE (2005) 
 
 
 
37 
2.3 – Análise de Estabilidade Global 
 
O objetivo da análise de estabilidade é manter o equilíbrio horizontal, vertical, e o equilíbrio de 
rotação da estrutura, USACE (2005), mediante a consideração dos esforços aplicados, das 
condições da fundação e das condições locais do local da Obra. 
 
Para barragens de concreto, o USACE (1995) estabelece as seguintes condições para análise de 
estabilidade mediante os carregamentos considerados: 
 
- que exista uma segurança ao tombamento da estrutura com relação ao eixo da base ou a 
um plano abaixo da base; 
 
- que exista uma segurança ao deslizamento horizontal da estrutura com relação ao plano 
da base ou a um plano abaixo da base; 
 
 - que a capacidade de suporte do concreto e do material da fundação não sejam 
excedidas. 
 
CEMIG (1994) considera que a análise de segurança global de estabilidade deve ser feita para 
todas as estruturas principais; elementos estruturais e sistemas de interação entre fundações e as 
estruturas submetidas aos diversos casos de carregamentos e englobará a análise de estabilidade 
no contato concreto-rocha, a análise de estabilidade em planos inferiores ao da fundação, a 
análise de tensões e deformações, a definição dos coeficientes de segurança (que são definidos 
conforme condição de carregamento) e a verificação entre as tensões atuantes e as tensões 
admissíveis dos materiais. 
 
Ainda segundo CEMIG (1994) a análise de estabilidade é feita considerando a estrutura como 
um conjunto monolítico, podendo desse modo ser assimilada a um corpo rígido. Os estudos de 
estabilidade devem comprovar a segurança das estruturas nas seguintes condições:- deslizamento em qualquer plano, seja da estrutura, seja da fundação; 
 
 - tombamento; 
 
 - flutuação; 
 
 - tensões na base da fundação e na estrutura; 
 
 - estabilidade elástica (flambagem); 
 
 - deformações e recalques; 
 
 - vibrações. 
 
2.3.1 – Tombamento 
 
A estabilidade ao tombamento é calculada aplicando todas (conforme combinação em análise) as 
forças verticais e horizontais atuantes e então obtem-se os momentos estabilizantes (Me) e os 
desestabilizantes (Md), em relação a um ponto ou eixo de referência. 
 
 
 
38 
Entende-se como momentos estabilizantes os provenientes das forças estabilizantes, que por sua 
vez se tratam dos esforços que contribuem para o “não tombamento” da estrutura. De forma 
análoga, porém contrária, definem-se os momentos desestabilizantes. A Figura 2.17 ilustra 
esforços estabilizantes e desestabilizantes. 
 
 
Figura 2.17 – Ilustração dos esforços estabilizantes e instabilizantes. 
 
 
2.3.1.1 – Coeficiente de Segurança Tombamento 
 
O coeficiente de segurança ao tombamento (CST) em relação a um eixo ou ponto de referência 
qualquer, é definido como o quociente entre o somatório dos momentos estabilizantes (Me) e o 
somatório dos momentos desestabilizantes (Md), conforme mostrado na Equação 2.19 abaixo. 
 
∑= Md
MeCST Eq. 2.19 
 
Os esforços (efeitos) estabilizantes provenientes de coesão e de atrito deverão ser desprezados 
nas superfícies em contato com a fundação. 
 
Coeficientes de segurança relativos ao tombamento são apresentados no Anexo 1. 
 
 
 
FLUXO 
 
 
39 
2.3.2 – Deslizamento 
 
Mediante a combinação de esforços verticais e horizontais, a estrutura hidráulica pode, quando 
não ocorrer o equilíbrio das forças horizontais, sofrer um deslocamento ao longo do plano de sua 
base ou de um plano de fratura da fundação. 
 
Segundo USACE (1995) a análise ao deslizamento é baseada no critério do Equilíbrio Limite, 
onde a força necessária para desenvolver o equilíbrio é determinada assumindo uma superfície 
de ruptura. Esta por sua vez ocorrerá ao longo de uma superfície de falha presumida quando 
aplicada uma força horizontal (T) excedente à força horizontal resistente (Tf). 
 
CEMIG (1994) define que, para a verificação da estabilidade das estruturas ao deslizamento, 
devem-se selecionar as superfícies de ruptura de modo a incluir todos os planos de menor 
resistência possível, ou os submetidos a tensões críticas ou os da fundação e os do contato da 
base. Devem-se ainda utilizar como valores básicos, os parâmetros geomecânicos extraídos dos 
resultados de investigações e ensaios preliminares. 
 
