Buscar

QUIMICA 2008 FINAL(1)

Prévia do material em texto

SISTEMA DE ENSINO POLIEDRO 1 
 
 
 
CONSTANTES 
 
Constante de Avogadro = 23 16,02 10 mol−× 
Constante de Faraday (F) = 4 1 4 1 4 1 19,65 10 C mol 9,65 10 A s mol 9,65 10 J V mol− − − −× = × = × 
Volume molar de gás ideal = 22,4 L (CNTP) 
Carga elementar = 191,602 10 C−× 
Constante dos gases (R) = 2 1 1 1 18,21 10 atm L K mol = 8,31 J K mol =− − − − −× 
 = 1 1 1 162,4 mmHg L K mol = 1,98 cal K mol− − − − 
Constante gravitacional (g) = 29,81 m s− 
 
DEFINIÇÕES 
 
Pressão = 1 atm = 760 mmHg = 101325 Nm–2 = 760 Torr 
1 N = 1 kg m s–2 
Condições normais de temperatura e pressão (CNTP): 0 ºC e 760 mmHg 
Condições ambientes: 25 ºC e 1 atm. 
Condições-padrão: 25 ºC, 1 atm, concentração das soluções: 1 mol L–1 (rigorosamente: atividade 
unitária das espécies), sólido com estrutura cristalina mais estável nas condições de pressão e temperatura em 
questão. 
(s) ou (c) = sólido cristalino; (l) ou (A) = líquido; (g) = gás; (aq) = aquoso; (graf) = grafite; 
(CM) = circuito metálico; (conc) = concentrado; (ua) = unidades arbitrárias; [A] = concentração da espécie 
química A em mol L–1. 
 
MASSAS MOLARES 
 
Elemento 
Químico 
Número 
Atômico 
Massa Molar 
(g mol–1) 
Elemento 
Químico 
Número 
Atômico 
Massa Molar 
(g mol–1) 
H 1 1,01 Cl 17 35,45 
Be 4 9,01 K 19 39,10 
B 5 10,81 Ca 20 40,08 
C 6 12,01 Fe 26 55,85 
N 7 14,01 Cu 29 63,55 
O 8 16,00 Zn 30 65,39 
F 9 19,00 As 33 74,92 
Na 11 22,99 Br 35 79,91 
Mg 12 24,31 Ag 47 107,87 
Al 13 26,98 Cd 48 112,41 
P 15 30,97 Sn 50 118,71 
S 16 32,06 I 53 126,90 
 Pt 78 195,08 
 
 
 
 
 
 
 
 
2 SISTEMA DE ENSINO POLIEDRO
 
1. Considere a equação química, não balanceada, que representa a reação do sulfeto de cádmio em 
solução aquosa de ácido nítrico: 
 ( )3 3 22CdS HNO Cd NO NO Y H O+ → + + + 
 
 Pode-se afirmar que, na equação química não balanceada, a espécie Y é 
 
A. ( ) ( )4 2Cd HSO B. ( ) 4CdSO 
C. ( ) 3SO D. ( ) 2SO 
E. ( ) S 
 
Alternativa: E 
 
Dada a equação da reação global, podemos dividi-la nas duas semi-reações a seguir: 
 
3 2NO 4H 3e NO 2H O
− + −+ + → + (meia-reação de redução) 
2S S 2e− −→ + (meia-reação de oxidação) 
 
Fazendo com que a quantidade de e– envolvida nas equações seja igual, temos: 
2
3 22NO 8H 3S 2NO 4H O 3S
− + −+ + → + + 
 
Realizando a equação completa: 
( )3 3 228HNO 3CdS 3Cd NO 2NO 4H O 3S+ → + + + 
 
 
2. Considere as reações químicas representadas pelas equações abaixo: 
 
I. 3 2 3 3H CCHCH HI H CCHICH+ → 
II. 3 3 2H CCOOH NaOH H CCOONa H O+ → + 
III. ( ) ( ) ( )4 3 2 32 2 3LiAlH 4 H C CO 4H O 4 H C CHOH LiOH Al OH+ + → + + 
IV. 6 6 3 2 6 6 2 3C H ONa CH CH Cl C H OCH CH NaCl+ → + 
V. 3 2 3 2 2H CCH OH HCl H CCH Cl H O+ → + 
 
Assinale a opção que apresenta as equações químicas que configuram reações de óxido-
redução. 
 
A. ( ) Apenas I e II B. ( ) Apenas I e III 
C. ( ) Apenas II e IV D. ( ) Apenas III e IV 
E. ( ) Apenas V 
 
Alternativa: B 
 
As reações de óxido-redução envolvem variações dos estados de oxidação de espécies envolvidas. 
Como podemos observar a seguir, houve variação no estado de oxidação do carbono apenas nas 
equações I e III. 
I. CH3 — CH CH2 + HI CH3 — CH — CH3
–1 –2 0 –3
I
|
 
 
 
SISTEMA DE ENSINO POLIEDRO 3 
 
II. CH3 — C — OH + NaOH CH3 — C — ONa + H2O
O
||
+3
O
||
+3 
 
III. + 4 CH3 — C + 4 H2O 4 CH3 — C — H + LiOH +
O
||
–1
 OH
 |
+2
4LiA HA 3A (OH)A
 |
CH3
 |
CH3 0
+1
 
 
IV.
| ONa
3 2 CH — CH — C+ A
–1
| O — CH2 — CH3
–1 NaC+ A
 
 
V. 3 2 3 2 2CH — CH — OH + HC CH — CH — C H O+A A
–1 –1 
 
 
3. Uma amostra de um ácido dicarboxílico com 0,104 g de massa é neutralizada com 20 cm3 de 
uma solução aquosa 0,1 mol L–1 em NaOH. Qual das opções abaixo contém a fórmula química 
do ácido constituinte da amostra? 
 
