Buscar

Tutorial Multisim

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 3, do total de 185 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 6, do total de 185 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 9, do total de 185 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Prévia do material em texto

MULTISIM 
 Iniciando 
 
Esta é a primeira parte do trabalho sobre o MultiSIM2001 e é dirigida para o estudo de 
circuitos em corrente contínua, desta forma os instrumentos e componentes aqui 
descritos são básicos para o estudo e simulação de circuitos em CC. A licença usada 
para fazer este trabalho (fornecida pelo fabricante, Electronics Workbench, através 
do seu representante no Brasil Anacom) tem o texto em inglês, desta forma toda vez 
que for feito referência em inglês o mesmo será colocado em itálico e entre parênteses 
e antes o termo equivalente em português. 
Devemos reiterar mais uma vez que você deve ter conhecimentos mínimos de 
eletricidade para que possa compreender este trabalho.
Atenção !! clicar com o botão do mouse significa clicar com o botão esquerdo, quando 
for necessário usar o botão direito será escrito clicar com o botão direito do mouse.
A Tela de Entrada 
A seguir a tela inicial do MultiSIM2001, que será a interface entre você e o programa. Procure 
entende-la o máximo possível. 
A inicialização do programa deve ser feita clicando no ícone do mesmo ou indo em: 
Iniciar >>> Programas >>>MultiSIM2001. Em seguida será exibida a seguinte tela: 
Figura01: Tela inicial do MultiSIM2001 
 
Construindo um Circuito 
Para construir um circuito, de preferência você já deve ter o rascunho desse circuito. 
Comecemos com um circuito resistivo série como o da figura02.
Exemplo1: Circuito série em CC
 Seja um circuito constituído por duas resistências em série, uma de 3KΩ e outra de 2KΩ, 
alimentado por uma bateria de 15V.. Calcular as tensões nas resistências e a corrente no 
circuito. De acordo com a teoria a resistência equivalente será igual a 5KΩ e, portanto a 
corrente no circuito ser á igual a 15V/5KΩ =3mA e, portanto a tensão em cada resistência 
será igual. 
U1=3mAx3K=9V U2=3mA.2K=6V 
A seguir na figura2 o circuito com os instrumentos (amperímetro e voltímetros) conectados. 
Figura02: Circuito para exemplo1 
 Configurando a Área de Trabalho 
 
Para configurar a área de trabalho, por exemplo mostrar ou não a Grade (grid), colocar 
Limites da Página (Show Page Bounds) e outros itens, você deve clicar com o botão direito 
na área de trabalho, aparecerá um menu onde poderá escolher Mostrar a Grade (Show 
Grid), ou indo no menu Ver (view) selecionar Mostrar a Grade (Show Grid). Experimente. 
 Outra configuração importante é a cor do fundo. Para mudar a cor do fundo e dos 
componentes, clique com o botão direito na área de trabalho, selecione Cor (Color) se abrirá 
uma caixa de seleção da figura3. Nesta caixa você poderá escolher a Cor do Fundo 
(background), Fio (wire) e de cor de Componentes (component). Experimente. 
Figura03: Escolhendo cores de fundo fio e componentes 
Essa mesma caixa pode ser acessada indo em Opções (Options) >> Preferências 
(Preferences) >> Circuito (Circuit). Para deixar as suas modificações como Padrão 
(Default) basta clicar em Colocar como Padrão (Set as Default). Experimente.
Escrevendo na Tela
Caso deseje escrever um texto na área de trabalho vá em Colocar (Place)>>>Colocar 
Texto (Place Text). Em seguida clique na tela e escreva o seu texto. Clicando na área 
de trabalho com o botão direito você também terá acesso a Colocar Texto (Place 
Text). Experimente.
Mudando a Fonte do Texto e das Propriedades do Componente
Clique com o botão direito na área de trabalho em Fonte (Font) aparecerá uma caixa de 
diálogo, figura4, onde você poderá mudar o tamanho e o estilo da fonte do texto, 
identidade de componentes, rótulo e outros. Experimente.
Figura04: Escolhendo a fonte da ID, valor,rótulo,atributos, nome dos pinos, número dos 
nós e do texto
Atenção!! A modificação será executada somente para os itens selecionados.
 Configurando e Inserindo Componentes 
 
Inserindo um Componente 
Caso a caixa de componentes não esteja visível vá em Ver (View)>>> Barra de 
Componentes (Component Bars) >>> Base de Dados do MultiSIM (Multisim 
Databases) 
Figura05: Tornando ou não visível a barra de componentes 
A figura06 mostra as caixas de componentes do MultiSIM2001. Como treinamento abra-
as uma por uma para ver o conteúdo cada . 
Figura06: Caixas de componentes
Inserindo uma Fonte
Abra a caixa de componentes Fontes (Sources), figura07:
 
(a) (b)
Figura07: (a) Caixa de componentes Fontes (Sources) Fechada – (b) Aberta 
 
 Clique em Fonte de Tensão CC (DC Voltage Source), em seguida clique na área de 
trabalho (observe que o ponteiro tem a imagem da fonte), será inserida uma fonte CC. 
Observe que o valor padrão é 12V. Para mudar o valor, dê duplo clique no ícone da 
bateria, se abrirá a caixa de diálogo da figura08. Experimente.
Figura08: Caixa de diálogo Bateria (Battery) 
Girando um Componente 
 
Após ter especificado o novo valor da bateria dê OK. Caso deseje girar o componente 
clique com o botão direito em cima dele, se abrirá a caixa de diálogo da figura09. 
Experimente.
Figura09: Caixa de diálogo para recortar, copiar e girar o componente 
 
Flip horizontal: gira o componente ao redor do eixo vertical 
 
Flip vertical: gira o componente ao redor do eixo horizontal 
 
Gira o componente no sentido horário 
Gira o componente no sentido anti- horário
Configurando a Forma de Retirar Componentes das Caixas
Neste ponto devemos mostrar as diversas opções de retirar componentes das caixas. 
Indo em Opções (Options) >>> Preferências (Preferences), se abrirá uma tela com 
diversas guias (abas), figura10.
l Circuito (Circuit): nesta aba poderemos fazer ajustes de mostrar ou não alguns 
elementos da área de trabalho e cores. 
l Espaço de Trabalho (Workspace): ajustes de dimensões e zoom. 
l Conectar (Wiring): formas de conectar os dois componentes. 
l Componentes (Component Bin): ajuste de simbologia, funcionalidade das caixas de 
componentes e modo de colocar os componentes. 
l Fontes (Font): ajuste do tipo da fonte e onde aplicar. 
l Miscelânea (Miscellaneous): ajuste do tempo de auto salvar. 
Figura10: Caixa de diálogo Preferências (Preferences) com a guia Caixa de 
Componentes (Components Bins) selecionada 
 Obs: É importante lembrar que, caso o projeto tenha como objetivo construir a placa de 
circuito impresso (PCB) usando algum software, como por exemplo o Utiboard, é necessário 
usar componentes padronizados pois os mesmos vêem com a especificação do 
encapsulamento (footprint). 
Na figura10 pode-se selecionar a norma de simbologia usada (ANSI ou DIN) (sugiro manter o 
default, ANSI). Em Funcionalidade da Barra de Ferramentas (Component tools 
funcionality) podemos ter as opções:
l Auto Show parts bins, keep open on clic: Ao passar o cursor sobre a caixa de 
componente ela se abrirá automaticamente, mas a caixa continua aberta (para fechar 
deveremos clicar no x acima à direita da mesma). Experimente 
l Auto Show Only : Ao passar o cursor sobre a caixa de componente ela se abrirá 
automaticamente e após retirar o componente a mesma se fechará automaticamente. 
Experimente. 
l No Auto Show, clic to Open: Para abrir a caixa você deverá clicar no ícone da 
mesma. Após retirar o componente para fechar a caixa você deverá clicar no x 
acima à direita da mesma. Experimente 
Em Modo de Colocar Componentes (Place Component Mode) podemos ter as opções:
l Colocar um componente (Place single component): Neste caso será inserido um 
componente por vez na área de trabalho. Experiment. 
l Colocar continuamente componentes com multiseção somente (Continous 
Placement Multi-section part only): Todasas partes de um componente são colocadas 
seqüencialmente. Por exemplo os CI’s que contém mais de uma porta. A cada clique na 
área de trabalho será colocada uma das secções do CI. Para sair teclar em ESC no 
teclado. Experimente 
l Colocar Continuamente Componente (Continous placement): Os componentes 
são colocados continuamente. Para sair clicar em ESC no teclado. Experimente 
Inserindo os Resistores 
 A forma de inserir resistores é semelhante à usada para inserir a fonte. A diferença é 
que o resistor se encontra na caixa Básicos (Basic), figura11. Insira os dois resistores, 
mudando os seus valores para os especificados na figura02. 
 Observar que existem dois tipos de resistor: o virtual e o com valor fixo padrão. A 
diferença entre os dois é que o primeiro pode ter qualquer valor enquanto o segundo só 
valores padronizados. Sugiro trabalhar com o virtual. O mesmo conceito vale para 
outros componentes.
 
(a) (b) 
Figura11: a) Caixa de componentes Básicos (Basic) – (b) Caixa de componentes 
Básicos aberta 
 Para mudar e girar o resistor o processo é semelhante ao visto para bateria. 
Experimente. A seguir a caixa de diálogo Resistor. 
Figura12: Caixa de diálogo resistor
O posicionamento dos componentes antes de ligar os componentes está indicado na 
figura a seguir.
Figura13: Posicionamento dos componentes antes da conexão 
Configurando, Conectando e Atributos de 
Componentes 
Conectando os Componentes 
 No MultiSIM existem dois modos de conectar os terminais de componentes, manual e 
automático. No modo automático o programa escolhe o melhor caminho para ligar os dois 
terminais. Para escolher entre manual e automático vá em:
Opções (Options)>>>Preferências (Preferences)>>>Conectar (Wiring). 
Figura14: Caixa de diálogo Preferências (Preferences) com a aba wiring selecionada
Dica: Use sempre o modo automático
 Para conectar os terminais de dois componentes, posicione o cursor em um dos 
terminais o mesmo se transformará em uma cruz, figura15. Experimente 
 
Figura15: Ponteiro posicionado no terminal da bateria 
Clique no primeiro terminal e em seguida clique no outro terminal a conexão será feita.
Figura16: Posicionando o ponteiro no terminal do outro componente
 Atenção!! Para mudar a direção do fio de conexão clique na área de trabalho e em 
seguida arraste o cursor na direção desejada. Coloque um terra no circuito (sem ele 
não pode ser feita a simulação).
 