Ainda conforme CEMIG (1994) deve-se levar em conta os seguintes itens: 
 
- sempre que uma superfície de deslizamento interceptar trechos onde os parâmetros 
geomecânicos (atrito e coesão) são diferentes, a segurança ao deslizamento da estrutura deve ser 
calculada para cada trecho, admitindo-se que há ruptura de cisalhamento nos trechos onde o 
coeficiente de segurança necessário não é alcançado. Neste caso é preciso recalcular o trecho 
admitindo-se que o mesmo não tenha resistência residual de coesão (c = 0), e que seu ângulo de 
atrito seja o correspondente a condição residual (pós-ruptura). 
 
- o excesso de tensão de cisalhamento não absorvido pelo trecho deve ser transferido às 
partes remanescentes da superfície de deslizamento, recalculando-se a segurança ao 
deslizamento para cada trecho, e assim sucessivamente até que se satisfaçam os critérios ou se 
verifique a necessidade de se introduzir modificações no conjunto estrutura-fundação. 
 
- devem sempre verificar a compatibilidade de deformações entre os diferentes materiais, 
conforme o nível de solicitação atingido. 
 
2.3.2.1 – Coeficiente de Segurança Deslizamento 
 
A estabilidade ao deslizamento (escorregamento) é baseada eu um fator de segurança que é 
determinado em função da relação de resistência e interação entre a base da estrutura e a 
fundação. 
 
O coeficiente de segurança ao deslizamento (CSD) pode ser obtido relacionando a tensão 
resistente (τr) na superfície de contato com a tensão atuante (τ), através de um quociente, 
entendido também como um fator de segurança (FS). O USACE (1995) apresenta esta relação 
conforme Equação 2.20. 
 
 
τ
ϕσ
τ
τ )tan.( cr
FS
+
== Eq. 2.20 
 
Nesta equação, τr = c+ϕσ tan. , conforme o critério de falha de Mohr-Coulomb, ilustrado na 
Figura 2.18. 
 
 
40 
 
 
Figura 2.18 – Gráfico de resistência conforme critério de Mohr-Coulomb 
 
Analisando uma fatia unitária da fundação, a Equação 2.20 pode ser representada conforme 
Equação 2.21 abaixo. 
 
 
 
T
LcNrFS ).tan.( +== ϕ
τ
τ
 Eq. 2.21 
 
 Onde, 
 
 N – resultante das forças normais ao plano da base; 
 
 c – intercepto coesivo de resistência do solo; 
 
 L – comprimento da base comprimida; 
 
 τr – tensão resistente; 
 
 τ – tensão atuante. 
 
CEMIG (1994) considera que a segurança ao deslizamento está verificada se a relação 
apresentada na Equação 2.22 for atendida. 
 
 
 0,1
.
ö
)(.
≥
∑
∑
+
∑
Ti
CSDc
AiCi
CSD
itgNi ϕ
 Eq. 2.22 
 
 Onde, 
 
 CSDφ – coeficiente de segurança relativo ao atrito; 
 
 CSDc – coeficiente de segurança relativo à coesão; 
 
 Ni – força normal à superfície de escorregamento em análise; 
 
 
41 
 φi – ângulo de atrito característico da superfície de escorregamento, em análise; 
 
 Ci – coesão característica ao longo da superfície de escorregamento; 
 
 Ai – área efetiva de contato da estrutura no plano em análise; 
 
 Ti – resultante das forças paralelas à superfície de escorregamento. 
 
Verifica-se que na relação anterior (Equação 2.22), os coeficientes de segurança estão implícitos 
à equação. 
 
Já para o caso de estruturas com fundação em material não coesivo, CEMIG (1994) estabelece a 
relação apresentada na Equação 2.23. 
 
 
 
Ti
itgNi
CSD
∑
∑
=
)(.
ö
φ
 Eq. 2.23 
 
 Onde, 
 
 CSD – coeficiente de Segurança ao Deslizamento; 
 
 Ni – força Normal à superfície de escorregamento em análise; 
 
 Ti – resultante das forças paralelas à superfície de escorregamento; 
 
 φi – ângulo de atrito característico da superfície de escorregamento, em análise. 
 
 
Similar às equações apresentadas neste item, MASON (1988) determina que o fator de segurança 
ao deslizamento (Fsd) é dado pelo fator resultante dado pela Equação 2.24. 
 