A. ( ) 2 2 4C H O B. ( ) 3 4 4C H O 
C. ( ) 4 4 4C H O D. ( ) 4 6 4C H O 
E. ( ) 5 8 4C H O 
 
Alternativa: B 
 
Equacionando a reação do problema, temos: 
2 2 2H A 2NaOH Na A 2H O+ → + 
Por estequiometria: 
2
A B
A B
1 mol H A : 2 mol NaOH
 2n n (I)
 n : n 
∴ = 
Como (L)
mn V ,
M
= =M podemos substituir em (I) da seguinte forma: 
3A
B B(L) A
A A
m 0,1042 V 2 0,1 20 10 M 104 g / mol
M M
−⋅ = ∴ ⋅ = ⋅ ⋅ ∴ =M 
O ácido dicarboxílico com essa massa molar é o de fórmula molecular 3 4 4C H O 
||
|| ||
 
      
 
4 SISTEMA DE ENSINO POLIEDRO
 
4. Carbamato de amônio sólido ( )2 4NH COONH decompõe-se em amônia e dióxido de carbono, 
ambos gasosos. Considere que uma amostra de carbamato de amônio sólido esteja em 
equilíbrio químico com ( )2CO g e ( )3NH g na temperatura de 50 ºC, em recipiente fechado e 
volume constante. Assinale a opção CORRETA que apresenta a constante de equilíbrio em 
função da pressão total P, no interior do sistema. 
 
A. ( ) 3 P B. ( ) 2 P2 
C. ( ) P3 D. ( ) 2/9 P2 
E. ( ) 4/27 P3 
 
Alternativa: E 
 
Equacionando o equilíbrio, temos: 
2 4(s) 3(g) 2(g)
x x
 NH COONH 2NH CO
Eq : 2P P
 
+R
 
Cálculo de P: 
NH CO x x x3 2
PP P P 2P P P
3
= + = + ∴ = 
Cálculo de Kp: 
( ) ( ) ( ) ( ) 32 2 3p NH CO p x x x3 2 PK P P K 2P P 4P 4 3 = ∴ = = =    
3
p
4P K
27
∴ = 
 
 
5. Considere cinco frascos contendo, cada um, uma solução aquosa saturada de sulfato de cálcio 
em equilíbrio químico com seu corpo de fundo. A cada um dos cinco frascos é adicionada uma 
solução aquosa saturada, sem corpo de fundo, de um dos seguintes sais, respectivamente: 
 
 I. 4CaSO II. 2CaCl III. 4MgSO IV. NaCl V. 3KNO 
 
 Assinale a opção que indica os sais cujas soluções aquosas saturadas aumentam a massa do 
sulfato de cálcio sólido nos frascos em que são adicionadas. 
 
A. ( ) Apenas I e II B. ( ) Apenas I e IV 
C. ( ) Apenas II e III D. ( ) Apenas III e IV 
E. ( ) Apenas IV e V 
 
Alternativa: C 
 
Em cada um dos cinco frascos existirá o seguinte equilíbrio: 
 
2 2
4 4CaSO (s) Ca (aq) SO (aq)
+ −+R 
 
Para que ocorra aumento da massa de 4CaSO (s), o equilíbrio deverá ser deslocado para a esquerda, 
o que é possível com a adição de um íon comum em concentração suficientemente maior do que na 
solução original (para compensar a diluição do outro íon). 
A adição de solução saturada de CaSO4, sem corpo de fundo, não modificará as concentrações dos 
íons 2Ca (aq)+ e 24SO (aq).
− Portanto, não haverá deslocamento do equilíbrio inicial do frasco. 
 
SISTEMA DE ENSINO POLIEDRO 5 
 
Dentre os demais sais apresentados, apenas as soluções aquosas de CaCA2 e MgSO4 possuem íons 
comuns ao CaSO4. 
2
2CaC (s) Ca (aq) 2 C (aq)
+ −+A R A 
2 2
4 4MgSO (s) Mg (aq) SO (aq)
+ −+R 
 
Como ambos são bem mais solúveis em água do que o CaSO4, a adição de suas soluções à solução 
original irá deslocar o equilíbrio no sentido da formação do CaSO4(s) e, conseqüentemente, 
aumentar a massa do corpo de fundo. 
 
 
6. Um frasco contém uma solução aquosa de brometo de sódio e outro frasco, uma solução aquosa 
de ácido clorídrico saturada nos gases componentes do ar atmosférico. O conteúdo de cada um 
dos frascos é misturado e ocorre uma reação química. Qual das opções abaixo contém a 
equação química que melhor representa a reação acima mencionada? 
 
A. ( ) ( ) ( ) ( ) ( ) ( )2 2 22Cl aq 2 H aq 1 2O g H O Cl g→ A− ++ + + 
B. ( ) ( ) ( ) ( ) ( ) ( )2 2 24 Br aq O g 4 H aq 2 Br 2 H O→ A A− ++ + + 
C. ( ) ( ) ( ) ( ) ( )2 3Cl aq 3 2O g H aq HClO aq→− +++ 
D. ( ) ( ) ( ) ( )2 22 Br aq 2 H aq Br H (g)→ A− ++ + 
E. ( ) ( ) ( ) ( ) ( ) ( )2 2 22Cl aq H O 1 2O g 2OH aq Cl g→A− −+ + + 
 
Alternativa: B 
 
Na Br+ − 2 2H N O C
+ −A
 
 
Teremos a redução do O2 devido ao seu elevado RedE :
D 
2 2O 4e 4H 2 H O
− ++ + → 
Como o Red,Br Red,C2 2E E ,<
D D
A então o Br
− oxida com mais facilidade do que o C .−A Portanto: 
22Br Br 2e
− −→ + 
 
