Buscar

Cap1 elementos de combustão

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 3, do total de 37 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 6, do total de 37 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 9, do total de 37 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Prévia do material em texto

Elementos de Combustão - Pedro Teixeira Lacava 
Capítulo 1 – Termoquímica: Balanços de Massa e Energia 
 1
CAPÍTULO 1 
 
TERMOQUÍMICA: BALANÇOS DE MASSA E ENERGIA 
 
 
 Neste primeiro capítulo, o processo de combustão é analisado através da 
termodinâmica, realizando balanços de massa e energia. O termo termoquímica será utilizado 
para designar o tratamento termodinâmico aplicado a sistemas reativos. Basicamente, um 
estudo termodinâmico baseia-se no conhecimento das condições iniciais e finais do processo, 
sem abordar os fenômenos que ocorrem entre esses dois estados. Por exemplo, na geração de 
vapor em uma caldeira a termodinâmica se preocupa em caracterizar as condições de entrada 
do líquido neste dispositivo e as condições do vapor na sua saída. No entanto, em uma 
primeira análise, não se estuda o processo de transferência de calor dos gases de combustão 
para a tubulação por onde se desenvolve o escoamento de líquido ou vapor. Transpondo esse 
raciocínio para um sistema reativo, através da termoquímica é possível definir o estado dos 
reagentes e produtos em condição de equilíbrio, sem se preocupar com os detalhes das reações 
químicas envolvidas. Por exemplo, conhecendo as condições de uma mistura de metano 
(CH4) e oxigênio é possível determinar a composição, a temperatura e a pressão dos produtos 
de combustão em equilíbrio. A Figura 1.1 resume os comentários feitos no presente parágrafo. 
 
 
 
 
Figura 1.1 – Abordagem termodinâmica para um sistema reativo. 
 
 
1.1 – Conservação de Massa 
 
 Uma definição de combustão conveniente para o tipo de abordagem em questão pode 
ser dada como sendo “a oxidação dos constituintes do combustível que são capazes de serem 
oxidados através de rápidas reações exotérmicas”. Desta forma, todo carbono (C) contido no 
combustível é oxidado para dióxido de carbono (CO2), todo hidrogênio (H2) para água (H2O), 
todo enxofre (S) para dióxido de enxofre (SO2), assim por diante. 
 
 
 
Elementos de Combustão - Pedro Teixeira Lacava 
Capítulo 1 – Termoquímica: Balanços de Massa e Energia 
 2
 Uma simplificação do processo de combustão é feita assumindo que ele possa ser 
escrito como uma reação química única do tipo: 
 
Combustível + Oxidante ⇒ Produtos. 
 
 Esta forma de descrever o processo de combustão é denominada reação global. Como 
exemplo, podemos escrever a reação global da combustão estequiométrica do propano (C3H8) 
com o ar. 
 
C3H8 + 5O2 ⇒ 3CO2 + 4H2O 
 
 Neste exemplo, o problema ficou restrito a uma reação global e a quatro espécies 
químicas. No entanto, é preciso ter em mente que na realidade a combustão ocorre em um 
sistema com dezenas de espécies e centenas de reações químicas. Entre os estados de reagente 
e produto estável de combustão, existem complexos mecanismos reacionais que produzem e 
consomem espécies intermediárias antes que a composição estável de equilíbrio seja atingida. 
Para o exemplo do propano, antes que o CO2 e H2O sejam os constituintes finais nos gases de 
combustão, espécies como C2H4, CH4, CO, OH, H2 .... são formadas e consumidas. Para a 
combustão de hidrocarbonetos (CxHy) existem mais de 1200 reações químicas intermediárias 
e mais de 50 espécies químicas envolvidas. No entanto, para abordagem termoquímica do 
problema, pode-se considerar apenas a reação global. 
 
 A massa de um constituinte em uma mistura é dada por: 
 
mi = Ni . Mwi , (1.1) 
 
onde mi é a massa do constituinte i, Ni número de mols do constituinte i e Mwi o peso 
molecular do constituinte i. Para uma mistura de k espécies, a massa total pode ser escrita 
como: 
 
mtot = Ntot . Mwtot = ∑∑
==
=
k
1i
ii
k
1i
i m.MwN . (1.2) 
 
 Como exemplo podemos calcular a massa dos reagentes e produtos da combustão de 
um mol de C12H26 com oxigênio em proporção estequiométrica. 
 
C12H26 + 18,5O2 ⇒ 12CO2 + 13H2. 
 
 Os pesos atômicos dos elementos químicos envolvidos são: MwC = 12g/mol, MwH = 
1g/mol e MwO = 16g/mol. Desta forma: 
 
MwC12H26 = 12MwC + 26MwH = 144 + 26 = 170g/mol, 
 
Mw02 = 2.16 = 32g/mol, 
 
MwCO2 = 12 + 2.16 = 44g/mol, 
 
MwH2O = 2.1 + 16 = 18g/mol. 
Elementos de Combustão - Pedro Teixeira Lacava 
Capítulo 1 – Termoquímica: Balanços de Massa e Energia 
 3
 As massas de reagentes e produtos são calculadas como: 
 
R
k
1R
R)(reagentestot .MwNm ∑== = 1.170 + 18,5.32 = 762g, 
 
P
k
1P
P(produtos)tot .MwNm ∑== = 12.44 + 13.18 = 762g, 
 
ou seja, os resultados mostram a conservação de massa durante o processo. No entanto, isso já 
não ocorre para o número total de mols. 
 
 ∑
=
k
1i
)(reagentesiN = 1 + 18,5 = 19,5. 
 
∑
=
k
1i
(produtos)iN = 12 + 13 = 25. 
 
Fração Mássica (mfi) 
 
 A massa de cada espécie de uma mistura de gases pode ser apresentada em termos da 
massa total da mistura: 
 
mfi = (mi/mtot), (1.3) 
 
sendo que: 
 
∑
=
k
1i
imf =1. 
 
Fração Molar (xi) 
 
 Algumas vezes é mais conveniente descrever as misturas quimicamente reativas em 
base molar. Para uma mistura com k espécies químicas a fração molar xi para cada espécie i é 
dada por: 
 
xi = (Ni/Ntot), (1.4) 
 
sendo que: 
 
∑
=
k
1i
ix =1. 
 
Relação Entre mfi e xi 
 
 Substituindo a equação (1.1) na equação (1.3) temos: 
 
Elementos de Combustão - Pedro Teixeira Lacava 
Capítulo 1 – Termoquímica: Balanços de Massa e Energia 
 4
mfi =
tot
ii
m
.MwN . (1.5) 
 
Recuperando a equação (1.4) e substituindo Ni na equação (1.5): 
 
mfi =
tot
itoti
m
.MwN .x . (1.6) 
 
Substituindo a equação (1.2) em (1.6): 
 
mfi =
tot
ii
Mw
.Mwx . (1.7) 
 
Retomando a equação (1.2), ainda podemos escrever: 
 
Mwtot = i
k
1i
ii
k
1i tot
i .Mwx.Mw
N
N ∑∑
==
=⎟⎟⎠
⎞
⎜⎜⎝
⎛
. 
 
Substituindo o resultado para Mwtot na equação (1.7), finalmente podemos escrever a 
relação entre mfi e xi na forma conveniente: 
 
mfi =
∑
=
k
1i
ii
ii
.Mwx
.Mwx . (1.8) 
 
Exemplo1.1 
 Para a condição atmosférica padrão, a composição do ar em fração molar pode ser 
reapresentada como: 78% de N2, 21% de O2 e 1% de Ar. Calcular: a) o peso molecular da 
mistura; b) as frações mássicas de N2, O2 e Ar; e c) a constante específica para o ar [J/kg.K]. 
 
Solução: 
 
a) O peso molecular do ar (Mwair) pode ser obtido como: 
 
Mwair = i
k
1i
i .MwN∑
=
= 0,21.32 + 0,78.28 + 0,01.40 = 28,96g/mol. 
 
b) Utilizando a equação (1.8): 
 
mfo2 = 28,96
0,21.32 = 0,232, 
 
mfN2 = 28,96
0,78.28 = 0,754, 
 
Elementos de Combustão - Pedro Teixeira Lacava 
Capítulo 1 – Termoquímica: Balanços de Massa e Energia 
 5
mfAr = 28,96
0,01.40 = 0,014. 
 
c) A constante específica. 
 
Rair = ol28,96kg/km
.K8314J/kmol
Mw
R = = 287J/kg.K 
 
 
1.2 – Reação de Combustão 
 
 Além da conservação de massa e da consideração de reação global (Combustível + 
Oxidante ⇒ Produtos), na resoluçãode diversos problemas de combustão assume-se a 
hipótese de combustão completa, ou seja, a presença de produtos de oxidação completa 
estáveis, que para o caso da combustão dos hidrocarbonetos (CxHy) são CO2 e H2O. Tal 
hipótese é bastante razoável até a temperatura de 1500oC, acima desse valor os compostos de 
oxidação completa podem sofrer dissociação e surgem na mistura os compostos de oxidação 
parcial como o CO, H2, OH, H, entre outros, além de O2 e O. Como exemplo, a Figura 1.2 
mostra as porcentagens de CO2 e CO em função da temperatura, para combustão 
estequiométrica do metano com o ar, sendo que tais valores são resultados de um cálculo de 
equilíbrio químico, assunto tratado no capítulo 2. 
 