Rótulo, ID e Atributos de um Componente
 Além do valor, outros atributos podem ser dados a um componente tais como: rótulo 
(label), ID (identificação para o programa) e Falha (fault). Na caixa de diálogo Resistor 
Virtual (Virtual Resistor) selecione a aba Rótulo (Label), figura17. Nesta aba além do 
Rótulo (Label) e Identificação (Reference ID) algumas propriedades ou características 
do componente podem ser especificadas (o beta de um transistor por exemplo). A aba 
Falha (Fault) permite escolher uma falha para o componente tal como circuito aberto, 
curto circuito, fuga, etc. 
Figura17: Caixa de diálogo Resistor Virtual com a aba Label selecionada 
 A aba Mostrar (Display) permite que as informações relativas ao rótulo, ID e atributos 
sejam mostradas ou não. Você pode mostrar essas características para somente o 
componente que desejar.
Figura18: Circuito com ID, valor e rótulo do componente visualizados 
Desconectando um Fio 
 Para desconectar dois componentes, é suficiente apagar o fio que os liga. Para isso 
clique com o botão direito em cima do fio aparecerá uma caixa de diálogo como na 
figura19, clique em Apagar (delete), ou simplesmente selecione o fio (clique com botão 
esquerdo) e em seguida clique Delete no teclado. Experimente. 
 
Apagando um Componente 
 Para apagar um componente basta selecionar o componente (clicando nele ou arrastando o 
mouse sobre ele), em seguida clicar em Delete no teclado, ou clicando com o botão direito 
clicar em Cortar (cut), como na figura09. Experimente 
 
Figura19: Apagando uma conexão
Colorindo um Fio 
 Dar cores diferentes para fios ligados em determinados pontos do circuito facilita a 
visualização das funções de cada parte do circuito, principalmente em circuitos digitais. 
Para colorir um fio basta clicar com o botão direito sobre o fio que aparecerá a mesma 
caixa de diálogo da figura19. Selecione Cores (color) que aparecerá a caixa de diálogo 
da figura20. Selecione a cor desejada. Experimente 
 
Atenção, em alguns instrumentos, a cor do fio conectado ao instrumento será a cor do 
resultado da indicação do instrumento. Por exemplo o osciloscópio. 
Figura20: Escolhendo uma cor para o fio 
Também é possível colorir um componente. Clicando com o botão direito em cima do 
símbolo do componente se abrirá a caixa de diálogo da figura09 selecione Cores 
(color). Aparecerá uma caixa semelhante à da figura19. Experimente 
Inserindo Instrumentos e Simulando 
 
Os Nós do Circuito 
 Chamamos de nó ao ponto de conexão de dois ou mais componentes. Os nós são 
importantes do ponto de vista do programa pois é a partir deles que é feita a descrição de um 
circuito. A descrição de um circuito pode ser feita através do esquemático ou através de um 
texto chamado de netlist. O netlist consiste em dizer que componente está conectado entre dois 
nós. Além disso existem algumas analises onde é necessário especificar o nó. 
 
 Os nós de um circuito são numerados a partir de 1 (nó zero por convenção é a referência terra). 
Para visualizar os nós de um circuito clique com o botão direito na área de trabalho, selecione 
Mostrar (Show) em seguida selecione o que deseja mostrar (rótulos,referencia ID, número do 
nó, etc). Experimente. 
( a ) ( b )
Figura21: ( a ) Janela de seleção Mostrar (Show) - ( b ) Mostrando somente os nós de um 
circuito 
 
 
 
Observe na figura21 que todas as outras opções foram desabilitadas. Experimente todas as 
outras opções possíveis e veja o resultado. Experimente. 
 
Inserindo Instrumentos de Medida 
 
A simulação de um circuito consiste em medir correntes, tensões, potências, ver formas de onda e 
outras propriedades de um circuito. No caso do nosso exemplo deveremos medir a corrente e as 
tensões nos resistores, para isso devemos inserir instrumentos adequados. Os principais instrumentos 
usados em CC são: O voltímetro, amperímetro e wattímetro 
Para medir corrente inserimos um amperímetro em série com o circuito. Para medir as tensões 
deveremos inserir um voltímetro entre os pontos de medida (em paralelo). Portanto não esqueça: 
Para inserir o amperímetro devemos abrir o circuito. 
Os voltímetros e amperímetros se encontram na caixa de componentes Indicadores 
(Indicators). 
 
(a) (b) 
Figura22: ( a ) Caixa de componentes Indicadores fechada – ( b ) aberta 
Clicando no amperímetro ou no voltímetro será mostrada uma caixa de diálogo que pede para 
escolher o instrumento na vertical ou horizontal e com uma determinada polaridade. É claro que 
você pode girar o componente caso deseje. Experimente.
( a ) ( b )
Figura23: (a) Amperímetro horizontal e vertical (b) Configurando a resistência interna
Dica1: Colocando o amperímetro diretamente sobre o fio será feita a conexão. Experimente. 
Dica2: Ajustar a resistência interna do amperímetro em 1mOhms (0,001 Ohms) dá maior precisão. 
Experimente. 
Você pode configurar as resistências internas e o tipo de aplicação CC ou CA, para isso basta 
dar duplo clique que aparecerá a caixa de diálogo da figura24b. 
( a ) ( b )
Figura24: (a) voltímetro horizontal e vertical (b) Configurando a resistência interna
 
Resultado de uma Simulação
Após ter configuradoos instrumentos o passo seguinte é a simulação. Para iniciar a simulação 
clique no botão de iniciar simulação (ver figura01). A figura25 mostra o resultado da simulação. 
Experimente.
Figura25: Resultado da simulação do circuito da figura02 
O Multímetro e o Subcircuito 
 
 Nesta página mostraremos o Multímetro do MultiSIM2001 e o Wattímetro. Em relação a outras versões, a principal diferença é que é possível usar mais de 
um multímetro na área de trabalho e o Wattímetro não está disponível em versões anteriores. Também mostraremos como construir um subcircuito.
O Multímetro 
 Como alternativa para os instrumentos usados poderíamos ter usado o multímetro (instrumento com múltipla funções) da barra de instrumentos. É o 
primeiro instrumento da barra de instrumentos. Quando você abre o multímetro ele já vem configurado para usar como voltímetro em CC. Para usar 
como amperímetro, ohmímetro ou decibelímetro devemos fazer a seleção de função como na figura26. 
 
 (a) (b) (c)
Figura26: Multímetro configurado como voltímetro,(a) ícone na barra de instrumentos e (b) visão frontal e (c) ajustes de resistências internas 
 A 
A seguir o mesmo circuito da figura01 após a simulação usando os instrumentos do Multímetro.
Atenção!! Após ser efetuada a simulação, para ver os resultados das medidas você precisa dar duplo clique no ícone do multímetro. 
Figura27: Resultado da simulação do circuito da figura02 usando o Multímetro 
 
O Ohmímetro do Multímetro 
Um ohmímetro é usado para medir resistência. Para usar o multímetro como ohmímetro deveremos ligá-lo como na figura28 a seguir, desligando toda e qualquer 
fonte de alimentação e aterrando um dos terminais
Em seguida é só iniciar a simulação. Experimente. 
Figura28: Multímetro usado como ohmímetro 
 
 
O Decibelímetro do Multímetro 
 Antes de mostrar como usar o multímetro como decibelímetro rapidamente relembremos o conceito de decibel (dB). Dado um circuito no qual de 
define claramente entrada e saída o ganho em dB do circuito é definido como sendo: 
 
Figura29: Quadripolo genérico
Caso Vs >Ve dizemos que houve um ganho, neste caso Ganho(dB)>0
Caso Vs <Ve dizemos que houve uma atenuação, neste caso Ganho(dB)<0
Caso Vs =Ve então Ganho(dB)=0
 Consideremos como exemplo o circuito da figura02 onde temos um divisor de tensão. Seja a tensão de saída em R2 (V2=Vs) que no exemplo 
resultou em 6V portanto de a entrada for a tensão da bateria teremos uma atenuação e o ganho em dB valerá: 
 
O Wattímetro 
 O Wattímetro mede potência (em Watts), medindo também o fator de potência (FP) ou cosseno fi de um circuito. O fator de potência dá uma medida da 
defasagem entre a tensão e a corrente em um circuito. Em circuitos puramente resistivos o FP é 1, isto é, a defasagem entre a corrente e a tensão é zero.
A seguir na figura30 o ícone na barra de instrumentos, o símbolo na área de trabalho e o painel frontal aberto. 
 (a) (b) (c)
Figura30: Wattimetro – (a) ícone na barra de instrumentos – (b) Símbolo ( c ) Wattímetro aberto 
A seguir exemplos de aplicação do Wattímetro. 
Exemplo2: Seja o circuito (12V ligada em 12Ω) no qual desejamos calcular a corrente e a potência dissipada na resistência. 
 
Figura31: Medida de potência em um circuito 
 
 Observe a conexão do Wattímetro na figura31. Como existem duas bobinas, uma de corrente e outra de tensão (ver livro Analise de Circuitos em Corrente 
Alternada - Rômulo Oliveira Albuquerque - Editora Érica), a bobina de corrente estará em série e a de tensão em paralelo com o circuito do qual se quer 
determinar a potência. Experimente
Atenção !! a observação referente à bobina se refere ao instrumento analógico. 
O Subcircuito 
 O conceito de subcircuito tem a finalidade de permitir que se construa circuitos complexos sem que os mesmos sejam visualizados e 
conseqüentemente ocupem espaço na folha de trabalho. Um subcircuito pode ser considerado como uma caixa preta da qual temos acesso aos seus 
terminais, mas podemos modificar o circuito interno. 
Siga os seguintes passos para construir um subcircuito.
Exemplo3:
1. Desenhe o circuito normalmente. Como exemplo consideremos uma resistência ligada em série com uma bateria. 
 