Equacionando a reação global, temos: 
2 2
2
2 2 2
O 4e 4H 2H O
4Br 2Br 4e 
O 4H 4Br 2Br 2H O
− +
− −
+ −
+ + →
→ +
+ + → +
 
 
 
 
 
 
 
6 SISTEMA DE ENSINO POLIEDRO
 
7. Assinale a opção CORRETA que corresponde à variação da concentração de íons Ag+ 
provocada pela adição, a 25 ºC, de um litro de uma solução 0,02 mol L–1 em NaBr a um litro de 
uma solução aquosa saturada em AgBr. 
Dado: ( )
13
AgBr 298KKps 5,3x10 .
−= 
 
A. ( ) 143x10− B. ( ) 115x10− 
C. ( ) 77 x10− D. ( ) 41x10− 
E. ( ) 21x10− 
 
Alternativa: C 
 
H O2AgBr(s) Ag (aq) Br (aq)+ −→ +← 
Kps Ag Br+ −   = ⋅    
Nesta solução, temos Ag Br x.+ −   = =    
2 2 14 7 1Kps x x 53 10 x 7,28 10 mol L− − −= ∴ = ⋅ ∴ = ⋅ ⋅ 
Após adição de 1 L de NaBr 0,02 mol·L–1, teremos os íons provenientes do NaBr. No entanto, 
devido à diluição, a nova Br−   será 0,01 mol·L–1, já que a Br−   na solução original é muito 
menor do que este valor. 
Assim, teremos: 
Kps Ag Br+ −   = ⋅    
13 25,3 10 Ag 10− + − ⋅ = ⋅  
11 1Ag 5,3 10 mol L+ − −  = ⋅ ⋅  
 
Então, temos: 7 11Ag 7,28 10 5,3 10+ − − ∆ = ⋅ − ⋅  
Portanto, 7 1Ag 7, 28 10 mol L+ − − ∆ = ⋅ ⋅  
 
 
8. O processo físico de transformação do milho em pipoca pode ser um exemplo de reação 
química. Se for assim entendido, qual é a ordem dessa reação, considerando um rendimento do 
processo de 100%? 
 
A. ( ) zero B. ( ) um 
C. ( ) dois D. ( ) três 
E. ( ) pseudozero 
 
Alternativa: B 
 
A proposta do exercício é fazer uma analogia entre um processo físico e um químico. A atividade 
radioativa (A), por exemplo, é o número de desintegrações por unidade de tempo e é proporcional 
ao número de átomos não desintegrados (N), de acordo com a equação: A k N.= ⋅ 
De modo análogo, para uma maior quantidade de grãos de milho (G), maior será a taxa de 
conversão em pipoca (T), conforme a equação: T k G,= ⋅ típica de um processo de primeira ordem. 
 
 
SISTEMA DE ENSINO POLIEDRO 7 
 
9. A reação hipotética ( ) ( ) ( ) ( ) ( )A s B aq C g D aq E→ A+ + + é autocatalisada por ( )C g . 
Considerando que essa reação ocorre em sistema fechado, volume constante e sob atmosfera 
inerte, assinale a opção que apresenta a curva que melhor representa a variação da massa de 
( ) AA s , m , em função do tempo, desde o início da reação até imediatamente antes do equilíbrio 
químico ser estabelecido dentro do sistema. 
 
A. ( ) 
 
B. ( ) 
 
C. ( ) 
 
D. ( ) 
 
E. ( ) 
tempo
mA
 
 
 
 
Alternativa: E 
 
Para uma reação autocatalisada, a velocidade inicial é pequena, já que a quantidade de catalisador 
produzido pela própria reação ainda é baixa. À medida que a reação se desenvolve, a quantidade de 
catalisador aumenta e, conseqüentemente, a velocidade da reação aumenta. Com isso, a perda de 
massa de A, no início, ocorre com taxa reduzida. Com o tempo, essa taxa aumenta rapidamente. No 
final do processo, com o sistema quase atingindo o equilíbrio, a taxa de perda de massa de A 
diminui. 
 
 
10. Dois recipientes contêm volumes iguais de dois líquidos puros, com calores específicos 
diferentes. A mistura dos dois líquidos resulta em uma solução ideal. Considere que sejam 
feitas as seguintes afirmações a respeito das propriedades da solução ideal resultante, nas 
condições-padrão e após o estabelecimento do equilíbrio químico: 
 
I. A temperatura da solução é igual à média aritmética das temperaturas dos líquidos puros. 
II. O volume da solução é igual à soma dos volumes dos líquidos puros. 
III. A pressão de vapor é igual à soma das pressões parciais de vapor dos líquidos constituintes 
da mesma. 
 
 Assinale a opção CORRETA que contém a(s) propriedade(s) que é(são) apresentada(s) pela 
solução resultante. 
 
A. ( ) Apenas I e II B. ( ) Apenas I e III 
C. ( ) Apenas II D. ( ) Apenas II e III 
E. ( ) Apenas III 
 
 
 
 
8 SISTEMA DE ENSINO POLIEDRO
 
Alternativa: D 
 
I. Incorreta. Para que a temperatura da solução seja a média aritmética das temperaturas dos 
líquidos puros, o produto entre massa e calor específico deveria ser o mesmo para os dois 
líquidos. Como não há dados sobre as densidades dos líquidos, não é possível afirmar que o 
referido produto para os líquidos seja o mesmo. 
II. Correta. Como a solução é ideal, as interações soluto-soluto, soluto-solvente e solvente-solvente 
são as mesmas. Portanto, os volumes dos líquidos são somativos. 
III. Correta. A pressão máxima de vapor da solução é dada por: 
1 1 2 2PMV X PMV X PMV ,= + em que 1 1 1P X PMV= e 2 2 2P X PMV .= 
 
 
11. Uma tubulação de aço enterrada em solo de baixa resistividade elétrica é protegida 
catodicamente contra corrosão, pela aplicação de corrente elétrica proveniente de um gerador 
de corrente contínua. Considere os seguintes parâmetros: 
 
 I. Área da tubulação a ser protegida: 480 m2; 
 II. Densidade de corrente de proteção: 10 mA/m2 
 
 Considere que a polaridade do sistema de proteção catódica seja invertida pelo período de 
1 hora. Assinale a opção CORRETA que expressa a massa, em gramas, de ferro consumida no 
processo de corrosão, calculada em função de íons ( )2Fe aq .+ Admita que a corrente total 
fornecida pelo gerador será consumida no processo de corrosão da tubulação. 
 