 
500 1000 1500 2000 2500 3000
temperatura [C ]
0
2
4
6
8
10
%
 v
ol
um
ét
ric
a 
no
s 
ga
se
s 
de
 c
om
bu
st
ão
CO2
CO
o 
 
Figura 1.2 – Porcentagem volumétrica do CO2 e CO em função da temperatura dos gases para 
combustão estequiométrica do metano com ar. 
 
 É importante observar que no interior de uma câmara de combustão facilmente se 
atinge temperatura suficiente para que ocorra a dissociação. No entanto, a medida que os 
gases são resfriados em razão das trocas térmicas, há uma tendência de recombinação dos 
Elementos de Combustão - Pedro Teixeira Lacava 
Capítulo 1 – Termoquímica: Balanços de Massa e Energia 
 6
compostos de oxidação parcial em compostos de oxidação completa. Assim, se admitirmos 
uma câmara de combustão como um volume de controle onde em sua saída a temperatura é 
inferior a 1500oC, o tratamento apresentado no presente capítulo torna-se bastante adequado. 
Por exemplo, em uma câmara de combustão de um motor a jato (turbina a gás) nas 
proximidades da região de chama a temperatura é extremamente elevada e o processo de 
dissociação ocorre com facilidade; por outro lado, no final da câmara a temperatura é inferior 
a 1000oC, para segurança do material da turbina. Neste caso, se tomarmos a câmara toda 
como um volume de controle, podemos considerar apenas os produtos de oxidação completa 
na sua saída. 
O cálculo mais apurado que leva em conta as reações de dissociação será discutido no 
capítulo 2 sobre equilíbrio químico. Por hora a hipótese de combustão completa é suficiente 
para a pressente abordagem termoquímica. 
 
1.2.1 – Oxidantes 
 
 Na maioria dos processos de combustão o ar é utilizado como oxidante, ou seja, como 
fonte de oxigênio, evidente que pela sua disponibilidade e baixo custo de emprego. Como 
exemplo, podemos citar os motores de combustão interna a pistão, as turbinas a gás (motor a 
jato para aplicação aeronáutica) e as mais variadas aplicações no setor industrial (caldeiras, 
fornos, incineradores, etc.). Sua composição aproximada em base volumétrica é dada por: xO2 
= 0,2095, xN2 = 0,7808, xAr = 0,0093, xCO2 = 0,0003 e x(outros gases) = 0,0001. Para cálculos de 
engenharia, considera-se a composição do ar como sendo: xO2 = 0,21 e xN2 = 0,79. Fazendo 
xN2/xO2 = 0,79/0,21 = 3,76, nota-se que o ar contém 3,76 moléculas de nitrogênio para cada 
molécula de oxigênio. Em base mássica essa relação fica: 
 
mfO2 = 0,233 ou 23,2% 
 
mfN2 = 0,768 ou 76,8% 
 
 Normalmente, para propulsão de foguete, utiliza-se como oxidantes compostos com 
teor de oxigênio maior do que o ar, pois, neste caso, além do combustível, o próprio oxidante 
é embarcado. Para foguetes a propelente líquido, o tetróxido de nitrogênio (N2O4) é utilizado 
como oxidante da monometil hidrazina (N2H3CH3) para motores de pequeno porte 
empregados na propulsão de satélites, ou da dimetil hidrazina assimétrica (N2H2(CH3)2) para 
motores maiores. Sua composição mássica é dada por: 
 
mfO = 2.144.16
4.16
+ = 0,689 ou 69,6%, 
 
mfN = 2.144.16
2.14
+ = 0,304 ou 30,4%. 
 
 Alguns motores de grande porte, principalmente os de origem russa, utilizam oxigênio 
líquido (criogênico) para oxidar o querosene. Para os propelentes sólidos do tipo composite, o 
perclorato de amônia (NH4ClO4) é utilizado como oxidante, e sua composição em base 
mássica é: 
 
Elementos de Combustão - Pedro Teixeira Lacava 
Capítulo 1 – Termoquímica: Balanços de Massa e Energia 
 7
mfO = =+++ 1.35,54.11.14 4.16
4.16 0,545 ou 54,5%, 
 
mfN = =117,5
1.14 0,119 ou 11,9%, 
 
mfH = =117,5
4.1 0,034 ou 3,4%, 
 
mfCl = =117,5
1.35,5 0,302 ou 30,2%. 
 
 Como citado, a grande maioria dos processos de combustão industrial utiliza o ar 
como oxidante. Contudo, uma tecnologia que vem ganhando espaço é o enriquecimento do 
oxidante, ou seja, uma mistura com porcentagem volumétrica de oxigênio acima dos 21% do 
ar atmosférico. Do ponto de vista térmico, o nitrogênio presente no ar é inerte, ou seja, apenas 
absorve a energia liberada pelas reações de combustão; assim, diminuindo sua concentração, 
mais energia estará disponível para o processo industrial. Enriquecendo a mistura para 
porcentagens acima dos 21% a vazão total dos gases diminui, a eficiência térmica aumenta e o 
consumo de combustível reduz. Tal procedimento ganho interesse nas últimas décadas em 
razão do aumento do preço dos combustíveis em relação ao preço do oxigênio, principalmente 
devido à crise do petróleo e a diminuição dos custos de produção do oxigênio com avanço das 
técnicas criogênicas de separação do ar. Hoje em dia é bastante comum o enriquecimento do 
oxidante nos fornos de fusão de vidro e em câmaras de incineração. 
 
1.2.2 – Combustão Estequiométrica e com Excesso de Oxidante 
 
 A quantidade mínima de oxidante requerida para ocorrência de combustão completa é 
denominada de estequiométrica. Como exemplo vamos determinar os coeficientes para reação 
global de um mol de metano com ar em proporção estequiométrica. 
 
CH4 + x.(O2 + 3,76N2) ⇒ y.CO2 + z.H2O + x.3,76N2. 
 
Através do balanço de cada elemento químico na reação, os coeficientes podem ser 
determinados. 
 
balanço de C: 1 = y 
balanço de H: 4 = 2.z ⇒ z = 2 
balanço de O: 2x = 2y + z ⇒ x = 2 
 
Portanto, a reação global de 1 mol de metano com ar em proporção estequiométrica 
fica: 
 
CH4 + 2O2 + 7,52N2 ⇒ CO2 + 2H2O + 7,52N2. 
 
 Neste caso, foi considerado que o nitrogênio não sofre reação química, ou seja, é 
inerte. No entanto, no final da combustão está com a temperatura e pressão dos demais 
produtos de combustão. É importante observar que acima de 1500K reações envolvendo o N2 
Elementos de Combustão - Pedro Teixeira Lacava 
Capítulo 1 – Termoquímica: Balanços de Massa e Energia 
 8
e formando óxidos de nitrogênio (NOx) passam a ser favorecidas. No entanto, na maioria dos 
casos, a presença destes compostos é de algumas dezenas de parte por milhão (p.p.m.) em 
base volumétrica, podendo ser desconsiderados em um cálculo de combustão global. Os 
óxidos de nitrogênio são poluentes altamente combatidos, mesmo se apresentando em baixas 
concentrações nos gases de combustão podem causar sérios problemas ao homem e ao meio 
ambiente. Em uma seção do capítulo referente à emissão de poluentes será dada atenção a 
estes compostos. 
 
 É importante observar que na prática a combustão completa dificilmente é atingida 
quando o oxidante é fornecido em quantidade estequiométrica, pois também depende da 
eficiência da mistura entre o combustível e o oxidante. Para minimizar o problema os 
queimadores e as câmaras de combustão podem ser projetados para sustentar uma condição de 
queima turbulenta, aumentando a taxa de mistura entre os reagentes. Normalmente, também é 
comum utilizar excesso de oxidante para que cada molécula de combustível encontre o 
número correspondente de moléculas de oxigênio. Em geral, utilizam-se excessos de 1% a 2% 
para combustão de combustíveis gasosos, 5% a 10% para líquidos e acima de 25% para 
sólidos (carvão). A reação de combustão de um mol de metano com 50% de excesso de ar é 
escrita como segue. 
 
CH4+ (1,5).(2O2 + 7,52N2) ⇒ CO2 + 2H2O + 11,28N2 + (3 – 2)O2. 
 
Com um excesso de oxidante normalizado genérico α a reação fica: 
 
CH4 + (α).(2O2 + 7,52N2) ⇒ CO2 + 2H2O + α.7,52N2 + 2.(α – 1)O2. 
 