 
 
H
Fc
Ac
F
tgV
Fsd
∑
∑
+
∑
=
..
φ
φ
 Eq. 2.24 
 
 Onde, 
 
 V – forças verticais; 
 
 H – forças horizontais 
 
 φ – ângulo de atrito entre as superfícies; 
 
 c – coesão característica; 
 
 A – área de contato da superfície; 
 
 
 
42 
 Fφ – coeficiente de segurança relativo ao atrito; 
 
 Fc – coeficiente de segurança relativo à coesão; 
 
Alternativamente aos critérios de coeficiente de segurança apresentados acima, o USACE (1981) 
apresenta uma metodologia de cálculo levando-se em conta a influência de fatias (wedges) da 
fundação circundante à estrutura. A Figura 2.19 apresenta uma representação da estrutura e das 
fatias da fundação, já a Figura 2.20 apresenta o diagrama de corpo livre desta e das fatias. 
 
 
 
 
Figura 2.19 – Geometria da estrutura e da fundação circundante. – Fonte: USACE (1981) 
 
 
Figura 2.20 – Diagrama de corpo livre do sistema estrutura/fundação - Fonte: USACE (1981) 
 
 
 
43 
 
Para obter o coeficiente de segurança ao deslizamento o USACE (1981) apresenta dois casos: 
 
 - Primeiro Caso: Single-Plane Failure Surface - A potencial superfície de ruptura é 
definida por um único plano existente entre a estrutura e a fundação. Estasuperfície pode ser 
horizontal ou inclinada, conforme ilustrado na Figura 2.21 abaixo: 
 
 
 
 
Figura 2.21 – Potenciais superfícies de ruptura - Fonte USACE (1981) 
 
 
 - Segundo Caso: Multiple-Plane Failure Surface – Em geral este caso é aplicado à 
situações onde a estrutura está encravada na fundação e a superfície de ruptura é definida por 
dois ou mais planos de falha, conforme ilustrado na Figura 2.22. 
 
 
Figura 2.22 – Múltiplas superfícies de falha – Simplificação para dois planos - 
 
 
 
44 
As equações que determinam os coeficientes são: Equação 2.25 (Primeiro Caso) e 2.26 (Segundo 
Caso) 
 
 
 Eq. 2.25 
 
 
 
 
 
 Eq. 2.26 
 
 
 
 
 
 Onde, 
 
 
 
 Eq. 2.27 
 
 
V – forças Verticais; 
 
H – forças Horizontais; 
 
U – uplift (Geralmente subpressão); 
 
 αi – ângulo de inclinação da base da estrutura e a superfície de ruptura. 
 
No caso da Equação, 2.26 o processo é iterativo, de forma que o fator de segurança FS convirja 
para o mesmo valor de FS estipulado na Equação 2.27. 
 
Coeficientes de segurança relativos ao deslizamento são apresentados no Anexo 1. 
 
2.3.3 – Flutuação 
 
Quando a resultante das forças atuantes na base da estrutura, no sentido vertical ascendente, 
forem maiores que as forças de gravidade, a estrutura pode passar ao estado definido como 
Flutuação. 
 
Nas estruturas em que se prevê a instalação futura dos equipamentos eletromecânicos (turbina e 
geradores) e para outras condições temporárias em que se tem Σ V / Σ U < CSF, deve-se projetar 
sistemas de ancoragens, conforme CEMIG (1994). 
 
Deve-se logicamente, independente da estrutura ter ou não equipamentos instalados, verificar a 
segurança à flutuação da estrutura. 
 
 
 
 
45 
2.3.3.1 – Coeficiente de Segurança Flutuação 
 
O coeficiente de segurança à flutuação (CSF) pode ser obtido através da relação entre o 
somatório dos esforços gravitacionais e o somatório das forças de subpressão. Este é dado pela 
expressão apresentada na Equação 2.28. 
 
 
U
VCSF
∑
∑
= Eq. 2.28 
 
 Onde, 
 
 V – Forças verticais; 
 
 U - Subpressão 
 
Coeficientes de segurança relativos à flutuação são apresentados no Anexo 1. 
 
2.4 – Esforços na Base da Estrutura 
 
A estrutura ao ser solicitada, transfere os esforços à sua base de fundação, fazendo valer a 
capacidade e resistência desta aos esforços de compressão e tração. 
 
Vários são os métodos aplicados para a análise de tensões na fundação e na base da estrutura, 
desde métodos simplificados, baseados na teoria da Resistência dos Materiais até métodos mais 
elaborados como os baseados em Elementos Finitos. 
 
No caso de estruturas como barragens de concreto massa, assentada em rocha, se faz importante 
análises e sistemáticas de cálculos mais elaboradas, considerando a existência de fissuras e a 
deformação tanto do maciço. 
 
Apresentam-se neste item abordagens baseadas na teoria clássica da Resistência dos Materiais. 
 
Em estruturas hidráulicas pequenas e médias, a análise de tensões na base pode ser verificada 
através do método de JASEN e GRISIN, Método da Gravidade, que adotam a teoria clássica da 
Resistência dos Materiais, admitindo contribuições lineares na estrutura e na sua base. As 
máximas tensões na base da estrutura podem então ser obtidas pela Equação 2.29. 
 