Figura32: Criando um subcircuito – parte 1
2. Vá em Colocar (Place) >>> Colocar entrada/saída (Place input/output). Conecte cada terminal nas extremidades do seu subcircuito.
 
 
Figura33: Colocando os terminais no subcircuito
3. Selecione o circuito (agora com os terminais). Vá em Colocar (Place), selecione Colocar como subcircuito (Place as subcircuit) ou Substituir 
por subcircuito (Replace by subcircuit). Aparecerá a figura34. Dê um nome para o seu subcircuito (No exemplo gerador_real). 
Figura34: Nomeando o subcircuito 
4. Dando OK na caixa da figura34, o seu subcircuito será criado, figura35.
 
Figura35: Subcircuito criado 
 
5. Caso você deseje editar o subcircuito, basta dar duplo clique no seu ícone que aparecerá o quadro da figura36. Neste clique em Editar 
Subcircuito (Edit subcircuit), que o subcircuito voltará a aparecer e então você poderá mudar os valores por exemplo. Experimente
Figura36: Editando um subcircuito construído
Atenção!! Para um subcircuito valem as mesmas regras de conexão de qualquer componente. Para compreender melhor vamos conectar o nosso 
subcircuito a um resistor de 200 Ohms, como na figura37.
http://www.eletronica24h.com.br/Curso%20Multisim2001/Modulo1/aulas/aula05.html (6 de 7)4/12/2006 18:26:43
Aula05
Figura37: Analise de um circuito contendo um subcircuito
Observe que internamente, no subcircuito, temos uma bateria de 9V em série com uma resistência de 100 Ohms, e externamente uma resistência de 
200 Ohms que serão somadas. A corrente resultante será igual 30mA (9V/300 Ohms). O circuito é equivalente ao da figura38.
Figura38: Circuito equivalente ao da figura37 
Mais Componentes
 A seguir mostraremos mais alguns componentes que são essenciais na análise de circuitos em 
corrente contínua. 
Potenciômetro 
 Um potenciômetro tem três terminais e pode ser usado como resistência variável (dois 
terminais) ou como potenciômetro (três terminais). O potenciômetro está na caixa de 
componentes Básicos (Basic). Assim como para o resistor você pode escolher entre o 
virtual (pode mudar o valor) e o com valor padrão. A figura39 a seguir mostra o símbolo do 
potenciômetro. 
Figura39: Potenciômetro 
Com relação à figura39 temos:
l O valor é o valor máximo que pode ter o potenciômetro. 
l Chave (Key) é a letra que você deve usar no teclado para mudar o valor (letra 
minúscula para diminuir e maiúscula para aumentar). 
l Porcentagem (%) é o valor porcentual (em relação ao valor máximo) da resistência entre o 
cursor e uma das extremidades. 
 
 
Aplicação de Circuitos com Potenciômetro 
A seguir na figura40 um circuito de aplicação usando potenciômetro, na figura40a o 
potenciômetro é usado como potenciômetro, enquanto na figura40b é usado como 
resistência variável.
 ( a ) ( b )
Figura40: ( a ) Potenciômetro ( b ) Potenciômetrocomo resistência variável 
Dando duplo clique no símbolo do potenciômetro aparecerá a caixa de diálogo da 
figura41. Nesta poderemos configurar o potenciômetro. 
Figura41: Caixa de diálogo para configurar o potenciômetro 
 Na figura41, em Diminuir (Decrease) selecione a letra minúscula que deseja usar para a ação 
de diminuir o valor da resistência (entre o cursor e uma das extremidades) e em Aumentar 
(Increase) selecione a letra maiúscula que será usada para aumentar o valor da resistência 
( entre o cursor e a mesma extremidade). 
Em Incremento (Increment) selecione de 1% a 99% a variação mínima de resistência a ser 
usada. Por exemplo se o valor do potenciômetro é de 1K, e o incremento é 1% significa que ao 
pressionar a letra de Aumentar/Diminuir a variação será de 10 Ohms (1%de 1000). Experimente.
Exemplo4: Para os circuitos a seguir calcule a mínima e a máxima tensão que o voltímetro pode 
indicar. Em seguida faça a simulação do mesmo. 
 Circuito01 Circuito02 
 
Atenção!! certifique-se de que a janela atual esteja ativa (parte superior onde se encontra o nome 
do arquivo deve estar azul)
Circuito 1 Circuito 1
Calculados Simulados Calculados Simulados 
VMin VMáx VMin VMáx VMin VMáx VMin VMáx 
 
Lâmpada Incandescente 
O MultiSIM2001 tem dois tipos de lâmpadas, real e virtual a diferença entre as duas é que 
a última permite mudar o valor da tensão e da potência. 
 
(a) (b ) ( c ) ( d )
Figura42: (a) Caixa de componentes Indicadores fechada (b) aberta mostrando a lâmpada 
real e virtual ( c ) Símbolo da lâmpada ( d ) Caixa de configuração da tensão e da potência 
Clicando no símbolo da lâmpada (virtual) será aberta a caixa de configuração da figura42d, onde 
é possível escolher a máxima tensão e a máxima potência que lâmpada pode dissipar. Atenção 
que esse é um dos componentes que se danifica ao ser sobrecarregado (aplicar uma tensão 
maior do que a máxima). O outro componente que pode se danificar é o fusível. 
O Fusível 
O fusível é um dos elementos de proteção que existem no MultiSIM2001. Ele se encontra dentro 
da caixa Dispositivos de Proteção (Protection Devices) que por sua vez se encontra dentro da 
caixa Eletro Mecânicos (Electro Mechanical).
 
 ( a ) ( b )
Figura43: (a) Caixa de componentes Eletro Mecânicos (Eletro Mechanical) fechada (b) 
Caixa de componentes Eletro Mecânicos (Eletro Mechanical) aberta mostrando a caixa de 
Dispositivos de Proteção. 
Clicando na caixa de Dispositivos de Proteção será aberta a janela de seleção de 
componentes onde se encontra o Fusível (Fuse).
Figura44: Inserindo um fusível 
Atenção!! O fusível é um dos elementos que podem ser destruídos por excesso de corrente
Chaves
 
 Nesta aula mostraremos um elemento importante nas simulações, que são as chaves. 
Existem diversos tipos, mas todas tem a mesma finalidade: Ligar ou desligar um circuito, 
desta forma tornando a simulação a mais próxima possível da realidade. 
 
Chaves Básicas 
Outro elemento muito usado é a chave. Existem diversos tipos.
Na caixa de componentes Básicos (Basic) existe uma caixa chamada de Chave 
(switch), figura45a. Quando clicamos nessa caixa será mostrada uma lista onde 
aparecem 5 tipos de chaves: 
l Controlada por Corrente (Current Controlled), 
l Controlada por Tensão (Voltage Controlled), 
l Um pólo e duas posições, (SPDT), 
l Um pólo e uma posição (SPST) e 
l Temporizada (TDSW1). 
 
 (a) (b)
Figura45: (a) Caixa de componentes Chaves (Switch) (b) Caixa de componentes 
Chaves aberta 
Destas as mais usada são: um pólo e duas posições e um pólo e uma posição. 
 
Chave de um pólo e duas posições. Dando duplo clique será 
aberta uma caixa de diálogo que solicita que seja digitada uma letra 
ou número do teclado para permitir mudar de posição. A tecla (Key) 
default é a barra de espaço (Space). 
 
Chave de um pólo e uma posição. Para mudar de posição é 
necessário especificar uma chave (Key) no teclado. 
Outros Tipos de Chaves
Outras chaves podem ser obtidas na caixa de componentes Eletromecânicos (Eletro 
Mechanical).
 
(a) (b)
Figura46: (a) Caixa de componentes Eletromecânicos (Eletro Mechanical) (b) Caixa de 
componentes Eletromecânicos (Eletro Mechanical) aberta 
Quando a caixa de componentes Eletromecânicos (Eletro Mechanical) for aberta serào 
mostradas várias outras caixas, dentre estas mostremos apenas as chaves que estão em 
Chaves Momentâneas (Momentary Switches). 
Figura47: Caixa de chaves momentâneas 
A seguir a lista de chaves presentes na caixa Chaves Momentâneas (Momentary Switches).
Push Bottom normal fechado 1 
Push Bottom iluminado de duas posições 
Push Bottom de duas posições 
Push Bottom normal fechado 2 
Push Bottom normal aberto
Todas as chaves permitem usar uma chave (key) do teclado para mudar de posição (a chave 
default é a chave Space). 
Uma chave também interessante é a chave rotativa de 4 posições (4POS ROTARY) que se 
encontra em Contatos Suplementares (Supplementary Contacts). 
Figura48: Chave rotativa de 4 posições 
Você pode usar essa chave para conectar diversas cargas como por exemplo para 
medir a corrente em diversos componentes como na figura a seguir. Experimente.
Figura49: Aplicação da chave rotativa
Circuitos de Aplicação
 Nesta página você encontrará alguns exemplos de circuitos e os arquivos correspondentes. O 
arquivo do circuito se encontra no CD e você poderá fazer o download para uma pasta de onde 
abrirá de dentro do MultiSIM. Procure efetuar os cálculos primeiramente e depois a simulação. 
Tente modificar o circuito ou refaze-lo salvando com outro nome.
Divisor de Tensão com Potenciômetro 
Calcule os limites da tensão entre o curso e o terra: 
a) Valor mínimo (cursor todo para baixo)= _________ 
b) Valor máximo (cursor todo para cima)=__________ 
Para efetuar a simulação abra o arquivo Figura50 e indique os valores simulados: 
Valor mínimo=___________ 
Valor máximo =___________
http://www.eletronica24h.com.br/Curso%20Multisim2001/Modulo1/aulas/aula08.html (1 de 9)4/12/2006 18:27:40
Figura50: Divisor de tensão
 Potenciômetro como Resistência Variável
Calcule os limites da corrente no circuito 
a) Valor mínimo (cursor todo para baixo)= _________ 
b) Valor máximo (cursor todo para cima)=__________
http://www.eletronica24h.com.br/Curso%20Multisim2001/Modulo1/aulas/aula08.html (2 de 9)4/12/2006 18:27:40
Figura51: Potenciômetro usado como resistência variável
Para efetuar a simulação abra o arquivo Figura51 e indique os valores simulados: 
a) Valor mínimo (cursor todo para baixo)= _________ 
b) Valor máximo (cursor todo para cima)=__________
Associação Paralelo de Resistências 
Calcule as correntes no circuito: 
IT=_______ I1=_______ I2=________I3=_______ 
Figura52: Circuito paralelo
Para efetuar a simulação abra o arquivo Figura52 e indique os valores simulados
 