Generalizando para a combustão de um hidrocarboneto qualquer (CxHy) com excesso 
de ar normalizado genérico (α) temos: 
 
CxHy + (α).(x + y/4).(O2 + 3,76N2) ⇒ (x)CO2 + (y/2)H2O + (α).(x + y/4).(3,76)N2 + 
 
+ (x + y/4).(α – 1)O2. 
 
1.2.3 – Combustão Com Falta de Oxidante 
 
 Neste caso, a combustão ocorre com a quantidade de oxidante fornecido inferior à 
estequiométrica. Para os hidrocarbonetos, considera-se que parte do carbono não é 
completamente oxidada formando CO. Para queima de um mol de metano com ar e uma 
deficiência genérica de oxidante β a equação de combustão fica: 
 
CH4 + β.(2O2 + 7,52N2) ⇒ aCO2 + bCO + 2H2O + β.7,52N2. 
 
balanço de C: 1 = a + b 
balanço de O: 4β = 2a + b + 2, portanto: a = 4β – 3 e b = 4.(1 – β). 
 
 Analisando o resultado do balaço de elementos químicos podemos escrever: 
1) se β = 1 (estequiometria) ⇒ b = 0, não há formação de CO; 
2) se β > 1 (excesso de oxidante) ⇒ b apresenta valor negativo e não há solução; 
3) se β < 0,75 o coeficiente a é negativo e não há solução. 
Elementos de Combustão - Pedro Teixeira Lacava 
Capítulo 1 – Termoquímica: Balanços de Massa e Energia 
 9
Assim, para o caso do metano, a análise fica restrita a valores de 1 ≥ β ≥ 0,75. Por 
exemplo, para combustão com deficiência de oxidante de 10%, ou seja, β = 0,9, os 
coeficientes serão a = 0,6 e b = 0,4. 
 
Para o caso discutido, não significa que para valores de β inferiores a 0,75 não haja 
combustão, mas será necessário considerar que a deficiência de oxidante agora afeta a 
oxidação do hidrogênio presente no combustível e a quantidade de água nos produtos da 
combustão reduz em detrimento da presença de H2. Desta forma, a equação global de 
combustão fica: 
 
CH4 + β.(2O2 + 7,52N2) ⇒ CO + cH2O + dH2 + β.7,52N2. 
 
 A aproximação de que a redução progressiva do oxidante na combustão do 
hidrocarboneto primeiramente causa uma redução do CO2 para formação do CO e, 
posteriormente, redução de H2O para formação de H2, é um tanto grosseira do ponto de vista 
da composição dos gases de combustão. Contudo, levando em conta apenas o balanço de 
massa, é o que se pode fazer. 
 
 A Figura 1.3 mostra o resultado de um cálculo de equilíbrio para as frações molares do 
CO e H2 para combustão do metano com ar em diferentes condições de deficiência de 
oxidante (β) e com os reagentes a 25 oC. Nota-se que a redução de β sempre aumenta 
concomitantemente as frações molares de CO e H2. Além disso a quantidade de H2, mesmo 
para β´s mais próximos de um, não é desprezível em relação à quantidade de CO, e para β´s 
extremamente ricos (β < 0,7) a quantidade de H2 pode se tornar bem superior a do CO. O 
comportamento qualitativo da Figura 1.3 pode ser estendido para outros hidrocarbonetos. 
 
0.40 0.50 0.60 0.70 0.80 0.90 1.00
β
0.00
0.05
0.10
0.15
0.20
fra
çã
o 
m
ol
ar
CO
H2
 
Figura 1.3 – Cálculo de equilíbrio químico para as frações molares de CO e H2 para 
combustão do metano com deficiência de ar (β). 
 
 No Capítulo 2 do presente texto, após as considerações de equilíbrio químico, a 
assunto combustão rica em combustível será explorado com mais propriedade. 
Elementos de Combustão - Pedro Teixeira Lacava 
Capítulo 1 – Termoquímica: Balanços de Massa e Energia 
 10
 1.2.4 – Relações Entre os Reagentes 
 
 Normalmente a relação entre as quantidades de reagentes é representada por um dos 
três parâmetros: razão oxidante – combustível (OF), razão combustível – oxidante (FO) e 
razão de equivalência (φ). 
 
 Sendo mox e mF as massas de oxidante e combustível, respectivamente, em base 
mássica temos: 
 
OF = mox/mF, (1.9) 
 
FO = mF/mox. (1.10) 
 
 Em base molar: 
 
*OF = Nox/NF, (1.11) 
 
*FO = NF/Nox, (1.12) 
 
onde Nox e NF são os números de mols de oxidante e combustível, respectivamente, sendo que 
* indica a relação em base molar. A razão de equivalência é mais usual, pois além de 
relacionar as quantidades de combustível e oxidante, indica a condição de combustão. 
 
triaestequiome
operação
triaestequiomeox
F
operaçãoox
F
(*FO)
(*FO)
N
N
N
N
=
⎟⎠
⎞⎜⎝
⎛
⎟⎠
⎞⎜⎝
⎛
=φ . (1.13) 
 
Se: 
 
1) φ < 1 ⇒ combustão pobre em combustível (excesso de oxidante); 
2) φ = 1 ⇒ combustão estequiométrica; 
3) φ > 1 ⇒ combustão rica em combustível (falta de oxidante). 
 
Exemplo 1.2 
 Para combustão do hidrogênio (H2) e oxigênio (O2) com 20% de excesso de oxidante 
calcular: (a) a fração molar de cada reagente; (b) a fração mássica de cada reagente; (c) a 
razão OF; (d) a razão *OF; (e) a razão de equivalência φ. 
 
Solução: 
 
Reação estequiométrica para um mol de H2: 
 
H2 + ½O2 ⇒ H2O 
 
 Com 20% de excesso de ar (α = 1,2): 
 
H2 + (1,2).½O2 ⇒ H2O + (0,6 – 0,5)O2, 
Elementos de Combustão - Pedro Teixeira Lacava 
Capítulo 1 – Termoquímica: Balanços de Massa e Energia 
 11
H2 + 0,6O2 ⇒ H2O + 0,1O2. 
 
(a) Fração Molar. 
 
xH2 = 0,61
1
+ = 0,625 
 
xO2 = 0,61
0,6
+ = 0,375 
 
(b) Fração Mássica. 
 
 Utilizando a equação (1.8). 
 
mfi = 
∑
=
k
1i
ii
ii
.Mwx
.Mwx
 
 
mfH2 = 0,375.320,625.2
0,625.2
+ = 0,0943 
 
mfO2 = 0,375.320,625.2
0,375.32
+ = 0,9057 
 
(c) OF 
 
OF = (mox/mF) = (mfox.mtot)/(mfF.mtot) = mfO2/mfH2 = 0,0943
0,9057 = 9,6 kg de O2/kg de H2. 
(d) *OF 
 
*OF = (Nox/NF) = (xox.Ntot/xF.Ntot) = xO2/xF = 0,375/0,625= 0,6 mol de O2/mol de H2. 
 
(e) φ ( )( ) 0,8330,510,6
1
N
N
OF
1
(*FO)
(*FO)
triaestequiomeox
F
operação
*
triaestequiome
operação ==
⎟⎠
⎞⎜⎝
⎛
⎟⎠
⎞⎜⎝
⎛
==φ 
Obs: 1/α = 1/1,2 = 0,833, ou seja: 
 
φ = 1/α. 
 
1.2.5 – Análise dos Produtos de Combustão 
 
 A análise dos produtos de combustão pode ser importante para as situações: 
 
a) avaliar o processo de combustão (medidas de CO, O2 e CO2); 
Elementos de Combustão - Pedro Teixeira Lacava 
Capítulo 1 – Termoquímica: Balanços de Massa e Energia 
 12
b) quando não se conhece a vazão de um dos reagentes, a medida dos gases de combustão 
completa o balanço de massa, e a vazão desse reagente pode ser determinada; 
c) concentração de gases poluentes. 
 
Os analisadores de gases apresentam o resultado em porcentagem volumétrica, ou 
seja, em fração molar. 
 
xi = 
∑
=
k
1i
i
i
N
N
, (1.14) 
 
sendo i = H2O, O2, CO2, N2 .....etc. 
 
 Em geral os instrumentos que medem a porcentagem dos gases fornecem os valores 
em base seca, isto é, sem a presença de água. A água pode liqüefazer no interior do aparelho 
analisador, interferindo no seu sistema de medição. Assim, a linha deve conter um separador 
de água. Em base seca (subscrito BS) a porcentagem volumétrica fica: 
 
xi BS = 
∑
=
k
1i
i
i
N
N , (1.15) 
 
sendo: i = O2, CO2, N2 .....etc. e i ≠ H2O. 
 
 Para exemplificar, retorna-se à equação de combustão completa de um molde um 
hidrocarboneto qualquer com ar e um excesso de oxidante genérico α: 
 
CxHy + (α).(x + y/4).(O2 + 3,76N2) ⇒ (x)CO2 + (y/2)H2O + (α).(x + y/4).(3,76)N2 + 
 
+ (x + y/4).(α – 1)O2, 
 
fazendo: 
 
η = NCO2 + NO2 + NN2 = ∑
=
k
1i
iN , com i ≠ H2O, 
 
η = (x) + (x + y/4).(α – 1) + (α).(x + y/4).(3.76). 
 