 
W
M
A
N ±=σ Eq. 2.29 
 
 Onde, 
 
 N – resultante das forças normais; 
 
 A – área da base; 
 
 M – momento resultante das forças em relação ao centróide da área; 
 
 W – módulo de resistência da área da base. 
 
 
 
46 
OLIVEIRA et al (2002) menciona que as suposições de uma distribuição de tensões pelo Método 
da Gravidade são razoavelmente corretas, desde que os planos horizontais em análise não 
estejam muito perto da base. Com relação à interface entre barragem-fundação, OLIVEIRA 
menciona que as tensões e as fissuras prováveis podem ser afetadas pela deformidade da rocha, 
que não é levada em conta na concepção. 
 
Os valores de tensões máximas de tração e compressão devem ser comparados com os valores 
admissíveis do concreto, da interface concreto-rocha ou de fraturas na fundação. 
 
USACE (1995) especifica que as tensões admissíveis no concreto e na rocha não devem ser 
ultrapassadas. Define que para a condição de carregamento normal, as resultantes das forças 
verticais devem atuar no núcleo central de inércia da seção (100% de base comprimida) e admite 
tração (resultante atuando fora do núcleo central de inércia) nos casos de carregamento 
excepcional. A Figura 2.23 ilustra tal situação. 
 
 
Figura 2.23 – Relação entre a área de compressão da base com a resultante das forças Verticais 
Fonte USACE (1995) 
 
 
47 
CEMIG (1994) determina que: 
 
 - para casos de carregamento normais, as seções nas estruturas permanentes de concreto 
massa, deverão trabalhar à compressão ou com tensões de tração menores que a tensão 
admissível do concreto. Para as seções nas fundações não serão admitidas tensões de tração, 
devendo a resultante dos esforços solicitantes estar aplicada no núcleo central da área da base. 
Na base e em seções na fundação o aparecimento de tensões de tração poderá ocorrer desde que 
fiquem limitados a certos valores e que a estabilidade da estrutura quanto ao tombamento e 
tensão de compressão no terreno, estejam garantidas; 
 
 - nos casos de carregamentos excepcionais e de construção, admitir-se-á que a resultante 
possa estar aplicada fora do núcleo central. Nestes casos deverão ser realizados os procedimentos 
correspondentes à abertura de fissura, que nas seções de concreto dependem de processo 
interativo considerando a modificação do diagrama de subpressões em relação à tensão 
admissível do concreto; 
 
 - nos carregamentos com aplicação do efeito sísmico deve-se considerar que, devido a 
natureza cíclica do fenômeno não haverá aumento da subpressão na situação de fissura aberta. 
 
CEMIG (1994) coloca ainda que a capacidade de carga das fundações está relacionada à tensão 
normal máxima, definida mediante critérios que atendam às condições de ruptura. A tensão 
normal máxima admissível deverá ser obtida a partir da relação apresentada na Equação 2.30. 
 
 
CS
fundCc
admt ,, =σ Eq. 2.30 
 
 Onde, 
 
 σt,adm – tensão admissível; 
 
 Cc, fund. – capacidade de Carga da Fundação; 
 
 CS – coeficiente de Segurança. 
 
Apresenta-se no Anexo 1 valores de coeficientes de segurança relativos às tensões atuantes ou a 
capacidade de carga da fundação. 
 
2.4.1 – Método do Centro de Rotação de Nigam para Estruturas de Gravidade Complexas. 
 
Conforme mencionado anteriormente, a análise de tensões atuantes na base das estruturas 
hidráulicas pode ser feita, quardadas as devidas considerações, utilizando-se da teoria da 
Resistência dos Materiais, principalmente através da relação apresentada na Equação 2.29. 
 
No entanto, estruturas de gravidade rígidas e complexas de gravidade, como é o caso de muitas 
Casas de Força (Figura 2.24), em que se apresentam níveis diferenciados de fundação, é 
conveniente utilizar o método apresentado por NIGAM (1979) em seu tratado de Usinas 
Hidrelétricas. 
 
 
 
48 
 
Figura 2.24 – Representação da seção transversal de uma Casa de Força de geometria complexa. 
 
Segundo MASON (1988), a essência do método baseia-se na hipótese usual de que o movimento 
de uma estrutura rígida pode ser reduzido a uma rotação instantânea, em torno de um centro de 
rotação. A fundação reage linearmente e por reações proporcionais à distância deste centro, 
levando-se em conta a consideração da fundação com comportamento elástico. 
 
Descreve-se aqui o método do centro de rotação de Nigam para estruturas

Continue navegando