Medindo a Resistência Equivalente de um Circuito 
Para medir a resistência usamos o Ohmímetro, o qual deverá ser inserido com o circuito desligado 
de toda e qualquer fonte. 
Calcule a resistência equivalente do circuito: Req=________
 Figura53: Medindo a resistência equivalente de um circuito paralelo
Para efetuar a simulação abra o arquivo Figura53 e indique os valores simulados
Anote o valor medido: 
 Req=________
 
Medindo Potência e Corrente em Quatro ResistoresPara medir a corrente e a potência em 4 resistores como na figura54 usamos uma chave de 4 
posições.
Figura54: Medindo a potência e a corrente em quatro resistores
Para efetuar a simulação abra o arquivo Figura54 e indique os valores simulados
Medindo Potência e Corrente em Quatro Lâmpadas 
Calcule a corrente consumida em cada uma das lâmpadas 
I1=_________I2=_______ I3=_________I4=______ Use para isso a expressão P=U.I
Figura55: Medindo a potência e a corrente em quatro lâmpadas
 
 
Indique os valores medidos de corrente na simulação:
I1=_________I2=_______ I3=_________I4=______ 
Para efetuar a simulação abra o arquivo Figura55 e indique os valores simulados.
Ponte de Wheatstone
No circuito quando R1.Rv = Rx.R3 a indicação do amperímetro será zero e nessas condições 
podemos determinar o valor de Rx 
Rx=(R1.Rv)/R3
Procedimento: Escolha qual resistência quer medir (Rx1 ou Rx2), para isso use a tecla B do teclado. 
Em seguida varie a Rv ("a" diminue e "A" aumenta) observando o valor doa indicação no 
amperímetro. Quando a indicação for a mínima possível, mude a posição das chaves J1 e J2 de 
forma a usar o Multímetro como Ohmímetro, para isso use a tecla de espaço do teclado. 
Figura56: Medida de resistência usando a ponte de Wheatstone.
Para efetuar a simulação abra o arquivo Figura56 e indique os valores simulados.
Os tópicos vistos não são todos do MultiSIM, mas são suficientes para que se possa estudar 
analisar estudar e construir circuitos em CC.
Exercícios Propostos
1.Determine a intensidade de todas as correntes no circuito usando o multímetro.
2. Substitua o circuito entre A e B por um subcircuito em seguida ligue esse subcircuito em uma 
fonte de 12V e determine a corrente que a fonte fornecerá ao subcircuito usando um multímetro.
Introdução aos instrumentos de medição
 
 Esta é a segunda parte do trabalho sobre o MultiSIM2001 e é dirigida para o estudo de circuitos em 
corrente alternada e eletrônica básica, desta forma os instrumentos e componentes aqui descritos são 
básicos no estudo e simulação de circuitos em CA. A licença usada para fazer este trabalho tem o texto em 
inglês, desta forma toda vez que for feito referência em inglês o mesmo será colocado em itálico e entre 
parênteses e antes o termo equivalente em português. 
Devemos reiterar mais uma vez que você deve ter conhecimentos mínimos de eletricidade e eletrônica 
básica para que possa compreender este trabalho. 
O Gerador de Funções
 Para mostrar como usar instrumentos em corrente alternada vamos partir de um exemplo de um circuito RC 
alimentado por uma tensão senoidal. 
Para obter uma tensão (corrente) alternada (AC) temos duas alternativas: 
1. Podemos usar o Gerador de Funções (GF). 
Um gerador de funções gera diversas formas de onda, principalmente senoidal,triangular e quadrada. A seguir na 
figura01 o ícone e o símbolo do gerador de funções na caixa de instrumentos.
( a ) ( b ) ( c )
Figura01: (a) ícone na caixa de instrumentos (b) Símbolo na área de trabalho (c) Gerador de funções 
aberto 
Como indicado na figura01c são possíveis os seguintes ajustes: 
Freqüência 
São modificados o valor e a faixa.
Figura02: Dois sinais de freqüências diferentes (vermelho 1KHz e azul 4KHz)
Ciclo de Trabalho 
 Só definido para onda quadrada e triangular, podendo variar de 1% a 99%. 
Para a onda quadrada é definido como sendo:
onde TH é o tempo no nível alto e T é o período.
 
( a ) ( b ) ( c )
Figura03: ( a ) onda quadrada com CT=80% ( b ) CT=50% e ( c ) CT=20%
Para a onda triangular é definido como sendo: 
onde T+ é o tempo que a onda fica com inclinação positiva e T é o período.
( a ) ( b ) ( c )
Figura04: ( a ) onda triangular com CT=80% ( b ) CT=50% e ( c ) CT=20% 
Amplitude 
São modificados o valor e a faixa.
( a ) ( b ) ( c )
Figura05: ( a ) Valor de pico onda senoidal ( b ) onda quadrada ( c ) onda triangular
 
Offset 
 Se a uma tensão alternada for adicionada uma tensão CC, ela passa a ter um offset (deslocamento), o qual 
pode ser positivo ou negativo. 
São modificados o valor (positivo e negativo) e faixa. A figura a seguir mostra as três situações possíveis: sinal 
sem offset (0V), com offset positivo (4V) e com offset negativo (-4V). A seguir, uma tensão senoidal de 2V de 
pico é submetida a diferentes valores de offset.
( a ) ( b ) ( c )
Figura06: ( a ) onda senoidal sem offset ( b ) com 4V de offset ( c ) com -4V de offset
 
Ajustar Tempos de Subida/Descida (Set Rise/Fall Time) 
 O tempo de subida é definido somente para onda quadrada oseu valor default é 1.000000e-012s e pode ser 
ajustado, devendo ser menor que 5.000000e-04s. A figura07 mostra uma onda quadrada de f=1KHz 4V de pico 
com tempo de subida/descida igual a 1.000000e-004s (0,1ms).
 
Figura07: Onda quadrada com tempo de subida/descida igual a 0,1ms
A Saída de Sinal
 
 Atenção!! A amplitude especificada é para o sinal obtido entre os terminais + e common ou entre - e common. 
Para o sinal obtido entre + e - a amplitude será o dobro da especificada na caixa Amplitude.
Exemplo1: Ajustemos portanto o GF em 10V de pico e 1KHz (para mudar aponte o cursor para a caixa onde 
está indicado Hz ela se transforma em uma mão, clique mudando para KHz) e o liguemos a um resistor de 1K 
em série com um capacitor de 0,1uF, figura08a. Insira um amperímetro e três voltímetros como na figura08b. Não 
se esqueça de configura-los para medir em CA.
( a )
( b )
Figura08: ( a ) Circuito RC série em CA ( b ) Circuito RC série em CA com instrumentos 
 Compare os valores obtidos com a simulação com os valores calculados (ver livro Circuitos em 
Corrente Alternada Rômulo Oliveira Albuquerque - Editora Érica).
 
 A Fonte de Tensão Alternada Senoidal 
2. A outra alternativa de gerador é usar a Fonte de Tensão Alternada Senoidal (AC Voltage Source) 
que se encontra na caixa de componentes Fontes (Sources). A figura09a mostra o seu símbolo. Dando 
duplo clique no seu símbolo será aberta a caixa de configuração da figura09b. Nessa figura os principais 
ajustes são de amplitude (de pico), valor eficaz (RMS), offset, freqüência e fase inicial (phase). Para os 
outros procure deixar o valor default.
 
( a ) ( b )
Figura09: ( a ) Símbolo da Fonte de Tensão Alternada ( b ) Caixa de configuração
 
 
Atenção !! Para obter os mesmos valores anteriores você deve ajustar a amplitude em 10V ou em valor eficaz 
ajustar 7,07V e freqüência 1000Hz. O circuito resultante é o da figura10.
Figura10: Analisando o circuito com a fonte de tensão alternada senoidal
Observe na figura10 que usamos o amperímetro e o voltímetro da caixa Indicadores.
 
O Osciloscópio
 
 O Osciloscópio 
 É o instrumento usado para medir e visualizar formas de onda de tensão. Permitindo ver até duas formas 
de onda ao mesmo tempo (dois canais de entrada). A figura11 mostra os símbolos usados na barra de 
instrumentos e na área de trabalho.
( a ) ( b )
Figura11: ( a ) símbolo do osciloscópio na barra de instrumentos ( b ) na área de trabalho
Dando duplo clique no símbolo da figura11b será aberto o osciloscópio, figura12.
Figura12:Osciloscópio aberto
 Atenção !! A cor da forma de onda apresentada no osciloscópio depende da cor do fio conectado à 
entrada do mesmo. Use sempre que possível esse recurso.
A seguir a descrição dos ajustes.
Base de Tempo
 Os ajustes na base de tempo permitem controlar a escala do osciloscópio na horizontal (tempo) 
quando Y/T (tensão em função do tempo) é escolhido.
Figura13: A base de tempo (time base)
 
Escala (Scale): Aqui você escolhe a escala do eixo de tempo (horizontal) em segundos. Na figura13 está 
selecionado 10ms/Div.Figura14: Escala horizontal com 10ms/Div
X Position: Provoca deslocamento no eixo horizontal da forma de onda. Os limites são -5 e +5.
Y/T: Quando for feita essa seleção, na tela será mostrada a forma de onda com tensão em função do tempo. 
É o caso mais comum.
A/B: Quando for feita essa seleção, a tela mostrará a composição das formas de onda em A e em B sendo A 
no eixo vertical e B no eixo horizontal.
B/A: Quando for feita essa seleção, a tela mostrará a composição das formas de onda em B e em A sendo B 
no eixo vertical e A no eixo horizontal.
As duas últimas opções são usadas quando desejamos ver figuras de Lissajour.
Como exemplo seja uma forma de onda quadrada com freqüência 200Hz (período 5ms)
( a ) ( b )
Figura15: ( a ) Forma de onda quadrada de 200Hz ( b ) Ajustes da base de tempo
Os Canais de Entrada - Canal A e Canal B
 O Osciloscópio possui dois canais de entrada desta forma sendo possível mostrar até duas formas de onda 
simultaneamente. Os ajuste aqui feitos permitem especificar uma escala para o eixo Y (eixo de tensão), 
posicionar a forma de onda em relação ao zero e escolher como conectar p sinal ao osciloscópio. A figura a 
seguir mostra o osciloscópio conectado a dois GF.
Figura16: Os canais de entrada de um osciloscópio 
As Chaves de Entrada
 O Osciloscópio tem três chaves que permitem selecionar como o sinal é conectado ao amplificador vertical. 
A figura17 mostra de forma simplificada essas chaves.
 