Assim as porcentagens volumétricas dos produtos de combustão podem ser calculadas 
como: 
 
xiBS = (x + y/4).(α – 1) / (η), 
 
xCO2BS = (x) / (η), 
 
xN2BS = (α).(x + y/4).(3.76) / (η). 
 
Elementos de Combustão - Pedro Teixeira Lacava 
Capítulo 1 – Termoquímica: Balanços de Massa e Energia 
 13
 Em base úmida: 
 
xO2 = [(x + y/4).(α – 1)] / [(η) + (y/2)], 
 
xCO2 = (x) / [(η) + (y/2)], 
 
xN2 = [(α).(x + y/4).(3.76)] / [(η) + (y/2)], 
 
xH2O = (y/2) / [(η) + (y/2)]. 
 
Exemplo 1.3 
 Um motor a pistão queima C12H26 (aproximação do diesel) e ar em proporção 
estequiométrica. A análise da porcentagem volumétrica de O2 em base seca nos produtos de 
combustão encontrou 1,2%. Baseado nesta análise, determine as concentrações de CO e CO2 
em base seca nos produtos de combustão. 
 
Solução: 
 
 Escrevendo a reação de combustão completa estequiométrica para 1 mol de C12H26: 
 
C12H26 + 18,5.O2 + 69,56N2 ⇒ 12CO2 + 13H2O + 69,56N2. 
 
 Para situação de combustão incompleta (considerando apenas CO como produto de 
combustão incompleta): 
 
C12H26 + 18,5.O2 + 69,56N2 ⇒ aCO2 + bCO + 13H2O + cO2 + 69,56N2. 
 
balanço C: a + b = 12 
balanço O: 37 = 2.a + b + 13 + 2c 
 
 A concentração de O2 em base seca é dada por: 
 
xO2BS = 69,56c12
c
69,56cba
c
++=+++ = 0,012 
 
 Através do balanço dos elementos químicos e da concentração de O2 encontramos 
que: a = 10, b = 2 e c = 1. Desta forma, a reação global fica: 
 
C12H26 + 18,5.O2 + 69,56N2 ⇒ 10CO2 + 2CO + 13H2O + 1O2 + 69,56N2 
 
e as concentrações: 
xCOBS = 69,561210
2
+++ = 0,0242 ou 2,42%, 
 
xCO2BS = 69,561210
10
+++ = 0,1211 ou 12,11%. 
 
 
Elementos de Combustão - Pedro Teixeira Lacava 
Capítulo 1 – Termoquímica: Balanços de Massa e Energia 
 14
1.2.6 – Cálculo de Vazão de Ar Baseado na Análise de O2 
 
 Escrevendo novamente a equação de combustão completa para um mol de um 
hidrocarboneto qualquer com ar e um excesso de oxidante genérico α: 
 
CxHy + (α).(x + y/4).(O2 + 3,76N2) ⇒ (x)CO2 + (y/2)H2O + (α).(x + y/4).(3,76)N2 + 
 
+ (x + y/4).(α – 1)O2, 
 
fazendo: 
 
j = (α).(x + y/4) ⇒ coeficiente do O2 nos reagentes, 
 
ε = (x +y/4).(α – 1) ⇒ coeficiente do O2 nos produtos. 
 
Assim, o balanço de O fica: 
 
2j = 2x + y/2 + 2ε, 
ε = j – x – y/4. 
 
 A massa de ar para um mol de combustível é calculada como: 
 
mar = j.(32+ 3,76.28). 
 
 A concentração de O2 obtida através da equação: 
 
 xO2BS = ε++
ε
j.3,76x
, 
 
ou: 
 
j.3.76 = x1.
2
2 −⎥⎦
⎤⎢⎣
⎡ −
BSO
BSO
x
xε . 
 
 Substituindo o valor de ε obtido no balanço de O na equação anterior: 
 
j.3.76 = ( ) ⎥⎦
⎤⎢⎣
⎡ −+−−⎥⎦
⎤⎢⎣
⎡ −
BSO
BSO
BSO
BSO
x
x
x
x
2
2
2
2 1.y/4xx1j. 
 
 
e arranjando a equação resultante de uma forma conveniente para se obter o valor de j temos: 
 
Elementos de Combustão - Pedro Teixeira Lacava 
Capítulo 1 – Termoquímica: Balanços de Massa e Energia 
 15
 j = 
( )
3,761
1.y/4 x x
2
2
2
2
−⎥⎦
⎤⎢⎣
⎡ −
⎥⎦
⎤⎢⎣
⎡ −++
BSO
BSO
BSO
BSO
x
x
x
x
. (1.16) 
 
Exemplo 1.4: 
 Em uma câmara de combustão queima-se 3g/s de propano (C3H8) com ar. A análise 
volumétrica em base seca de O2 na saída da câmara indica o valor 2%. Determine a razão de 
equivalência da combustão e a vazão mássica de ar. 
 
Solução: 
 
 Com o a análise de O2 (xO2BS = 0,02) calcula-se o valor de j através da equação (1.16). 
 
j = 
( )
3,76
0,02
0,021
0,02
0,0218/4 3 3
−⎥⎦
⎤⎢⎣
⎡ −
⎥⎦
⎤⎢⎣
⎡ −++ .
= 5,482 
 
 Antes de obter os valores da razão de equivalência e da vazão mássica de ar, vamos 
verificar se o valor de j está correto. Escrevendo a reação para combustão estequiométrica de 
1mol de propano com ar: 
 
C3H8 + 5O2 + 18,8N2 ⇒ 3CO2 + 4H2O + 18,8N2. 
 
 Combustão de 1mol de propano com j de O2: 
 
C3H8 + 5,482(O2 + 3,76N2) ⇒ 3CO2 + 4H2O + 20,612N2 + 0,482O2. 
 
 Calculando a concentração de O2 em base mássica nos produtos para combustão com j 
de O2: 
 
xO2BS = 20,61230,482
0,482
++ = 0,02; 
 
portanto, como o valor da concentração de O2 foi recuperado, o valor de j calculado utilizando 
a equação (1.16) está correto. O valor da razão de equivalência pode ser obtido através do 
valor do excesso de oxidante normalizado α. 
 
α = 5,482/5 = 1,0964 
 
φ = 1/α = 1/1,0964 = 0,912 
 
 Para cada mol de propano são utilizados 5,482 mols de O2 e 20,612 mols de N2. O 
peso molecular do propano é 44g/mol; portanto, 3g/s de propano correspondem a 3/44 = 
0,0682 mols/s de propano. Assim, para 0,0682 mols/s de propano: 
Elementos de Combustão - Pedro Teixeira Lacava 
Capítulo 1 – Termoquímica: Balanços de Massa e Energia 
 16
 
0,0682.5,482 = 0,374 mols de O2 /segundo, 
 
0,374.3,76 = 1,406 mols de N2/segundo, 
 
sendo a vazão mássica de ar calculada como: 
 
51,361,406.280,374.32mar
. =+= g/s. 
 
1.2.7 – Determinação da Composição nos Gases de Combustão 
 
Uma maneira comum de detectar continuamente o CO e o CO2 em produtos de 
combustão consiste no uso de um analisador tipo infravermelho. Um instrumento deste tipo 
produz radiação de duas fontes diferentes. Uma vez produzida, esta radiação passa através de 
um “chopper” e, depois, por um sistema ótico destinado a eliminar interferências de outros 
componentes que absorvem radiação infravermelha. A radiação proveniente de uma das 
fontes passa por uma célula onde a amostra flui continuamente. Durante a operação, uma 
porção da radiação infravermelha é absorvida pelo componente de interesse na célula da 
amostra. Um detetor converte a energia resultante em uma carga de capacitor. Esta carga, 
equivalente à concentração do componente de interesse, é amplificada e indicada no painel 
frontal do instrumento, ou transmitida para um gravador de dados ou controlador. Uma curva 
de calibração provida pelo fabricante é utilizada para converter as leituras do painel frontal ou 
do gravador para valores de concentração. Um analisador tipo infravermelho também pode ser 
usado para detectar outros gases, como SO2, CH4, NO e NH3, dependendo do gás existente no 
detetor. 
 
Para detectar continuamente o O2 em gases de combustão é comum utilizar 
analisadores paramagnéticos. Estes instrumentos usam a propriedade paramagnética do 
oxigênio. Um material paramagnético é atraído por um campo magnético, enquanto um 
diamagnético é repelido. O oxigênio é um dos poucos gases paramagnéticos. A magnetização 
produzida por um campo magnético em um gás paramagnético varia inversamente com a 
temperatura. Consequentemente, através da combinação apropriada do gradiente do campo 
magnético e gradiente térmico, é possível a obtenção de medidas da concentração de um 
elemento paramagnético em determinada amostra. Estes equipamentos são conhecidos como 
analisadores termomagnéticos, nos quais variações da intensidade do fluxo magnético são 
medidas através da mudança temperatura a qual provoca uma alteração na resistência elétrica 
dos termistores. 
 