A. ( ) 31x10− B. ( ) 26 x10− 
C. ( ) 13x10− D. ( ) 5 
E. ( ) 20 
 
Alternativa: D 
 
No processo de corrosão que ocorre na inversão de polaridade do sistema de proteção catódica, 
temos: 
2Fe(s) Fe (aq) 2e+ −→ + 
 
Como para cada mol de Fe (56 g) serão necessários 2 F, teremos: 
3 2
Fe 2
56 g Fe : 2 96500 C
C 1 m :10 10 480 m 3600s
s m
−
⋅
⋅ ⋅ ⋅ ⋅ 
Fem 5g= 
 
 
12. Considere um elemento galvânico formado pelos dois eletrodos (I e II), abaixo especificados e 
mantidos separados por uma ponte salina: 
 
– Eletrodo I: chapa retangular de zinco metálico parcialmente mergulhada em uma solução 
aquosa 3 11,0 x10 mol L− − de cloreto de zinco; 
– Eletrodo II: chapa retangular de platina metálica parcialmente mergulhada em uma solução 
aquosa de ácido clorídrico de pH = 2, isenta de oxigênio e sob pressão parcial de 
gás hidrogênio de 0,5 atm. 
 
 
SISTEMA DE ENSINO POLIEDRO 9 
 
 Assinale a opção CORRETA que expressa o valor calculado aproximado, na escala do eletrodo 
padrão de hidrogênio (EPH), da força eletromotriz, em volt, desse elemento galvânico atuando 
à temperatura de 25 ºC, sabendo-se que ( )2Zn Znlog 2 0,3 e E 0,76V EPH .+= =−D 
 
A. ( ) 0,54 B. ( ) 0,64 
C. ( ) 0,74 D. ( ) 0,84 
E. ( ) 0,94 
 
Alternativa: C 
 
Cálculo do 2+RED, Zn :ε 
2
(aq) (s)Zn 2e Zn
+ −+ → 
RED RED C 3I 2
0,059 0,059 1 0,059 1log Q 0,76 log 0,76 log
n 2 2 10Zn −+
ε = ε − = − − = − −  
D 
REDI 0,8485 V∴ ε = − 
 
Cálculo do 
RED,H
:+ε 
(aq) 2(g)2H 2e H
+ −+ → 
( )
H2
RED RED C 2 2II 2
P0,059 0,059 0,059 0,5log Q 0 log log
n 2 2H 10+ −
ε = ε − = − = −
  
D 
( )3 4REDII 0,059 0,059log 5 10 log 10 log 22 2∴ ε = − ⋅ = − − 
REDII 0,10915 V∴ ε = − 
 
Portanto, o eletrodo II sofre redução, por ter maior potencial. Logo: 
( ) ( )RED REDII I 0,10915 0,8485 0,74V∆ε = ε − ε ∴ ∆ε = − − − ∴ ∆ε ≅ +13. 300 gramas de gelo a 0 ºC foram adicionados a 400 gramas de água a 55 ºC. Assinale a opção 
CORRETA para a temperatura final do sistema em condição adiabática. 
 Dados: calor de fusão do gelo 180calg ;−= calor específico do gelo 1 10,50calg K ;− −= calor 
específico da água líquida 1 11calg K .− −= 
 
A. ( ) – 4 ºC B. ( ) – 3 ºC 
C. ( ) 0 ºC D. ( ) + 3 ºC 
E. ( ) + 4 ºC 
 
Alternativa: C 
 
Cálculo do calor necessário a ser absorvido na fusão total do gelo: 
L fQ mL 300 80 24000 cal= = ⋅ = 
 
Cálculo do calor liberado no resfriamento da água a 55 ºC para a temperatura de 0 ºC: 
SQ mc t 400 1 ( 55) 22000 cal= ∆ = ⋅ ⋅ − = − 
 
 
10 SISTEMA DE ENSINO POLIEDRO
 
Portanto, o calor liberado não é suficiente para fundir todo o gelo. Com isso, a amostra final terá 
água líquida a 0 ºC em equilíbrio com gelo a 0 ºC. 
 
 
14. Assinale o valor da constante de equilíbrio, nas condições-padrão, da reação química descrita 
pela seguinte equação: 
( ) ( ) ( ) ( )2 3 4 2Sn aq 2Fe aq Sn aq 2Fe aq+ + + ++ +ZZXYZZ 
 
 Dados eventualmente necessários: Potenciais de eletrodo em relação ao eletrodo padrão de 
hidrogênio nas condições-padrão: 
 
2Fe Fe
E 0,44V+ =−D 3Fe FeE 0,04V+ =−D 3 2Fe FeE 0,76V+ + =D 4 2Sn SnE 0,15V+ + =D 
 
A. ( ) 1021 B. ( ) 1018 
C. ( ) 1015 D. ( ) 1012 
E. ( ) 109 
 
Alternativa: A 
 
A equação dada pode ser dividida em duas meias-reações, conforme equações a seguir: 
 
meia-reação de oxidação: 2 4 RED,1Sn (aq) Sn (aq) 2e E 0,15 V
+ + −→ + = + 
meia-reação de redução: 3 2 RED,22Fe (aq) 2e 2Fe (aq) E 0,76 V
+ − ++ → = + 
 