 ( a ) ( b )
Figura17: ( a ) Chaves de entrada do osciloscópio ( b ) esquema elétrico das chaves de entrada
AC: Quando esta opção for selecionada (dar clique no botão correspondente) o sinal será acoplado através 
de um capacitor o que remove qualquer nível DC ( Contínuo) que o sinal tiver. Esta opção adequada para 
ver somente a componente alternada de um sinal, como,por exemplo o ripple de uma tensão retificada. 
DC: Quando esta opção for selecionada o sinal será mostrado por completo (nível DC mais componente 
alternada). É o caso mais comum.
0 (zero) ou GND: Em alguns osciloscópios essa chave vem com o nome de GND. Nessa opção a entrada é 
aterrada.É usada quando desejamos estabelecer a referencia zero. 
Ajustando Adequadamente Volts/Div e Time/Div
 Para obter uma boa visualização da forma de onda é importante fazer ajustes adequados. A seguir 
mostramos isso. Seja um sinal senoidal de freqüência 1KHz e amplitude 10V de pico com diferentes ajustes e 
a forma de onda vista.
 
 ( a ) ( b )
Figura18: ( a ) Forma de onda senoidal 10Vpico/1KHz ( b ) Volts/Div=5V 
Se V/Div é aumentado a forma de onda na tela diminui, diminuindo a precisão da medida. Experimente mudar.
 
 ( a ) ( b ) 
Figura19: ( a ) Forma de onda senoidal 10Vpico/1KHz ( b ) Volts/Div=20V 
Caso Volts/Div seja muito pequeno a forma de onda não aparecerá totalmente na tela impossibilitando a 
medida. 
Experimente mudar.
 
 ( a ) ( b )
Figura20: ( a ) Forma de onda senoidal 10Vpico/1KHz ( b ) Volts/Div=2V 
A seguir diferentes ajustes da base de tempo para a mesma forma de onda. Experimente mudar.
 
 ( a ) ( b )
Figura21: ( a ) Forma de onda senoidal 10Vpico/1KHz ( b ) TimeBase (Time/Div)=50us/Div 
Diminuindo a base de tempo um menor número de ciclos será mostrado na tela, eventualmente impedindo de 
ver a forma de onda. Experimente mudar.
 
 ( a ) ( b )
Figura22: ( a ) Forma de onda senoidal 10Vpico/1KHz ( b ) TimeBase (Time/Div)=2ms/Div 
 
O Gatilho do Osciloscópio (Trigger)
 O nível do gatilho (trigger) determina as condições de inicio da forma de onda na tela. O nível de gatilho é o 
valor da tensão no eixo Y que deve ser cruzado pela forma de onda antes de ser mostrado na tela, varia de -
999KV a +999KV. 
 O gatilhamento é normalmente feito pelo próprio sinal que esta sendo mostrado (gatilho interno) ou pode 
ser usado um sinal externo (gatilho externo) a ser conectado através da entrada T logo abaixo da entrada de 
terra (G). 
 O botão Sing permite visualizar uma única vez a forma de onda na tela. Uma vez atingido o fim da tela, o 
traço não variará mais até que Sing seja apertado novamente. 
O botão Nor é usado para fazer a varredura normal do traço toda vez que o nível de gatilho é encontrado. As 
figuras a seguir mostram diversas formas de onda para diversos níveis de gatilho.
 
Figura23: Forma de onda gatilhada no zero e na borda de subida
 
Figura24: Forma de onda gatilhada com 1V e na borda de subida
 
Figura25: Forma de onda gatilhada no zero e na borda de descida
Os Cursores
 São dois: O cursor 1 (vermelho) e o cursor 2 (Azul) e são usados para medir com precisão tensão, 
diferença de tensão entre os dois cursores, tempo e diferença de tempo entre os dois cursores. A figura 26 
mostra a tela com duas formas de onda e os dois cursores.
 
 ( a ) ( b )
Figura26: Medindo tensão e tempo com os cursores – ( a ) formas de onda ( b) medidas
Com relação à figura26 temos:
T1: Medida de tempo com o cursor 1. Observar que o valor é em relação à origem. 
No exemplo temos T1=762,3µs 
T2: Medida de tempo com o cursor 2. Observar que o valor é em relação à origem. No exemplo temos 
T2=1,8ms 
VA1: Medida efetuada pelo cursor 1 no canal A, No exemplo temos VA1=5V 
VB1: Medida efetuada pelo cursor 1 no canal B, No exemplo temos VB1=3,4V 
VA2: Medida efetuada pelo cursor 2 no canal A, No exemplo temos VA2=5V 
VB2: Medida efetuada pelo cursor 2 no canal B, No exemplo temos VB2=3,4V 
T2 - T1: Diferença de medida de tempo entre os cursores 1 e 2. No exemplo T2 - T1 =1ms 
VA2 - VA1: Diferença de tensão entre os cursores 1 e 2 no canal A. No exemplo VA2 - VA1 =0V 
VB2 - VB1: Diferença de tensão entre os cursores 1 e 2 no canal B. No exemplo VB2 - VB1 =0V
Reverso (Reverse) e Salvar ( Save)
Clicando em Reverso (Reverse) o fundo mudar de cor. Experimente.
Clicando em Salvar (Save) as formas de onda da tela serão salvas como um arquivo ASCII.
Uma alternativa de ajuste para o osciloscópio é especificar o tempo de simulação. Indo em Simular 
(Simulate) >>> Ajuste Padrão dos Instrumentos (Default Instrument Setting) se abrirá a janela da 
figura27, nesta existem vários ajustes que podem ser feitos:
Figura27: Janela de ajustes dos instrumentos
Condições Iniciais (Initial Conditions): Existem quatro opções para especificar as condições iniciais. 
Deixar que as condições iniciais sejam automaticamente determinadas pela simulação, impor condição 
inicial igual a zero, definida pelo usuário e calcular o ponto de operação DC.
Em Analise dos Instrumentos (Instrument Analysis) temos: 
l Tempo Inicial (Inicial time): o mais comum é especificar zero. 
l Tempo Final (End time): o valor default é muito grande em termos de forma de onda significa que a 
mesma ficará se deslocando quando a forma de onda for mostrada na tela em Auto. Para parar você 
pode especificar um tempo final ou usar sing como já explicado anteriormente. 
l Passo de tempo máximo (Maximum time step): é aqui que você especifica a precisão do gráfico. Um 
valor muito pequeno dá uma maior precisão,mas aumenta o tempo de simulação. Um valor grande a 
forma de onda não sairá perfeita. Experimente mudar esse valor para ver o que acontece. 
Para exemplificar consideremos uma tensão senoidal de 1V de pico e freqüência 1KHz (1ms de 
período), com os seguintes ajustes na figura27 e com o osciloscópio ajustado em 200µs/Div. 
Condições Iniciais: Deixar que as condições iniciais sejam automaticamente determinadas pela 
simulação. 
Tempo Inicial: 0 
Tempo Final: 0,001s (1ms) 
A forma de onda aparecerá como na figura28. 
Figura28: Forma de onda para os ajustes especificados acima em Ajuste Padrão dos Instrumentos
O Traçador do Diagrama de Bode (Bode Plotter)
 
 O Traçador do Diagrama de Bode (Bode Plotter) é uma ferramenta que permite obter a 
curva de resposta de um circuito (ganhoxfrequencia), sendo muito útil na determinação da 
freqüência de corte de um circuito e da analise do comportamento do circuito em função da 
freqüência. 
 ( a ) ( b )
Figura29: ( a ) Símbolos do Bode Ploter na caixa de componentes e ( b ) na área de trabalho. 
 
Figura30: Bode Ploter aberto
Na figura26 temos os seguintes ajustes:
l Magnitude: Clicando nesse botão será mostrado o gráfico do ganho em função da 
freqüência. 
l Phase: Clicando nesse botão será mostrado o gráfico da fase em função da 
freqüência. 
l Vertical (com Magnitude Selecionado) 
Log: Clicando nesse botão a escala vertical (Ganho) será especificada em dB (é a 
forma mais usual). 
l Lin: Clicando nesse botão a escala vertical será especificada de forma linear (não use 
essa alternativa). 
Vertical (com Phase Selecionado)
l Lin: Clicando nesse botão a escala vertical será especificada de forma linear em graus. 
 