O método de quimiluminescência é normalmente utilizado para obter as concentrações 
dos óxidos de nitrogênio. Tal método emprega a energia eletromagnética que é emitida 
quando o NO reage com ozônio (O3) para formar NO2 e O2. Cerca de 10 % das moléculas de 
NO2 produzidas encontram-se em um estado eletromagnético excitado ( *2NO ), estado este 
que imediatamente se reverte para o estado padrão (“ground state”), com emissãode energia 
eletromagnética (hν). O esquema reacional é, então: 
 
1NO+ 1 O3 → 0,1 *2NO + 0,9NO2 + 1 O2, 
0,1 *2NO → 0,1NO2 + hν. 
Elementos de Combustão - Pedro Teixeira Lacava 
Capítulo 1 – Termoquímica: Balanços de Massa e Energia 
 17
 
 A energia eletromagnética liberada é diretamente proporcional à concentração de NO 
na amostra e é medida através de um tubo fotomultiplicador. O ozônio necessário para a 
reação de quimiluminescência é suprido por um gerador de ozônio que é parte dos 
instrumentos que se utilizam desta técnica. Os aparelhos analisadores não medem as 
concentrações de NO2 individualmente, mas somente as de NO ou de NOx (a soma de NO e 
NO2). Para medidas de concentrações de NOx, a amostra segue um caminho diferente no 
instrumento, passando, antes da reação com O3, por um conversor termocatalítico de carvão 
ativado que transforma, no mínimo, 95 % de NO2 em NO. 
 
 Em gases de combustão onde o vapor d’água é um dos produtos, a amostra deve ser 
completamente seca antes da análise pelos instrumentos do tipo infravermelho. A água líquida 
na célula da amostra interfere na medida de concentração por alterar a quantidade de radiação 
absorvida pela amostra. Pela mesma razão, partículas não podem entrar na célula da amostra e 
devem ser removidas. As análises feitas por instrumentos dos tipos infravermelho e 
paramagnético não são destrutivas, ou seja, não alteram a composição da amostragem de 
gases; portanto, esses instrumentos podem ser acoplados em série. No entanto, se alguma 
análise exigir um instrumento que altere a composição da amostra, como é o caso dos 
analisadores quimiluminescentes utilizados para medir a concentração de NOx, uma derivação 
especial na linha deve ser prevista para essa análise. A Figura 1.4 mostra um esquema de uma 
linha de amostragem típica para análise de CO, CO2 e O2, também prevendo uma derivação 
para que se aproveite a mesma linha de amostragem para análise destrutiva de NOx. 
 
 O gás para calibrar o zero de cada instrumento pode ser o N2. Para cada componente 
de interesse, deve-se providenciar uma mistura do mesmo em N2 para obter uma referência de 
calibração de fundo de escala do instrumento. Deve-se especificar a concentração destas 
misturas como 90 % do fundo de escala do instrumento. Isto é necessário porque o fabricante 
da mistura não tem condições de prepará-la na concentração exata desejada, podendo ocorrer 
erros na preparação de até % 10± . No entanto, depois de preparada a mistura, o fabricante 
tem condições de determinar as concentrações com precisão e fornecer um certificado de 
análise. 
 
Muitas vezes a análise de gases é feita em regiões da câmara de combustão onde a 
temperatura é elevada, necessitando que a sonda de captação dos gases tenha uma 
refrigeração especial. Normalmente, isso é conseguido através do resfriamento dos gases de 
combustão ainda na sonda trocando calor em contra corrente com água fria que escoa através 
de uma jaqueta externa. A Figura 1.5 apresenta uma configuração típica de sonda refrigerada 
que é posicionada horizontalmente em fornalhas verticais. 
Elementos de Combustão - Pedro Teixeira Lacava 
Capítulo 1 – Termoquímica: Balanços de Massa e Energia 
 18
 
 
Figura 1.4 – Esquema de linha de amostragem de gases para análise de CO, CO2, O2 e NOx. 
 
 A refrigeração da sonda não é somente importante para a resistência térmica do 
material de sua confecção, mas também para estancar as reações químicas no seu interior. 
Caso contrário, dependendo da temperatura, as reações químicas ainda podem se desenvolver 
ao longo da linha de amostragem de gases e os valores da análise podem não ser mais 
representativos. Desta forma, as reações devem ser interrompidas o mais próximo possível do 
ponto de amostragem. A 300oC, praticamente todas as reações de combustão são 
interrompidas. 
 
 
 
Figura 1.5 – Configuração típica de uma sonda refrigerada. 
Elementos de Combustão - Pedro Teixeira Lacava 
Capítulo 1 – Termoquímica: Balanços de Massa e Energia 
 19
1.3 – Conservação de Energia 
 
 A aplicação do princípio da conservação de energia, também conhecido como 
primeira lei da termodinâmica, aos estudos dos processos de combustão permite que, além da 
composição obtida através do balanço de massa, encontremos a temperatura dos produtos. 
 
1.3.1 – Entalpia Absoluta, Entalpia de Formação e Entalpia Sensível 
 
 A definição de entalpia absoluta é dada como sendo a soma da entalpia relacionada 
com as ligações químicas (entalpia de formação) e a entalpia associada somente com a 
mudança de temperatura (entalpia sensível). Portanto: 
 
is,
0
if,i hhh ∆+= , (1.17) 
 
onde hi é a entalpia do composto i para uma da temperatura T e pressão P, 0if,h a entalpia de 
formação do composto i para uma condição padrão de referência (Tref e Pref) e ∆hs,i a entalpia 
sensível, que corresponde a diferença de entalpia do composto i entre a condição que ele se 
encontra (T e P) e a condição padrão (Tref e Pref). Adota-se como condição padrão de 
referência Tref = 298K e Pref = 1atm. Para compostos que correspondem ao estado natural de 
ocorrência de elementos químicos na condição padrão, a entalpia desses compostos nesta 
condição é adotada como zero. Por exemplo, o estado natural de ocorrência do oxigênio, ou o 
estado em que ele se encontra em maior abundância a 298K e 1atm não é o oxigênio atômico 
(O), mas o oxigênio molecular (O2); portanto, entalpia do O2 na condição padrão é zero. Outro 
exemplo é o carbono, a 298K e 1atm sua forma mais abundante de ocorrência é como grafite 
e não como diamante; portanto, e entalpia de formação do carbono na forma de grafite é zero. 
Assim, 0hhhh 0H2f,
0
N2f,
0
O2f,
0
Cf, ==== . A interpretação física para entalpia de formação é dada 
como sendo a entalpia associada com a quebra de ligações químicas de elementos padrão e 
formação de novas ligações químicas para criação de um novo composto. 
 
 Como exemplo, podemos calcular a entalpia absoluta em base molar do O e O2 a 
4000K. 
 
 
4000
298Os,
0
Of,
*
O
* hhh
(4000)
∆+= * = 249195 + 77678 = 326873 kJ/kmol. 
 
4000
298O2s,
0
O2f,
*
O2
* hhh
(4000)
∆+= * = 0 + 138705 = 138705 kJ/kmol. 
 
 A Figura 1.6 apresenta uma representação gráfica do cálculo da entalpia absoluta do O 
e O2. É importante observar que assumindo o comportamento de gás ideal para o composto, a 
entalpia passa a ser apenas função da temperatura, ou seja, h(T,P) = h (T). 
 
 
 
 
Elementos de Combustão - Pedro Teixeira Lacava 
Capítulo 1 – Termoquímica: Balanços de Massa e Energia 
 20
 
Figura 1.6 – Representação da entalpia absoluta para O e O2 a 4000K. 
 
 Numericamente, a entalpia de formação de um composto é igual ao calor trocado pelo 
volume de controle onde ocorre a reação entre elementos padrão para formação desse 
composto em questão, de tal forma que tanto os reagentes como os produtos estão na 
condição padrão (T = 298K e P = 1atm). A Figura 1.7 esquematiza esse processo para o CO2. 
Nesse caso, os reagentes (C e O2) estão na condição padrão e, para que o produto (CO2) 
também esteja, o volume de controle (VC) libera 393546J. A Tabela 1.1 apresenta valores de 
entalpia de formação para diversos compostos. 
 
 
 
Figura 1.7 – Esquema para obter a entalpia de formação do CO2. 
 
 Escrevendo a primeira lei da termodinâmica na forma extensiva para a situação 
apresentada na Figura 1.7: 
 
Qvc = HP – HR , 
 
Elementos de Combustão - Pedro Teixeira Lacava 
Capítulo 1 – Termoquímica: Balanços de Massa e Energia 
 21
Qvc = R
*
k
1R
RP
*
k
1P
P h.Nh.N ∑∑
==
− , 
 
(298)O2
*
(298)C
*
(298)CO2
*
vc hhhQ −−= , 
 
como (298)C
*h e (298)O
*h 2 sãoiguais a zero, a entalpia de formação do CO2 é calculada como: 
 
mol-94052cal/l393546J/mohh
(298)CO2
*0
CO2f,
* =−== . 
 