Cálculo de º:∆ε 
( ) ( )RED,2 RED,1º E E º 0,76 0,15 º 0,61 V∆ε = − ∴ ∆ε = + − + ∴ ∆ε = + 
 
Pela equação de Nernst, temos: 
C
0,059º log Q
n
∆ε = ∆ε − 
 
Mas, quando 0,∆ε = o sistema está em equilíbrio e C CQ K .= Portanto: 
C C
0,059 2 0,610 0,61 log K log K 20,68
2 0,059
⋅= + − ∴ = = 
20,68 21
C CK 10 K 10∴ = ∴ ≅ 
 
 
15. Qual das opções abaixo apresenta o elemento químico que é utilizado como dopante para a 
confecção do semicondutor tipo-p? 
 
A. ( ) Boro B. ( ) Fósforo 
C. ( ) Enxofre D. ( ) Arsênio 
E. ( ) Nitrogênio 
 
Alternativa: A 
 
A condução de eletricidade em metais e semicondutores pode ser explicada em termos de orbitais 
moleculares que se espalham pelo sólido. 
 
SISTEMA DE ENSINO POLIEDRO 11 
 
Quando, num cristal de silício, alguns átomos de Si são substituídos por átomos da família 13, 
teremos, nestas posições, bandas de condução devido à existência de orbitais vazios. Um cristal de 
silício dopado pelo boro, que pertence à família 13, passa a ser um semicondutor do tipo-p 
(positivo). 
— Si — B — Si —
|
| | |
|
orbital vazio
 
 
Ao contrário, quando o agente dopante são átomos de fósforo, que apresentam elétrons a mais, 
ocorre a formação de um nível doador, portanto semicondutor do tipo-n (negativo). 
 
 
16. O explosivo plástico conhecido como PBX é constituído de uma parte polimérica, normalmente 
um poliuretano. A formação do poliuretano é atribuída à reação entre um poliol com 
 
A. ( ) um isocianato. B. ( ) uma amina. 
C. ( ) uma anilina. D. ( ) uma estearina. 
E. ( ) uma oleína. 
 
Alternativa: A 
 
O poliuretano é um copolímero formado pela polimerização entre um poliol e um isocianato, 
conforme ilustra a reação abaixo: 
 
— — — —— —n O C N N C O— — — — 2 2 n HO — CH — CH — OH+
 
2 2
O H H O
|| | | ||
—C — N — — N — C — O — CH — CH — O —
n
       
 
 
17. Assinale a opção que contém o polímero que, por ser termoplástico e transparente, pode ser 
empregado na fabricação de pára-brisa de aeronaves. 
 
A. ( ) polietileno B. ( ) polipropileno 
C. ( ) poli(tetrafluoroetileno) D. ( ) policarbonato 
E. ( ) poli(álcool vinílico) 
 
Alternativa: D 
 
Dos polímeros apresentados, o policarbonato é o que possui as melhores características para ser 
utilizado como pára-brisa de aeronaves. Além de ser termoplástico e transparente, tem semelhança 
com o vidro, alta resistência ao impacto, boa estabilidade dimensional, boas propriedades elétricas, 
boa resistência às intempéries. 
 
 
 
 
 
 
 
12 SISTEMA DE ENSINO POLIEDRO
 
Um policarbonato bastante comum é obtido conforme a equação ilustrada a seguir: 
HO C
CH3
CH3
OHn +
CA
C
CA
O
O C
CH3
CH3
O C
O
n
+ 2n HCA
n
 
 
 
18. Considere que os quatro processos químicos, descritos a seguir nos itens I a IV, são realizados 
isobárica e isotermicamente: 
 
I. +3 3KNO (s) K (aq) + NO (aq)
−→ 
II. 2 2H O( ) H O(g)→A 
III. C(grafita) C(diamante)→ 
IV. 2 22 Na(s) + 1 2 O (g) Na O(s)→ 
 
Qual das opções abaixo contém os processos químicos cuja variação de energia interna é nula? 
 
A. ( ) Apenas I e II B. ( ) Apenas I, II e III 
C. ( ) Apenas II e III D. ( ) Apenas III e IV 
E. ( ) Nenhum processo 
 
Alternativa: E 
 
Pela 1ª lei da Termodinâmica, temos: ( )H U n g RT∆ = ∆ + ∆ 
I. ( ) ( )disn g 0 U H 0 já que H 0 .∆ = ∴ ∆ = ∆ ≠ ∆ > 
II. ( )n g 1 H U RT U H RT.∆ = ∴ ∆ = ∆ + ∴ ∆ = ∆ − 
 Como não se pode afirmar que H RT,∆ = então não se pode afirmar que U 0.∆ = 
III. ( ) ( )graf diamn g 0 U H 0 H 0 .→∆ = ∴ ∆ = ∆ ≠ ∆ > 
IV. ( ) RT RTn g 1 2 H U U H .
2 2
∆ = − ∴ ∆ = ∆ − ∴ ∆ = ∆ + 
 Como não se pode afirmar que RTH ,
2
∆ = − então não se pode afirmar que U 0.∆ = 
 
Obs.: Dissociação de compostos iônicos, mudança de estado físico, mudança de forma alotrópica e 
reação química são fatores que modificam interações entre partículas, o que provoca variação de 
energia interna do sistema. 
 