Limites: São os limites inicial (I) e final (F) para o ganho ou fase conforme seleção.
Horizontal (com Magnitude ou Phase selecionados)
l Log: Clicando nesse botão a escala horizontal (freqüência) logarítmica (é a forma 
mais usual). 
l Lin: Clicando nesse botão a escala horizontal será especificada de forma linear não 
use essa alternativa). 
Limites: São os limites inicial (I) e final (F) para a freqüência para Magnitude ou Phase 
selecionados.
Indicação do Cursor: A indicação do valor do ganho e a correspondente freqüência é feita no 
quadro ao lado das setas horizontais. Na figura30 as indicações são de -3,093dB e 1,622KHz.
Exemplo2: Para exemplificar o uso desse instrumentos consideremos um filtro passa baixas. 
Seja o circuito da figura31 do qual queremos determinar a freqüência de corte. De acordo com 
a teoria (Circuitos em Corrente Alternada - Ed Érica - Rômulo Oliveira Albuquerque) o 
circuito é um filtro passa baixas e a sua freqüência de corte pode ser calculada por: 
 
Figura31: Filtro Passa Baixas para o exemplo
Observações
l Para que esse instrumento funcione é necessário que na entrada esteja conectado um 
GF ou a fonte de tensão alternada. 
l Observe que a entrada (In) do traçador do diagrama de Bode deve ser conectado 
no ponto considerado como entrada no circuito e a saída (out) do traçador do 
diagrama de Bode deve ser conectado no ponto considerado como saída do 
circuito. 
 Você pode usar o Bode Plotter para determinar, por exemplo, a freqüência de corte do filtro. 
A freqüência de corte é a freqüência na qual o ganho será 3dB abaixo do ganho no patamar 
(no caso 0dB). Desta forma é a freqüência para a qual o ganho será -3dB. Tente então ajustar 
os limites para obter uma indicação a mais precisa possível. A figura a seguir mostra a curva 
do ganho e da fase.
( a )
( b )
Figura32: ( a ) Curva do ganho com o cursor indicando a freqüência de corte ( b ) curva da 
fase com o cursor indicando a freqüência de corte 
Na freqüência de corte a defasagem entre o sinal de saída e o de entrada é 45º e o 
ganho é 3dB abaixo do ganho na região do patamar.
Como exercício determine a freqüência de corte dos circuitos a seguir, usando o Bode 
Plotter.
 
A Analise Gráfica
 
 A analise gráfica é outra alternativa para visualizar gráficos gerados pelos instrumentos (osciloscópio e Bode 
Plotter) ou por outras analises existentes no MultiSIM (Analise Transiente e Analise AC) e permite medir com 
mais precisão.
Para exemplificar consideremos o filtro analisado na aula anterior. 
Figura33: Circuito para analise gráfica
 Após ter iniciado a simulação efetue os ajustes nos dois instrumentos como já visto, em seguida para ativar a 
análise gráfica vá em Ver (View) >> Mostrar Gráfico (Show Grapher) aparecerá a janela da figura34. Nesta 
janela o número de abas (tabs) dependerá do numero de simulações executadas. Toda vez que for feita uma 
simulação será adicionada uma aba correspondente ao instrumento usado. No caso temos dois instrumentos, 
portanto teremos dois gráficos 
 
Figura34: Janela Analise Gráfica (Analysis Graphs) sem configuração 
 
Obs: Caso deseje apagar um dos gráficos, clique com o botão direito no gráfico em seguida Editar (Edit)
>>Cortar (Cut) 
Com relação à janela da figura34 temos duas abas: 
Bode Plotter-XBP1 
São os mesmos gráficos representados no Bode plotter com uma maior precisão. 
Oscilloscope-XSC1 
São as mesma formas de onda vistas no osciloscópio com maior precisão. 
Observe que existe uma marca vermelha que indica a seleção do gráfico e da página (aba). 
Mudando As Propriedades da Página 
 Existem algumas propriedade da página que podem ser modificadas como por exemplo o nome da página. 
Para muda essas propriedades clique com o botão direito em cima do título padrão (no caso Bode Plotter-XBP1) 
aparecerá a janela da figura35. 
 
Figura35: Janela para mudar Propriedade/Editar a página 
Caso deseje Apagar/Copiar (Cut/Copy) ou Colar (Paste) o gráfico clique em Editar (Edit). Experimente. 
Clicando em Propriedades (Properties) aparecerá a janela da figura36, nesta você poderá mudar: 
Nome da página (Tab Name), Título do gráfico (Title), Cor da fonte (Font) e Cor do fundo (Background 
color), além disso pode esconder/mostrar (Show/Hide) os gráficos. Experimente mudar o Nome da página (Tab 
Name),Título do gráfico (Title) e a Cor do fundo (Background color). 
 
Figura36:Janela de configuração da página 
Clique para ver como configurar a aba
 
Mudando As Propriedades do Gráfico 
 Para modificar determinadas propriedade de um gráfico você deve primeiro seleciona-lo (Clique nele, observe 
a marca vermelha de seleção do lado esquerdo do gráfico). Em seguida clique com o botão direito no gráfico, 
aparecerá uma janela igual à da figura35. Escolha Propriedades (Properties) aparecerá a janela da figura37. 
 
 
Figura37: Janela Propriedades do Gráfico (Graph Properties) 
Dicas: A janela da figura37 também pode ser acessada clicando com o botão direito na linha do gráfico. 
Experimente. 
 
A janela da da figura37 tem as seguintes abas das quais serão detalhadas apenas as mais relevantes : 
l Geral (General) 
l Eixo Esquerdo (Left Axis) 
l Eixo do Fundo (Bottom Axis) 
l Eixo Direito (Right Axis) 
l Eixo de Cima ( Top Axis) 
l Traços (Traces) 
 
Os Cursores 
 São dois e são usados para medir com precisão as grandezas dos eixos vertical e horizontal. Para habilitá-los 
ir na aba Geral (General)e selecionar Cursor ativado (Cursor On). Você pode também clicar no ícone a seguir. 
 
A seguir o gráfico da curva do ganho da figura34 já configurado as escalas horizontal e vertical e com os 
cursores ativados. 
 
Figura38: Curva de resposta em freqüência do circuito da figura33 com os cursores ativados 
 Observe na figura38 as indicações dos cursores.A seguir a descrição das indicações relevantes: 
X1: Indicação no eixo X do ponteiro 1. No exemplo 136,4674Hz 
Y1: Indicação no eixo Y do ponteiro 1. No exemplo -31,8175mdB 
X2: Indicação no eixo X do ponteiro 2. No exemplo 1,7378KHz 
Y2: Indicação no eixo Y do ponteiro 2. No exemplo -3,4089dB 
dx: Diferença entre as indicações dos ponteiros no eixo X. No exemplo 1,6013KHz 
dy: Diferença entre as indicações dos ponteiros no eixo Y. No exemplo -3,3770dB 
Componentes Eletrônicos 
 
A seguir mostraremos mais alguns componentes eletrônicos usuais tais como o diodo e o transistor.
A Caixa de Componentes Diodos 
Nesta caixa de componentes encontramos o Diodo, SCR, DIAC,TRIAC, ZENER, Ponte Retificadora e o Varactor.
Figura39: Caixa de componentes Diodos (Diodes)
1 2 3 4 5
Diodo Comercial Diodo Zener Ponte DIAC Varactor
6 7 8 9 
Diodo Virtual LED SCR TRIAC 
A Caixa de Componentes Transistores
Nesta caixa encontramos transistores bipolares e de efeito de campo.
Figura40: Caixa de componentes Transistores (Transistors)
1 2 3 4 5 6 7 8
Transistor 
Comercial 
NPN
Transistor 
Comercial 
PNP
Transistor 
de 4 
terminais
Par 
Darlington 
NPN
Par 
Darlington 
PNP
Transistores 
MOSFET
Transistor 
Comercial 
NPN
Transistor 
Comercial 
PNP
O Diodo Retificador
O diodo se encontra na caixa de componentes Diodos, e podem ser de dois tipos o virtual e o comercial (o modelo é 
o do fabricante). A figura41a mostra um diodo comercial (1N4001) polarizado diretamente e figura41b mostra o 
mesmo diodo polarizado reversamente.
( a ) ( b )
Figura41: ( a ) Diodo comercial polarizado diretamente ( b ) Diodo comercial polarizado reversamente
O Retificador Controlado de Si (SCR)
No circuito a chave D dispara o SCR e a chave R desliga (reseta) o SCR. Experimente.
Figura42: Retificador Controlado de Si (SCR) em CC
O Diodo Emissor de Luz (LED)
Existem diversos tipos de diodo emissor de luz em função da radiação que emitem. A figura43 mostra um LED 
vermelho polarizado diretamente.
Figura43: O Diodo Emissor de Luz (LED)
Modelo de um Dispositivo Eletrônico 
 
 Para compreender determinadas funções do MultiSIM precisamos saber o que é o modelo de um 
componente. Para exemplificar consideremos os circuitos da figura44. Na figura44a temos um diodo e 
uma resistência de 1K conectados a uma bateria de 100V e na figura44b uma chave que substitui o 
diodo. 
Obs: O diodo se encontra na caixa de componentes Diodos, e podem ser de dois tipos o virtual e o 
comercial (o modelo é o do fabricante).
 ( a ) ( b )
Figura44: ( a ) Circuito com diodo ( b ) circuito com chave - Modelo adequado
 Como podemos ver da figura44 os resultados das duas correntes são praticamente iguais. O erro é 
desprezível. Podemos então afirmar que o modelo aproximado de um diodo quando em condução é o de 
uma chave fechada. Consideremos que a bateria agora é de 1,5V, figura45. Observe que neste caso o 
erro entre as duas corrente é de aproximadamente 100% . Neste caso não podemos mais usar o modelo 
da chave fechada para representar o diodo.
Figura45: ( a ) Circuito com diodo ( b ) circuito com chave - O modelo não serve
Melhoremos o nosso modelo, para isso consideremos em série com a chave uma bateria de 0,6V.
Figura46: ( a ) Circuito com diodo ( b ) circuito com chave e bateria - Melhorando o modelo 
 Como podemos verificar o modelo que considera o diodo conduzindo como uma bateria de 6V é 
melhor do que o anterior (chave fechada). O modelo pode melhorado mais ainda se adicionarmos em 
série com a bateria uma resistência de pequeno valor, desta estaremos representando de forma mais 
realistica um diodo quando em condução.
Figura47: ( a ) Circuito com diodo ( b ) circuito com chave, bateria e resistência - Melhorando o modelo
 Modelar um dispositivo eletrônico, é portanto usar componentes básicos tais como resistências, 
fontes de tensão. fontes de corrente e capacitâncias para representa-lo. O construtor do simulador 
então modela o componente eletrônico a partir das informações fornecidas pelo fabricante do 
componente, desta forma ao simular um circuito os resultados serão semelhantes aos obtidos em um 
circuito real. 
 A seguir a figura48 apresenta um diodo (1N4001GP da General Instruments ) polarizado reversamente.
 