 No caso da formação do CO2 é necessário a liberação de energia através do VC; daí o 
sinal negativo da entalpia de formação. Por outro lado, para a formação de alguns outros 
compostos ocorre justamente o contrário, ou seja, é necessário acrescentar energia ao VC e a 
entalpia de formação possui sinal positivo. Como exemplo, pode-se citar a formação do 
oxigênio molecular, conforme a Figura 1.8. 
 
 
Figura 1.8 – Esquema para obter a entalpia de formação do O. 
 
 Aplicando a primeira lei da termodinâmica: 
 
Qvc = HP – HR , 
 
(298)(298) O2
*
O
*
vc hh2.Q −= 
 
ol59545cal/ml249195J/mo
2
498390
2
Qh vc0Of,
* ==== 
 
Valores de entalpia sensível (∆hs,i) em função da temperatura podem ser encontrados 
em diversos textos na forma de tabela. Contudo, para facilitar a apresentação e utilização 
desses valores, a partir dos dados tabelados em Turns (1996), geraram-se as curvas 
apresentadas nas Figuras 1.9 e 1.10, que apresentam a entalpia sensível em função da 
temperatura para os principais gases produtos de combustão. Tais curvas são polinômios do 
terceiro grau que surgiram do ajuste de 11 pontos entre as temperaturas de 200K e 5000K. Os 
coeficientes dos polinômios estão reunidos na Tabela 1.2. 
 
 
 
 
Elementos de Combustão - Pedro Teixeira Lacava 
Capítulo 1 – Termoquímica: Balanços de Massa e Energia 
 22
Tabela 1.1 – Entalpia de formação (*h0f,i) para diversos compostos. Valores extraídos de 
Carvalho Jr (2002), com exceção de (*) e (#) extraídos de Turns (1996) e Borman e Ragland 
(1998), respectivamente. 
 
Composto i Fórmula *h0f,i [kJ/kmol] 
Água (l) H2O -285906 
Água (g) H2O -241884 
Álcool etílico (l) C2H5OH -277674 
Amônia (g) NH3 -45867 
Benzeno C6H6 83076 (*) 
Butano (g) C4H10 -124729 (*) 
Carbono (s, grafite) C 0 
Carbonato de cálcio (s) CaCO3 -1211557 
Dióxido de carbono (g) CO2 -393546 
Dióxido de enxofre (g) SO2 -296883 
Dióxido de Nitrogênio (g) NO2 33095 (*) 
Eteno (g) C2H4 -84687 
Hidrazina (l) N2H4 50471 
Hidrogênio molecular (g) H2 0 
Hidrogênio atômico (g) H 217975 (*) 
Hidroxila (g) OH 38979 (*) 
Metano (g) CH4 -74865 
Metanol CH3OH -201499 (#) 
Monometil hidrazina (l) N2H3CH3 53149 
Monóxido de carbono (g) CO -110541 
Nitrogênio molecular (g) N2 0 
Nitrogênio atômico (g) N 472628 
n-Decano (g) C10H22 -249659 (*) 
n-Dodecano (g) C12H26 -292159 
n-Heptano (g) C7H16 -187818 (*) 
n-Octano (g) C8H18 -208446 (*) 
Óxido de cálcio (g) CaO -634864 
Óxido Nítrico (g) NO 90295 (*) 
Oxigênio atômico (g) O2 0 
Oxigênio atômico (g) O 249195 
Perclorato de amônio (s) NH4ClO4 -314838 
Peróxido de hidrogênio (l) H2O2 -187279 
Propano (g) C3H8 -103968 
Sulfato de cálcio (s) CaSO4 -1417585 (*) 
Sulfato de Sódio (s) Na2SO4 -1383143 
Tetróxido de nitrogênio (l) N2O4 -28458 
Dimetil hidrazina assimétrica (l) N2H2(CH3)2 53249,94 
Obs: (g) composto como gás, (l) líquido e (s) sólido. 
 
 
 
 
 
Elementos de Combustão - Pedro Teixeira Lacava 
Capítulo 1 – Termoquímica: Balanços de Massa e Energia 
 23
0 1000 2000 3000 4000 5000
temperatura [K]
-50000
0
50000
100000
150000
200000
250000
300000
[k
J/
km
ol
]
CO
CO2
H2
H
H2O
O
 
 
Figura 1.9 – Entalpia sensível (*∆hs,i) em função da temperatura para os compostos: CO, CO2, 
H2, H, H2O e O. 
 
 
0 1000 2000 3000 4000 5000
Temperatura [K]
-50000
0
50000
100000
150000
200000
250000
300000
[k
J/
km
ol
]
N2
N
OH
NO
NO2
O2
 
 
Figura 1.10 – Entalpia sensível (*∆hs,i) em função da temperatura para os compostos: N2, N, 
OH, NO, NO2 e O2. 
 
 
 
 
Elementos de Combustão - Pedro Teixeira Lacava 
Capítulo 1 – Termoquímica: Balanços de Massa e Energia 
 24
Tabela 1.2 – Coeficientes dos polinômios de terceiro para as curvas apresentadas nas Figuras 
1.8 e 1.9. 
 
*∆hs,i = a + b.T + c.T2 + d.T3 [kJ/kmol] 
Composto i a b c d 
CO -8802,31 28,5383 0,00252052 -2,25265.10-7 
CO2 -13106,40 41,9064 0,00615158 -5,72228.10-7 
H2 -8098,13 26,5580 0,00222622 -1,07581.10-7 
H -6196,76 20,7859 0 0 
OH -8281,70 27,0173 0,00234796 -1,62134.10-7 
H2O -9445,18 29,3863 0,00694574 -5,52529.10-7 
N2 -8678,80 28,1214 0,00255465 -2,25647.10-7 
N -6326,00 21,2820 -0,000373156 7,44124.10-8 
NO -9091,08 29,5552 0,0023332 -2,11716.10-7 
NO2 -12960,40 41,7093 0,00502622 -4,96671.10-7 
O2 -9126,59 29,7605 0,00249182 -1,70734.10-7 
O -6392,14 21,4915 -0,000307603 4,69437.10-8 
Obs: entrar com a temperatura em Kelvin no polinômio. 
 
A entalpia sensível ainda pode ser calculada através do calor específico a pressão 
constante (Cp): 
 
∫=∆
T
298
T
298is,
Cp(T).dTh . (1.18) 
 
 Se o Cp for adotado como constante (em geral para 1200K): 
 
( )298TCp.h T
298is,
−=∆ . (1.19) 
 
 A Tabela 1.3 apresenta expressões de Cp para diversos compostos. 
 
Tabela 1.3 – Expressões de Cp em função da temperatura para diversos compostos. 
Expressões extraídas de Carvalho Jr (2002). 
 
Composto Expressão para *Cp [cal/mol.K] Intervalo [K] 
CH4 (g) 5,34 + 0,0115.T 273 – 1200 
CO (g) 6,60 + 0,00120.T 273 – 2500 
CO2 (g) -0,8929 + 0,7297.T1/2 –9,807.10-3.T + 5,784.10-7.T2 300 – 3500 
H2 (g) 6,62 + 0,00081.T 273 – 2500 
H2O (g) 8,22 + 0,00015.T + 0,00000134.T2 300 – 2500 
N2 (g) 6,50 + 0,00100.T 300 – 3000 
NH3 (g) 6,70 + 0,00630.T 300 – 800 
NO (g) 8,05 + 0,000233.T – 156300.T-2 300 – 5000 
O2 (g) 8,27 + 0,000258.T – 187700.T-2 300 – 5000 
Obs: entrar com a temperatura em Kelvin nas expressões. 
 
 
Elementos de Combustão - Pedro Teixeira Lacava 
Capítulo 1 – Termoquímica: Balanços de Massa e Energia 
 25
Exemplo 1.5: 
 Uma mistura gasosa de CO, CO2 e N2 a 1atm e 1200K contém 0,10 e 0,20 de frações 
molares para CO e CO2, respectivamente. Determine a entalpia absoluta da mistura em base 
molar (kJ/kmol). 
 
Solução 
 
 Para um mol de mistura: 
 
i
*
k
1 i
imix
* h.xh ∑
=
= , 
 
⎟⎠
⎞⎜⎝
⎛ ∆++⎟⎠
⎞⎜⎝
⎛ ∆++⎟⎠
⎞⎜⎝
⎛ ∆+= 1200
298N2s,
0
N2f,
*
N2
1200
298CO2s,
0
CO2f,
*
CO2
1200
298COs,
0
COf,
*
COmix
* hhxhhxhhxh *** , 
 
utilizando respectivamente as Tabelas 1.1 e 1.2 para 0if,
*h e is,
* h∆ : 
 
*hmix = 0,10.(-110541 + 28683) + 0,20.(-393546 + 45051) + 0,70.(0 + 28356), 
 
*hmix = -58035,6kJ/kmol(mix). 
 