 
 
 
 
 
SISTEMA DE ENSINO POLIEDRO 13 
 
19. Assinale a opção ERRADA que apresenta (em kJ/mol) a entalpia padrão de formação (∆Hf) da 
substância a 25 ºC. 
 
A. ( ) f 2H (H (g)) 0∆ = B. ( ) f 2H (F (g)) 0∆ = 
C. ( ) f 2H (N (g)) 0∆ = D. ( ) f 2H (Br (g)) 0∆ = 
E. ( ) f 2H (Cl (g)) 0∆ = 
 
Alternativa: D 
 
A entalpia padrão de formação leva em conta a variedade alotrópica mais estável e o estado físico 
da substância na condição-padrão. Na condição padrão, o bromo é líquido, portanto o correto seria 
f 2H (Br ( )) 0∆ =A . 
 
 
20. Qual das substâncias abaixo não é empregada na fabricação da pólvora negra? 
 
A. ( ) trinitrotolueno B. ( ) enxofre 
C. ( ) carvão D. ( ) nitrato de sódio 
E. ( ) nitrato de potássio 
 
Alternativa: A 
 
A pólvora negra é uma mistura de salitre (nitrato de sódio e/ou nitrato de potássio), carvão e 
enxofre. O trinitrotolueno, também conhecido pela sigla TNT, já é um explosivo por si só e não 
entra na composição da pólvora. 
 
 
21. Considere as seguintes moléculas no estado gasoso: 2OF , 2BeF , 2AlCl e 2AlS . 
a) Dê as estruturas de Lewis e as geometrias moleculares de cada uma das moléculas. 
b) Indique as moléculas que devem apresentar caráter polar. 
 
 
Resolução: 
 
OF2 0 polarµ ≠
BeF2 0 apolarµ =
2A CA A
2A SA S A — S S — A S↔A A|| ||
Molécula Estrutura de Lewis Geometria Molecular Polaridade
|O|
FF angular
F — Be — F linear
CA CA
AA || 0 polarµ ≠angular
0 apolarµ =linear
 
 
 
 
14 SISTEMA DE ENSINO POLIEDRO
 
22. Um cilindro provido de pistão móvel, que se desloca sem atrito e cuja massa é desprezível, foi 
parcialmente preenchido com água líquida. Considere que o sistema atinge o equilíbrio químico 
à temperatura T e pressão Pi. Num dado momento, o sistema é perturbado por uma elevação 
brusca do pistão, atingindo novo equilíbrio a uma pressão Pf e à mesma temperatura T. 
Considere que água líquida permanece no sistema durante todo o processo. 
 
a) Esboce um gráfico da pressãointerna no interior do cilindro versus tempo considerando o 
intervalo de tempo compreendido entre os dois equilíbrios químicos. Indique no gráfico as 
pressões Pi e Pf. 
b) A pressão final, Pf, será maior, menor ou igual à pressão inicial, Pi? Justifique. 
 
 
Resolução: 
 
Considerando que o cilindro estava evacuado antes da adição de água, temos: 
 
2
Adição
de H O
→ t
 
∆→
(I) (II) (III)
vácuo
P = 0
vácuo Pi
2H O 2H O
 
 
Em (III), o sistema está em equilíbrio; portanto Pi é a pressão máxima de vapor d’água, que só varia 
com a temperatura. 
Quando se eleva o pistão bruscamente, há um aumento brusco de volume e, portanto, redução de 
pressão, já que em um intervalo tão pequeno de tempo, praticamente não há evaporação efetiva de 
líquido. 
Quando se estabelece o novo estado de equilíbrio, na mesma temperatura, a pressão de vapor 
d’água atinge o seu valor máximo. Como a temperatura não sofre variação, a pressão do 2º 
equilíbrio é a mesma do 1º. 
 
 
b) Pi = Pf, pois não há variação de temperatura. Logo, a pressão máxima de vapor não se altera. 
 
 
 
 
 
SISTEMA DE ENSINO POLIEDRO 15 
 
23. A equação 2Π = +RT C bC
M
 é uma expressão semi-empírica utilizada para a determinação de 
massas molares de solutos, M, presentes em soluções reais. Nesta fórmula, Π é a pressão 
osmótica, em atm; C, a concentração de soluto, em g/dm3; R, a constante universal dos gases; 
T, a temperatura da solução e b, uma constante. O gráfico a seguir mostra valores 
experimentais de Π/C versus C para uma solução aquosa a 20 ºC de um soluto desconhecido. 
Determine o coeficiente linear do gráfico e, com esse valor, determine a massa molar do soluto. 
 
0,0750
0,0745
0,0740
0,0735
0,0730
0,0725
0,0720
0,0715
0,0710
0,0705
20 30 40 50
Concentração de soluto (g/dm3)
Pr
es
sã
o 
os
m
ót
ic
a/
C
on
ce
nt
ra
çã
o 
de
 so
lu
to
 (a
tm
·d
m
3 /g
)
 
 
Resolução: 
 
Manipulando matematicamente a equação dada, temos: 
 
N N NN
2
coeficiente x
angularcoeficientey
linear
RT RTC bC + b C
 M C M
ππ = + ∴ = ⋅ 
 
Portanto, esta é a equação de uma reta. Devemos traçar a “melhor reta” a partir dos pontos 
fornecidos (que não compõem exatamente uma reta). 
 