Figura48: Diodo 1N4001GP da General Instruments polarizado reversamente.
 Como podemos verificar da figura48 a corrente indicada é 669,812nA (atenção, o ajuste a resistência 
interna do amperímetro em 1mOhm permite obter uma indicação mais precisa)
A definição dos parâmetros do modelo de um dispositivo é feita através de uma sintaxe. Por exemplo 
para o diodo 1N4001GP da General Instruments o seu modelo é:
.MODEL D1N4001GP__DIODE__5 D 
+ IS = 6.698e-07 RS = 0.04255 CJO = 1.949e-11 VJ = 0.3905 TT = 4.933e-06 M = 0.3576 BV = 50 
+ N = 2.412 EG = 1.11 XTI = 3 KF = 0 AF = 1 FC = 0.5 IBV = 0.005177 TNOM = 27 
Atenção !!! O objetivo deste trabalho não é estudar o modelamento de dispositivos eletrônicos, mas 
apenas mostrar de uma forma bem simplificada o que é o modelo de um componente. 
Editando o Modelo de um Componente Eletrônico 
 Para obter os parâmetros que definem o modelo do diodo dê duplo clique no símbolo do diodo 
aparecerá a janela da figura49 na qual selecionando Editar Modelo (Edit Model) você poderá modificar 
esses parâmetros (por exemplo a corrente de saturação IS). 
Figura49: Janela Diodo
Experimente mudar o valor da corrente de saturação e simular novamente. 
Mudando O Beta de um Transistor
Para mudar o beta de um transistor dê duplo clique no transistor se abrirá a janela da 
 
Figura50: Janela transistor virtual 
Após ter clicado em Editar Modelo (Edit Model) aparecerá a janela da figura51. 
 
Figura51: Mudando o beta do transistor 
A seguir um circuito com o transistor com os parâmetros da figura51 
Figura52: Circuito de polarização por divisor de tensão na base - transistor como beta=200
Experimente repetir com beta=400.
Circuitos Digitais - Como Inserir Portas Lógicas 
 
 
 Um circuito digital opera basicamente com portas lógicas as quais são encontrada em um circuito 
integrado (CI). O MultiSIM2001 tem uma biblioteca relativamente grande de circuitos integrados 
comerciais da família TTL e CMOS.
Como Inserir Portas Lógicas 
Para construir um circuito lógico você pode obter as portas indo em:
l Miscelânea Digital (Misc Dig): pelo nome funcional (AND, NAND, etc). Como por exemplo, 
AND2 (porta AND com duas entradas), OR2 (porta OU de duas entradas), etc. Para isso clique na 
caixa Miscelânea Digital (Misc Dig). 
l Obtendo os componentes nas caixas CMOS ou TTL pelo código do CI como, por exemplo, O CI 
7400 (4 portas NAND de duas entradas). Neste caso clique na caixa TTL. Caso deseje um CI 
CMOS, como por exemplo, o CI4017 (contador Johnson) clique na caixa CMOS. 
 
Figura01: Caixas de componentes digitais
 Em ambos os casos após clicar na caixa correspondente será aberta uma janela, como na figura02c, 
para seleção da porta lógica ou do CI. Sendo que no segundo caso (portas escolhida pelo código) ao 
clicar na área de trabalho para inserir a porta será aberta uma janela solicitando para escolher qual parte 
do CI. Por exemplo o CI 7400 tem 4 partes (4 portas NAND de duas entradas): U1A,U1B,U1C e U1D. 
Observe que também será especificada a pinagem. Experimente fazer.
( a ) ( b ) ( c )
Figura02: ( a ) Caixa de CI's TTL ( b ) famílias TTL ( c ) família de CI's 74xx disponíveis
 
 A forma como cada porta é retirada dependerá de como foi configurado Modo de ColocarComponente 
(Place Componente Mode) que está em Opções (Options) >>> Preferências (Preferences)>>> Componentes 
(Component Bin). Temos as opçôes :
l Colocar um componente (Place single component): Neste caso será inserido um componente por vez 
na área de trabalho. Experiment. 
l Colocar continuamente componentes com multiseção somente (Continous Placement Multi-section 
part only): Todas as partes de um componente são colocadas seqüencialmente. Por exemplo os CI’s que 
contém mais de uma porta. A cada clique na área de trabalho será colocada uma das secções do CI. 
Para sair teclar em ESC no teclado. Experimente 
l Colocar Continuamente Componente (Continous placement): Os componentes são colocados 
continuamente. Para sair clicar em ESC no teclado. Experimente 
 Após selecionar o CI, figura2c, dando OK será apresentada tela da figura3a onde você deverá 
escolher qual das secções (no caso 4 secções) será colocada na área de trabalho. A figura3b mostra 
que a secção "A" é uma porta NAND de duas entradas e mostra também quais os pinos de entrada (1 e 
2) e de saída (3).
( a ) ( b )
Figura3: ( a ) Escolhendo qual secção do CI será colocada no circuito ( b ) secção A do CI 7400
Ponta de Prova (Probe) Lógica 
 Como sabemos, circuitos lógicos operam com dois níveis de tensão: Nível 1 (5V se TTL e de 4,5V a 18V de 
CMOS) e Nível 0 (0V), portanto para fornecer os níveis lógicos de entrada podemos usar chaves. A chave que 
usamos para isso se encontra em Básicos (Basics) (veja o CD MultiSIM parte 1). A indicação do nível lógico 
pode ser feita através de um indicador chamado de ponta de prova (Probe).
Figura4: Indicador de nível lógico - caixa de componentes Indicadores (Indicators)
 
Figura5: A chave de um pólo e duas posições 
Exemplo1: A figura a seguir mostra um circuito que permite levantar a tabela verdade (TV) de uma porta lógica. 
Observe que as entradas estão conectadas a duas chaves de 1 pólo e duas posições e que as mesmas mudam 
de posição quando teclamos as letras "A" e "B" no teclado. Outro componente usado em circuitos digitais é o 
indicador de nível lógico.
A B S
0 0 
0 1 
1 0 
1 1 
O Gerador de Palavras Binárias (Word Generator)
 
 O Gerador de palavras binárias gera uma palavra de 32 bits na sua saída. A seguir o 
seu ícone e símbolo.
( a ) ( b ) ( c )
Figura07: Gerador de palavras binárias – ( a ) Ícone na barra de instrumentos – ( b ) 
símbolo na área de trabalho ( c ) Gerador de palavras configurado
Endereçando os Dados Armazenados
 Os dados podem ser armazenados em 1FFF (8191) posições. O número de posições é 
determinado pelo endereço final especificado em Final, e o endereço inicial especificado em 
Inicial. Se você especificar que o endereço inicial é 2 e o final é 4, quando da simulação só 
sairão os dados colocados nos endereços 2, 3 e 4, apesar dos dados das posições 0 e 1 
aparecerem. 
 Cada informação armazenada tem 32 bits que são ser representados hexadecimal, mas 
para editar o conteúdo podemos usar a representação binária também. Por exemplo na figura 
acima na segunda linha (endereço 1) temos a informação 00000001 e na última linha a 
informação 0000000A. 
O endereçamento é feito por 4 palavras em hexadecimal em Address. No exemplo indicado 
na figura07, temos 11 posições de endereços (de 0 a A) e o conteúdo de cada posição se 
encontra na coluna da esquerda. 
Entrando com os Dados
 Para entrar com os dados, primeiramente deveremos estabelecer o numero de posições 
(no exemplo 11 posições) e entrar com o conteúdo de cada posição. Para especificar o 
numero de posições você deve entrar com o endereço inicial (sugiro que seja sempre 0000) e 
com o endereço final (no exemplo acima 000A). Para entrar com o conteúdo use o quadro 
Editar (Edit) abaixo à direita, onde você poderá entrar com os valores em:
Binário (binary) 0 ou 1 
Hexadecimal (Hex) neste caso os valores possíveis são 16 (0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F) 
atenção portanto. 
OU pode entrar com a palavra codificada em ASCII.(não aconselho !! mas se quiser...). 
Existem várias formas de transferir os dados armazenados para fora: 
Ciclicamente (Cycle), Salva (Burst) e Passo-a-Passo (Step).
Ciclicamente os dados armazenados entre o endereço indicado em Inicial (Initial) e Final
(Final) saem ciclicamente (repetem-se).
Em Salva (Burst), saem uma só vez os dados armazenados entre o endereço inicial e o 
final. 
Em Passo a Passo (Step), os dados saem à medida que clicamos em Step. 
 Exemplo2: Vamos configurar o gerador de palavras de forma a gerar a seqüência acender 4 
lâmpadas conforme a seqüência a seguir. 
( a ) ( b )
Figura08: Seqüência para o exemplo6
O gerador deverá ser configurado como na figura a seguir.
 ( a ) ( b )
Figura09: ( a ) Gerador de palavras configurado para gerar a seqüência da figura08 
( b ) Conexão do gerador de palavras aos indicadores
 Observe na parte de baixo a indicação da saída dos dígitos binários, no exemplo 
aparece 1111 (F em hexadecimal) que é o que está armazenado na primeira posição É 
importante também observar a posição do bit mais significativo na conexão ao circuito.
Ponto de Quebra (BreakPoint) 
 Pontos de quebra na seqüência devem ser inseridos quando desejamos parar a 
seqüência num determinado ponto. Para isso posicione o cursor no ponto onde deseja 
efetuara aparada e em seguida clique em Ponto de Quebra (BreakPoint ) (aparecerá 
um asterisco à direita da palavra). 
Disparo (Trigger) 
 Se selecionado Interno (Internal) será usado o relógio (clock) interno para gatilhar as 
palavras que saem. Se Externo (External) for selecionado, neste caso o gatilho será efetuado 
por um sinal externo. Aconselho a usar sempre o gatilho interno. 
Sinal de Pronto (Data Ready) 
Usado quando o gatilho é externo. Esta saída fornece um nível alto quando os dados estão 
prontos. Você pode usar um indicador pra ver isso. 
Sequências (Pattern) 
Clicando em Pattern você poderá salvar as suas seqüências ou abrir seqüências pré 
existentes 
Figura10: Pré ajuste de seqüências (salvar – abrir seqüência – limpar seqüência)
Na figura10 existem as alternativas:
l Limpar o Buffer (Clear Buffer): limpa aos dados armazenados. 
l Abrir (Open) : abre uma seqüência salva. 
l Salvar (Save): Salva uma seqüência criada. 
l Contar para Cima (Up Counter): Abre uma seqüência de contagem crescente pré 
existente. 
l Contar para Baixo (Down Counter): Abre uma seqüência de contagem decrescente 
pré existente. 
l Deslocamento Para Direita (Shift Right): Abre uma seqüência de contagem com 
deslocamento para a direita pré existente. 
l Deslocamento Para Esquerda (Shift Left): Abre uma seqüência de contagem 
com deslocamento para a esquerda pré existente. 
Analisador Lógico (Logic Analyser) 
 