 Em base mássica 
 
(mix)
i
k
1 i
i
mix
*
mix kg1859,39kJ/0,10.280,20.440,70.28
58035,6
.Mwx
hh −=++
−==
∑
=
. 
 
 
1.3.2 – Entalpia de Combustão e Poder Calorífico 
 
 Define-se entalpia de combustão (HRP) como a diferença entre a entalpia dos produtos 
e a entalpia dos reagentes, quando ocorre combustão completa a uma dada temperatura e 
pressão, ou seja: 
 
HPR = HP – HR, (1.20) 
( ) ( )∑∑
==
+−+=
k
1R
Rs,
*0
Rf,
*
R
k
1P
Ps,
*0
Pf,
*
PPR ∆hhN∆hhNH . (1.21) 
 
 A Figura 1.11 representa essa situação para condição padrão. 
 
Elementos de Combustão - Pedro Teixeira Lacava 
Capítulo 1 – Termoquímica: Balanços de Massa e Energia 
 26
 
 
Figura 1.11 – Representação de como é obtida a entalpia de combustão. 
 
 Aplicando a primeira lei da termodinâmica ao volume de controle da Figura 1.11: 
 
∑∑
==
−==
k
1R
0
Rf,
*
R
k
1P
0
Pf,
*
PvcPR hNhNQH .. .(1.22) 
 
 Escrevendo a reação global de combustão para um mol de um hidrocarboneto 
qualquer com ar: 
 
CxHy + NO2.O2 + NN2.N2 ⇒ NCO2.CO2 + NH2O.H2O + NN2.N2, 
 
aplicando a equação 1.22 para essa reação: 
 
0
N2f,
*
N2
0
O2f,
*
O2
0
CxHyf,
*0
N2f,
*
N2
0
H2Of,
*
H2O
0
CO2f,
*
CO2PR hNhNh1hNhNhNH ...... −−−++= , 
 
ou 
 
0
CxHyf,
*0
H2Of,
*
H2O
0
CO2f,
*
CO2PR hhNhNH −+= .. (1.23) 
 
 Assim, a equação (1.23) é utilizada para calcular a entalpia de combustão de um 
hidrocarboneto qualquer com ar na condição padrão. Para outros combustíveis ou oxidantes o 
procedimento é análogo. Graficamente a entalpia de combustão pode ser representada como 
na Figura 1.12. 
 
 O poder calorífico (“Heating Value” na língua inglesa) é numericamente igual à 
entalpia de combustão, mas com sinal trocado. Pode-se interpretar o poder calorífico como 
sendo a máxima energia possível de ser liberada pelo combustível durante a combustão com 
um determinado oxidante. 
 
PC = – HRP (1.24) 
 
 Quando toda água formada pela combustão está no estado líquido, o poder calorífico 
atinge o valor máximo e passa a ser denominado como poder calorífico superior (PCS). Já o 
poder calorífico inferior (PCI) corresponde à situação onde a água está totalmente vaporizada. 
Elementos de Combustão - Pedro Teixeira Lacava 
Capítulo 1 – Termoquímica: Balanços de Massa e Energia 
 27
 
 
Figura 1.12 – Representação gráfica de entalpia de combustão. 
 
 Retornando a equação (1.21): 
 
0
(?)H2Of,
*
H2O
0
CO2f,
*
CO2
0
CxHyf,
* hNhNhPC .. −−= . (1.25) 
 
 Como a entalpia de formação da água no estado líquido pode ser escrita como: 
 
H2OL,
*0
(g)H2Of,
*0
(l)H2Of,
* hhh −= , (1.26) 
 
onde 0 (g)H2Of,
*h é a entalpia de formação da água no estado gasoso e H2OL,
*h o calor latente de 
vaporização da água. A relação entre os poderes caloríficos superior e inferior fica: 
 
PCS = PCI + NH2O.*hL,H2O . (1.27) 
 
 Além disso, a relação entre o poderes caloríficos nos estados líquido e gasoso é dada 
por: 
 
 PC(líquido) = PC(gasoso) - *hL,F , (1.28) 
 
onde *hL,F é o calor latente de vaporização do combustível. 
 
A Tabela 1.4 apresenta o poder calorífico de alguns combustíveis. 
 
 
 
 
 
 
 
Elementos de Combustão - Pedro Teixeira Lacava 
Capítulo 1 – Termoquímica: Balanços de Massa e Energia 
 28
Tabela 1.4 – Poder calorífico superior (PCS) e poder calorífico inferior (PCI) para diversos 
compostos. Valores extraídos de Turns (1996), com exceção de (*) e (#) extraídos de Borman 
e Ragland (1998) e Carvalho Jr (2002), respectivamente. 
 
Composto Fórmula PCS [kJ/kmol] PCI [kJ/kmol] 
Acetileno (g) C2H2 1297998 1253850 
Carbono (s) C 393608 --------- (#) 
Etano (g) C2H6 1557180 1424670 
Etanol (l) C2H5OH 1364728 1232938 (*) 
Eteno (g) C2H4 1408764 1320508 
Hidrogênio H2 285906 241884 (#) 
Metano (g) CH4 888448 800256 
Metanol (l) CH3OH 725216 637280 (*) 
Monóxido de carbono CO 283057 --------- (#) 
n-Butano (g) C4H10 2879205 2659082 (#) 
n-Butano (l) C4H10 2857702 2637579 (#) 
n-Dodecano (g) C12H26 8132970 7559390 
n-Decano (g) C10H22 6818840 6333484 
n-Decano (l) C10H22 6779951 6295705 (#) 
n-Heptano (g) C7H16 4845600 4492600 
n-Heptano (l) C7H16 4818064 4465855 
n-Octano (g) C8H18 5513528 5106174 
n-Octano (l) C8H18 5472013 5075777 (#) 
Propano (g) C3H8 2216192 2039708 
Obs: (g) composto como gás, (l) líquido e (s) sólido. 
 
 
Exemplo 1.6: 
 Calcular o PCI e o PCS para o n-decano (C10H22) nos estados líquido e gasoso. 
 
Dados: 
mol249659kJ/kh0 (g)C10H22f,
* −= , mol393546kJ/kh0CO2f,* −= , mol241884kJ/kh0 H2Of,* (g) −= , 
ol44010kJ/kmh H2OL,
* = e ol50978kJ/kmh FL,* = . 
 
Solução: 
 
 Escrevendo a equação de combustão completa do C10H22 com oxigênio: 
 
C10H22 +15,5.O2 ⇒ 10.CO2 + 11.H2O . 
 
 O poder calorífico inferior para o combustível gasoso pode ser calculado através da 
equação (1.23). 
 
0
(g)H2Of,
*0
CO2f,
*0
C10H22f,
*
(g) h11h10-hPCI .. −= = – 249659 + 10.(393546) + 11.(241884) 
PCI(g) = 6346525kJ/kmol 
 
Elementos de Combustão - Pedro Teixeira Lacava 
Capítulo 1 – Termoquímica: Balanços de Massa e Energia 
 29
 Já o poder calorífico superior para o combustível gasoso é calculado diretamente da 
equação (1.25). 
 
 PCS(g) = PCI(g) + NH2O.*hL,H2O = 6346525 + 11.(44010) 
PCS(g) = 6830635kJ/kmol 
 
 Para o poder calorífico inferior do combustível líquido, utiliza-se a equação (1.28). 
 
PCI(l) = PCI(g) - *hL,F = 6346525 – 50978 
PCI(l) = 6295547kJ/mol 
 
 Finalmente, utiliza-se essa mesma equação para obter o poder calorífico superior do 
líquido. 
 
PCS(l) = PCS(g) – *hL,F = 6830635 – 50978 
PCS(l) = 6779657kJ/kg 
 
 Nota-se que os valores calculados no exemplo estão próximos ao apresentados na 
Tabela 4.1. 
 
 
1.3.2 – Temperatura de Chama Adiabática 
 
 Uma das maiores aplicações do estudo de conservação de energia na termoquímica, ou 
seja, a aplicação da primeira lei da termodinâmica para o processo de combustão, é a possível 
obtenção da temperatura de chama adiabática. Nessa situação considera-se que toda energia 
liberada pelas reações exotérmicas está contida nos produtos de combustão; sendo assim, não 
há troca de calor com o ambiente ou com a parede da câmara. Portanto, a temperatura de 
chama adiabática corresponde a maior temperatura que pode ser alcançada nos produtos de 
combustão, para uma dada condição dos reagentes. 
 
 Basicamente, a temperatura de chama adiabática depende das condições iniciais dos 
reagentes (pressão e temperatura), da composição dos reagentes, do tipo de processo 
envolvido (se a pressão ou a volume constante) e da razão de equivalência. Em geral, a 
máxima temperatura ocorre nas proximidades da condição estequiométrica. Para os processos 
com excesso de oxidante, utiliza-se parte da energia liberada pelas reações para aquecer o 
oxidante excedente, consequentemente a temperatura é mais baixa. Já para a situação com a 
quantidade de oxidante menor que a estequiométrica, parte das reações exotérmicas, como, 
por exemplo, a conversão do CO em CO2, acaba não ocorrendo e menos energia é liberada, 
resultando em uma temperatura mais baixa para os produtos de combustão. A Figura 1.13 
representa o comportamento da temperatura em função do excesso de oxidante α. 
 