De fato: 
Pr
es
sã
o
os
m
ót
ic
a/
Co
nc
en
tra
çã
o
de
so
lu
to
(a
tm
·d
m
3 /g
)
 
 
Tomando os pontos A e B da melhor reta obtida visualmente do gráfico, temos: 
A(15;0,0715) e B(45;0,0740) 
 
16 SISTEMA DE ENSINO POLIEDRO
 
Para obtermos o coeficiente linear desta reta construímos a equação: 
( )0,0740 0,0715y 0,0715 x 15
45 15
−− = ⋅ −− 
Para x = 0 temos y = 0,0703 
Logo, o coeficiente linear é 
3dm0,0703 atm .
g
⋅ 
Como RT 0,082 2930,0703, então 0,0703 M 342 g/mol
M M
⋅= = ∴ ≅ 
 
 
24. Em um laboratório, a 20 ºC e utilizando um sistema adequado, H2(g) foi obtido através da 
reação entre uma amostra de uma liga de 0,3 g de magnésio e um litro de uma solução aquosa 
0,1 mol L–1 em HCl. Um manômetro indicou que a pressão no interior do recipiente que contém 
o H2(g) era de 756,7 Torr. Sabendo-se que a pressão de vapor d’água a 20 ºC é 17,54 Torr e o 
volume de H2(g) obtido foi 0,200 L, determine a pureza da amostra da liga de magnésio (massa 
de magnésio x 100/massa total da amostra), considerando que somente o magnésio reaja com o 
HCl. 
 
Resolução: 
 
Equacionando a reação do problema, temos: 
2 2Mg 2HC MgC H+ → +A A 
A pressão total é dada por: H H O2 2P P PV= + 
Então: H H2 2756,7 P 17,54 P 739,16 Torr= + ∴ = 
 
Por Clapeyron: PV = nRT. Para H2: 
3
H H2 2739,16 0,2 n 62,4 293 n 8,09 10 mol
−⋅ = ⋅ ⋅ ∴ = ⋅ 
Pela proporção estequiométrica da equação química, há consumo de 8,09·10–3 mol de Mg. 
 
Dessa forma: 
 
Mg–3
Mg
 1 mol Mg : 24,31 g
 m 0,197 g
8,09 ·10 mol Mg : m
∴ = 
 
Finalmente: 
 0,3 g (liga) :100%
0,197 g (Mg) : P
 
P 65,5%= 
 
 
25. Apresente as respectivas fórmulas químicas estruturais das espécies químicas (A, B, C, D, E) 
presentes nas seguintes equações químicas: 
KOH (etanol)
3 2 2CH CH CH C → AA 
KOH (etanol)
3 3CH CHC CH → AA 
KOH (etanol)
3 2 3CH CH CHC CH → +B CA 
( ) H SO H O, calor2 4 23 22H C CCH → →D E 
 
SISTEMA DE ENSINO POLIEDRO 17 
 
Resolução: 
CH3CH2CH2CA
KOH
etanol
CH3CH CH2
A 
 
KOH
etanol
CH3CH CH2
A
CH3CHCACH3
 
 
KOH
etanol
CH3CH CHCH3
B
CH3CH2CHCACH3 + CH3CH2CH CH2
C 
 
(H3C)2CCH2
H2SO4
CH3 C
CH3
OSO3H
CH3
H2O
∆ CH3 C
CH3
OH
CH3
ED 
 
Obs. Na reação de eliminação do HCA do 2-clorobutano obtém-se, na realidade, três compostos 
orgânicos e não apenas dois. 
 
A equação da reação deveria ser escrita da seguinte maneira: 
KOH
etanol
CH3CH2CHCACH3 + CH3CH2CH CH2C C
CH3
H
H3C
H
C C
H
CH3
H3C
H
+
Como no exercício foi sugerida a obtenção de apenas dois compostos orgânicos, desconsideramos a 
existência de estereoisômeros cis e trans. 
 
 
26. Dois cilindros (I e II) são providos de pistões, cujas massas são desprezíveis e se deslocam sem 
atrito. Um mol de um gás ideal é confinado em cada um dos cilindros I e II. São realizados, 
posteriormente, dois tipos de expansão, descritos a seguir: 
 
a) No cilindro I, é realizada uma expansão isotérmica à temperatura T, de um volume V até um 
volume 2V, contra uma pressão externa constante P. 
b) No cilindro II, é realizada uma expansão adiabática, de um volume V até um volume 2V, 
contra uma pressão externa constante P. 
 
Determine os módulos das seguintes grandezas: variação da energia interna, calor trocado e 
trabalho realizado para os dois tipos de expansão. 
 
Resolução: 
a) O trabalho é aquele realizado pela vizinhança sobre o sistema. 
 Portanto, como Pext = cte, temos: 
 ( )extW P V W P 2V V PV W PV= − ∆ ∴ = − − = − ∴ = 
Para uma expansão isotérmica de um gás ideal (em que as interações entre as moléculas são 
nulas), U 0 U 0∆ = ∴ ∆ = 
 
 
18 SISTEMA DE ENSINO POLIEDRO
 
 Pela 1ª Lei da Termodinâmica, temos: 
 ( )U Q W 0 Q PV Q PV Q PV∆ = + ∴ = + − ∴ = ∴ = 
 
b) Para o cálculo do trabalho, temos as mesmas condições do item anterior. Portanto: 
 W PV W PV= − ∴ = 
 Como a expansão é adiabática, Q 0 Q 0= ∴ = 
 Pela 1ª Lei da Termodinâmica, temos: 
 U Q W U PV U PV∆ = + ∴ ∆ = − ∴ ∆ = 
 
 
27. Uma chapa de ferro é colocada dentro de um reservatório contendo solução aquosa de ácido 
clorídrico. Após um certo tempo observa-se a dissolução do ferro e formação de bolhas gasosas 
sobre a superfície metálica. Uma bolha gasosa, de massa constante e perfeitamente esférica, é 
formada sobre a superfície do metal a 2,0 metros de profundidade. Calcule: 
 
a) o volume máximo dessa bolha de gás que se expandiu até atingir a superfície do líquido, 
admitindo-se que a temperatura é mantida constante e igual a 25 ºC e que a base do 
reservatório está posicionada ao nível do mar. 
b) a massa de gás contida no volume em expansão da bolha. 
 
Sabe-se que no processo corrosivo que originou a formação da bolha de gás foram consumidos 
3,0 x 1015 átomos de ferro. 
Dado: massa específica da solução aquosa de HCl é igual a 1020 kg m–3 na temperatura de 
25 ºC. 
 