 
 O analisador lógico permite visualizar vários sinais digitais ao mesmo tempo. Tem 16 
entradas para sinais lógicos, que estando ativadas mostram o número do nó a qual está 
conectada. 
 ( a ) ( b )
Figura11: Analisador lógico – ( a ) ícone da barra de instrumentos ( b ) símbolo na área 
de trabalho 
A seguir o Analisador Lógico aberto.
Figura12: Analisador lógico mostrando 4 formas de onda
 Na figura12 à esquerda estão indicadas as 16 entradas, sendo que 4 estão sendo usadas 
(observar a diferença). A cor das formas de onda é a mesma da cor do fio ligado na entrada.
Os cursores (dois), permitem medir tempo (T1 e T2) e a diferença de tempo (T2 –T1). 
Na figura12 a indicação dos ponteiros é: 
Figura13: Medidas efetuadas com os cursoresObservar que os cursores fornecem também o valor, em hexadecimal, da informação 
mostrada.
Exemplo3: A figura14 a seguir como foi feita a conexão do analisador lógico a um 
circuito contador de 0 a 9. 
Figura14: Analisador lógico conectado a um circuito contador de 0 a 9
Configuração do Relógio (clock) 
 Clicando em Ajustar (Set), será aberta a janela de configuração da figura15. Nesta 
deve-se escolher entre relógio interno (Internal) ou externo (external), a freqüência do 
clock e a taxa de amostragem (Sampling setting). Aconselho a usar sempre o clock 
interno. 
Figura15: Configurando o clock e a taxa de amostragem
A caixa de seleção de amostragem tem dois ajustes:
Amostras Pré Gatilho (Pre trigger Samples): O analisador armazena dados até atingir o 
número especificado.
Amostras Pós Gatilho ( Pos trigger Samples): Após o sinal de gatilho os dados são 
armazenados até o número especificado, sendo em seguida enviados para a tela. 
Consideremos dois exemplos para efeito de comparação.
Na figura15 a taxa de amostragem pós gatilho é de 10, com um relógio de 1KHz. A 
figura16 mostra as formas de onda para esse ajuste. 
Obs: Uma amostra corresponde a um ciclo inteiro, no exemplo 1ms. 
Figura16: Analisador lógico configurado com amostragem pós gatilho igual a 10
Configuremos o mesmo clock para uma amostragem pós-gatilho igual a 5.
Figura17: Analisador lógico configurado com amostragem pós-gatilho igual a 5
 Observe a diferença. No segundo caso 5 amostras à taxa de 1KHz significa ocupar 5ms na 
tela, sempre considerando Clock/Div igual a1. Experimente outros valores.
Formas de Onda de um Circuito Lógico 
 A seguir mostraremos uma aplicação interessante. A partir de um circuito lógico 
combinacional obter a saída para todas as combinações de entrada. Para gerar as entradas 
usaremos o gerador de palavras e para ver as formas de onda associadas usamos o 
analisador lógico. 
Figura18: Circuito lógico combinacional
 Observe que a lógica executada pelo circuito é a de uma OU EXCLUSIVO. 
Construído o circuito o passo seguinte é a conexão do gerador de palavras e do 
analisador lógico ao circuito, figura19.
Figura19: : Circuito lógico analisado com gerador de palavras e analisador lógico 
 Como são duas as variáveis de entrada (B e A) as combinações possíveis são 4 
(00,01,10,11), portanto a configuração do gerador de palavras deverá fornecer estas 
combinações. A figura20 mostra a configuração do gerador de palavras e do clock do 
analisador lógico.
( a ) ( b )
Figura20: Configuração do gerador de palavras e do clock do analisador lógico
 Feitos os ajustes e iniciada a simulação e aberto o analisado lógico, obtemos as 
formas de onda, sendo que a primeira de cima para baixo é a saída e as subseqüentes 
são A e B e a última é o clock (1KHz).
Figura21: Formas de onda da entrada e da saída do circuito da figura19 para as 4 
combinações de entrada
O Conversor Lógico (Logic Converter) 
 
 O Conversor Lógico é usado para efetuar transformações em lógica digital combinacional 
como por exemplo:
l Fornecer a tabela verdade de um circuito lógico a partir do seu circuito. 
l Obter a expressão booleana a partir da tabela verdade. 
l Obter o circuito lógico a partir da tabela verdade. 
l Obter a expressão lógica simplificada. 
l Obter o circuito implementado só com portas NAND de duas entradas. 
A figura22 a seguir mostra o ícone e o símbolo usado na área de trabalho.
Figura22: Conversor Lógico (a) Ícone na barra de instrumentos (b) símbolo na área de 
trabalho
A seguir a figura23 mostra o conversor lógico aberto
Figura23: Conversor lógico aberto
 A tabela a seguir mostra todas as conversões possíveis. Para efetuar uma 
conversão, após serem feitas as conexões das variáveis de entrada e da saída basta 
clicar no botão correspondente.
Botão 
Nº 
Clique aqui para para fazer a 
conversão 
 Tipo de conversão a ser feita 
1 
 
Obtem a Tabela Verdade se fornecido o 
circuito lógico 
2 
 
 
Obtem a expressão lógica completa, dada a 
TV 
3 
 
 
Obtem a expressão lógica simplificada, dada a 
TV 
4 
 
 
Obtem a Tabela Verdade se dada a 
expressão lógica 
5 
 
 Obtem o circuito lógico com portas dada a TV 
6 
 
 
Obtem o circuito lógico com portas NAND 
dada a TV 
 
 
Exemplo04: Para exemplificar o uso do conversor lógico consideremos o circuito (observe 
que um circuito que tem a lógica de um OU Exclusivo). Obtenha a sua TV 
( a ) ( b )
Figura24: ( a ) circuito para exemplo 4 ( b ) tabela verdade a ser preenchida para o exemplo 4
 Selecione, no Conversor Lógico, quais as variáveis de entrada (A,B,C,D,E,F,G,H) 
Ligando-as às entradas do seu circuito. Ligue a saída do seu circuito em out no 
conversor lógico como na figura a seguir.
Figura25: Circuito lógico conectado ao Conversor Lógico
A seguir mostraremos algumas das conversões possíveis usando o exemplo.
Obtendo A Tabela Verdade 
 Para obter a expressão lógica clique no botão de conversão Nº1, o resultado será: 
Figura26: Obtendo a tabela verdade do circuito da figura24a
 
Obtendo A Expressão Lógica 
 Para obter a expressão lógica clique no botão de conversão Nº2, o resultado será: 
Figura27: Obtendo a expressão lógica do circuito da figura24a
 Observe que a expressão obtida na figura27 já é a mínima não podendo ser 
simplificada. Caso isso fosse possível para obter a expressão simplificada bastaria 
clicar no botão Nº3.
Obtendo a Tabela Verdade a Partir da Expressão Lógica 
Devemos primeiramente escrever a expressão lógica. 
Escrevendo a Expressão Lógica 
Para escrever a expressão lógica siga a seqüência : 
1. Coloque o cursor no espaço logo abaixo da tabela verdade (ver figura83).
2. Para entrar com a variável digite a letra correspondente para o complemento digite a letra 
da variável e em seguida tecle ‘ no teclado. Exemplo: A’ é o complemento de A.
3. Para efetuar a operação E entre duas variáveis ou expressões, não é necessário colocar o 
ponto de multiplicação.
4. Para efetuar a operação OU , use o símbolo + do teclado.
5. Caso necessite obter a negação de uma operação entre 
parêntese , use (A.B+C)’.
 Exemplo 5: Escrever a expressão de S=A.B .C e em seguida obtenha a sua TV. 
Para obter a TV de uma expressão lógica primeiro escreva a expressão da mesma de 
acordo com o explicado a cima. Após isso clique no botão a seguir para obter a TV.
Figura28: Obtendo a TV a partir da expressão lógica
Dica!! Observe que não é necessário ter circuito para obter a TV a partir da expressão 
lógica.
Escrevendo a Tabela Verdade 
 Para escrever a tabela verdade, selecione as variáveis de entrada, em seguida onde 
aparece "?" aponte o cursor do mouse (aparecerá uma mão). Clique, aparece 1, mais um 
clique e aparece 0, se você clicar mais uma vez aparece X (irrelevante). Experimente fazer o 
caminho inverso ao da figura28, isto é, entre com a TV e obtenha a expressão lógica.
Obtendo o Circuito Lógico 
Para obter o circuito lógico, você precisa entrar com a expressão lógica.
Exemplo6: Vamos supor que a TV é dada. Você precisa obter a expressão lógica. 
Insira a TV como explicado acima e em seguida clique no botão
a expressão completa (não simplificada) será fornecida. 
 
Figura29: ( a ) inserindo a TV de um circuito lógico ( b ) obtendo a expressão lógica
Para obter o circuito com quaisquer portas lógicas clique no botão
para obter o circuito só com portas NAND de duas entradas clique no botão
O resultado será:
 
 ( a ) ( b )
Figura30: ( a ) Circuito implementado com portas quaisquer ( b )

Continue navegando