Resolução: 
 
a) O cálculo da quantidade em mol de gás hidrogênio produzido é dado por: 
(s) (aq) 2(aq) 2(g)
23
15
 Fe 2HC FeC H
6,0 10 átomos : 1 mol
3,0 10 átomos : x
+ → +
⋅
⋅
A A
 
9x 5,0 10 mol−= ⋅ 
O volume máximo da bolha ocorre quando a pressão é mínima, o que se dá na superfície do 
líquido. Admitindo que a chapa de ferroesteja no fundo do reservatório (base), a bolha irá 
atingir a superfície do líquido 2,0 metros acima do nível do mar, quando estará submetida 
apenas à pressão do ar. Podemos, então, considerar que a pressão é muito próxima de 1,0 atm: 
Por Clapeyron: PV = nRT 9 2 1 1 1,0 atm V 5,0 10 mol 8,21 10 atm L K mol 298K− − − −∴ ⋅ = ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 
7V 1,22 10 L−= ⋅ 
 
b) A massa de gás é calculada por: 
9 1m 5,0 10 mol 2,0g mol− −= ⋅ ⋅ ⋅ 
8m 1,0 10 g−= ⋅ 
 
 
 
SISTEMA DE ENSINO POLIEDRO 19 
 
28. Suponha que um pesquisador tenha descoberto um novo elemento químico, M, de número 
atômico 119, estável, a partir da sua separação de um sal de carbonato. Após diversos 
experimentos foi observado que o elemento químico M apresentava um comportamento 
químico semelhante aos elementos que constituem a sua família (grupo). 
 
a) Escreva a equação balanceada da reação entre o elemento M em estado sólido com a água 
(se ocorrer). 
b) O carbonato do elemento M seria solúvel em água? Justifique a sua resposta. 
 
 
Resolução: 
 
a) De acordo com a distribuição eletrônica do elemento M, conclui-se que o elemento em questão 
seria um metal alcalino (grupo 1). 
[ ] 2 14 10 6 1119 86M : Rn 7s 5f 6d 7p 8s 
O elemento M, sendo estável e apresentando comportamento semelhante ao dos demais elementos 
do grupo, reagirá com água conforme a equação: 
( ) ( ) ( )2 2M(s) H O MOH aq 1 2H g+ → +A 
 
b) O carbonato de M seria solúvel em água, já que os carbonatos de elementos do grupo 1 são todos 
solúveis em água. 
 
 
29. Durante a realização de um estudo de corrosão, foi montado um sistema constituído por um 
elemento galvânico com as seguintes características: 
 
I. Anodo de ferro e catodo de platina; 
II. Área de exposição ao meio corrosivo de ambos os eletrodos igual a 100,0 cm2; 
III. Circuito eletrolítico mantido por ponte salina; 
IV. Eletrodos interconectados por fio de cobre; 
V. Eletrólito formado por solução aquosa ácida, livre de oxigênio atmosférico. 
 
Considerando que ocorre perda de massa do eletrodo de ferro, calcule a corrente de corrosão 
(em ampère) equivalente ao fluxo de elétrons no sistema, decorrente do processo de dissolução 
metálica, se esse metal apresentar uma taxa de corrosão uniforme de 350 mdd. 
Dado: 2
mgmdd
dm dia
= ⋅ (miligrama por decímetro quadrado por dia, de ferro metálico corroído) 
 
Resolução: 
 
A solução ácida, livre de oxigênio atmosférico, não é oxidante forte. Dessa forma, a corrosão 
produzirá íons 2(aq)Fe .
+ 
A área de exposição é de 100,0 cm3, ou seja, 1,0 dm2. Assim, haverá perda de massa de ferro 
correspondente a 350 mg por dia. 
 
2
(s) (aq)
1
Fe Fe 2e
 56 g : 2 96500 A s
0,35 g : i 24h 3600s h
+ −
−
→ +
⋅ ⋅
⋅ ⋅ ⋅
 
2i 1, 40 10 A−= ⋅ 
 
 
20 SISTEMA DE ENSINO POLIEDRO
 
30. A reação de combustão 2 2 32SO (g) O (g) 2SO (g)+ → é lenta e pode ser representada pela 
figura abaixo: 
 
Caminho da reação
 
Esta mesma reação pode ser catalisada pelo NO2(g) em duas etapas, sendo que a primeira é 
bem mais lenta que a segunda. Numa mesma figura, esboce o perfil da curva da reação não-
catalisada e da reação catalisada pelo NO2(g). 
 
Resolução: 
 
Como o mecanismo na presença do catalisador ocorre em duas etapas, a mais lenta é a que possui 
maior energia de ativação, que deve ser menor do que a energia de ativação do processo não-
catalisado. 
 
 
 
Comentário da prova de Química 
 
A prova de Química do vestibular do ITA 2008 perdeu o brilhantismo dos últimos dois anos. Em 
alguns casos, premiou apenas a memória do aluno, como nas questões 1, 15, 16, 17 e 20, em que o 
candidato não teve chance de desenvolver qualquer tipo de raciocínio. 
Destaque positivo, nos testes, para as questões 7, 12 e 14. 
Na parte dissertativa, destaque negativo para a questão 21, em que se pede a estrutura de AAS2, e 
para a questão 28, em que se pedem características de um elemento de número atômico muito elevado. 
Na questão 25, o equívoco do enunciado já foi mencionado na própria resolução. 
Sentimos falta de uma melhor exploração dos seguintes assuntos: 
– equilíbrio iônico da água; – reações inorgânicas; – estrutura atômica; 
– ligações químicas; – isomeria; – radioatividade; 
– propriedades físicas e químicas de compostos.

Continue navegando