Elementos de Combustão - Pedro Teixeira Lacava 
Capítulo 1 – Termoquímica: Balanços de Massa e Energia 
 30
 
Figura 1.11 – Representação do comportamento da temperatura de chama adiabática em 
função do excesso de oxidante (α). 
 
 Com já mencionado, nesta fase usaremos a primeira lei da termodinâmica para obter a 
temperatura de chama adiabática. A equação (1.29) descreve a primeira lei na sua forma 
simplificada, ou seja: o calor trocado (Q) através da fronteira de um volume de controle é 
igual ao trabalho realizado (W) mais a variação de energia interna (∆U). 
 
Q = W + ∆U = P.∆V + ∆U, (1.29) 
 
onde ∆V é a variação de volume. Escrevendo a entalpia em função da energia interna: 
 
H = U + P.V ,(1.30) 
 
portanto: 
 
∆H = ∆U + P.∆V + V.∆P . (1.31) 
 
 Para um processo a pressão constante: 
 
∆H = ∆U + P.∆V , (1.32) 
 
e a primeira lei fica: 
 
Q = ∆H . (1.33) 
 
 Para um processo a volume constante (P.∆V = 0): 
 
Q = ∆U , (1.34) 
 
mas utilizando a equação (1.31) nessa situação: 
 
∆H = ∆U + V.∆P , 
 
portanto: 
Elementos de Combustão - Pedro Teixeira Lacava 
Capítulo 1 – Termoquímica: Balanços de Massa e Energia 
 31
 
Q = ∆H – V.∆P . (1.35) 
 
 Escrevendo a equação de estado para os reagentes e os produtos de uma reação: 
 
PR.V = R.TR.∑
=
k
1R
RN , 
PP.V = R.TP.∑
=
k
1P
PN . 
 
 Substituindo esse resultado (∆P = PR – Pp) na equação (1.35), finalmente podemos 
escrever a primeira lei da termodinâmica para um processo a volume constante como: 
 
Q = ∆H –R. ⎟⎟⎠
⎞
⎜⎜⎝
⎛ − ∑∑
==
k
1P
P
k
1R
PRR N.TN.T . (1.36) 
 
 É importante observar que para o cálculo da temperatura de chama adiabática Q = 0. 
 
 Conforme discutido, a entalpia em base molar de um composto a uma dada 
temperatura pode ser calculada como: 
 
T
298is,
0
if,
** hhhi ∆+= * . (1.37) 
 
Exemplo 1.7: 
 Estime a temperatura de chama adiabática a pressão constante e a volume constante 
para a mistura em proporção estequiométrica CH4/ar. Os reagentes se encontram a 1atm e 
298K. 
 
Solução: 
 
Adotou-se: 
1) combustão completa; 
2) T
298is,
h∆ estimado usando Cp a 1200K. 
 
Escrevendo a reação global de combustão: 
 
CH4 + 2O2 + 7,52N2 ⇒ CO2 + 2H2O + 7,52N2 . 
 
⇒ Processo a pressão constante. 
 
 Utilizando a equação (1.33) para um processo adiabático: 
 
∆H = O, ou: HR = HP 
0
4CHf,
*
k
1R
R
*
RR h1hNH .. == ∑
=
 
Elementos de Combustão - Pedro Teixeira Lacava 
Capítulo 1 – Termoquímica: Balanços de Massa e Energia 
 32
( ) ( ) ( )TCph7,52TCph2TCph1hNH *0N2f,**0H2Of,**0fCO2,*k
1P
P
*
PP ∆++∆++∆+== ∑
=
....... 
 
 Os valores de entalpia de formação e calor específico utilizados estão resumidos na 
tabela abaixo. 
 
 
i 
0
if,
*h 
[kJ/kmol] 
*Cpi (1200K) 
[kJ/(kmol.K)] 
CH4 -74865 ----- 
CO2 -393546 56,21 
H2O -241884 43,87 
N2 0 33,71 
O2 0 ----- 
 
HR = 1.(-74865)kJ 
 
HP = 1.[-393546 + 56,21.(T – 298)]CO2 + 2.[-241884 +43,87. (T – 298)]H2O +7,52.[0 + 
 33,71.(T – 298)]N2 
 
Hp = –877314 + 397,5.(T – 298) 
 
 Igualando HR a HP: 
 
T = 2317K . 
 
Obs: para cálculo de T
298is,
h∆ , se a equação (1.18) tivesse sido utilizada o resultado de T seria 
2332K. Através de um programa de equilíbrio químico, onde as reações de dissociação são 
consideras, o valor de T atinge 2226K. 
 
 
⇒ Processo a Volume Constante 
 
 Para a situação adiabática, a equação (1.36) fica: 
 
∆H –R. ⎟⎟⎠
⎞
⎜⎜⎝
⎛ − ∑∑
==
k
1P
P
k
1R
PRR N.TN.T = 0 
 
 No presente caso NR = NP = 10,52 e R = 8,135kJ/(kmol.K); desta forma: 
 
-74865– [–877314 + 397,5.(T – 298)] – 8,315.10,52.(298 – T) = 0 
 
T = 2889K 
 
 A pressão no final do processo pode ser facilmente encontrada através da relação: 
 
Elementos de Combustão - Pedro Teixeira Lacava 
Capítulo 1 – Termoquímica: Balanços de Massa e Energia 
 33
PR /TR = PP /TP ⇒ PP = 9,69298
1.2889 = atm 
 
Obs: para as mesmas condições iniciais, a combustão a volume constante resulta em uma 
temperatura mais elevada, 571K a mais. Isto é uma consequência das forças de pressão que 
realizam trabalho quando o volume é fixado. 
 
 
1.3.3 – Considerações Para Aplicação da 1o Lei da Termodnâmica 
 
 Supondo que os reagentes entrem em uma câmara de combustão com temperatura T1 
diferente da temperatura para condição padrão (298K), sofram um processo de combustão a 
pressão constante e que os produtos deixam a câmara com temperatura T2. Para a situação 
onde NCxHy mols de um hidrocarboneto qualquer reage com ar, a reação global de combustão 
considerando que a água está em fase gasosa, pode ser escrita como: 
 
NCxHy.CxHy + #NO2.O2 + NN2.N2 ⇒ NCO2.CO2 + NH2O.H2O(g) + NO2.O2 + NN2.N2 . (1.38) 
 
 Escrevendo a primeira lei da termodinâmica para um processo adiabático: 
 
HR = HP 
 
=⎥⎦
⎤⎢⎣
⎡ ∆+⎥⎦
⎤⎢⎣
⎡ ∆+⎥⎦
⎤⎢⎣
⎡ ∆+ 1T
298N2s,N2
1T
298O2s,O2
#1T
298CxHys,
0
CxHyf,
*
CxHy hN hNhhN
*** ... 
+⎥⎦
⎤⎢⎣
⎡ ∆+⎥⎦
⎤⎢⎣
⎡ ∆++⎥⎦
⎤⎢⎣
⎡ ∆+= 2T
298O2s,O2
2T
298g
H2Os,
0
gH2Of,
*
gH2O
2T
298CO2s,
0
CO2f,
*
CO2 hNhhNhhN
*** ... 
⎥⎦
⎤⎢⎣
⎡ ∆+ 2T
298N2s,N2
hN *. , 
 
reagrupando 
 
 
+∆+∆=−− 2T
298g
H2Os,gH2O
2T
298CO2s,CO2
0
gH2Of,
*
gH2O
0
CO2f,
*
CO2
0
CxHyf,
*
CxHy hNhNhNhNhN
** ..... 
1T
298N2s,N2
1T
298O2s,O2
#1T
298CxHys,CxHy
2T
298O2s,O2
2T
298N2s,N2
hNhNhNhNhN ∆−∆−∆−∆+∆+ ***** ..... . 
 
(1.39) 
 
 Utilizando a relação (1.25) para o lado esquerdo da equação (1.39), finalmente 
podemos escrever a primeira lei da termodinâmica para um processo a pressão constante na 
forma: 
 
T1
298Rs,
k
1R
R
T2
298Ps,
k
1P
PCxHyCxHy h.N h.NPCIN ∆−∆= ∑∑
==
**. . (1.40) 
 
 Fazendo o mesmo raciocínio para um processo a volume constante, chega-se a: 
Elementos de Combustão - Pedro Teixeira Lacava 
Capítulo 1 – Termoquímica: Balanços de Massa e Energia 
 34
 
 
⎥⎦
⎤⎢⎣
⎡ −+∆−∆= ∑∑∑∑
====
k
1R
R2
k
1P
P1
T1
298Rs,
k
1R
R
T2
298Ps,
k
1P
PCxHyCxHy NT NTRh.N h.NPCIN ....
** . (1.41) 
 
 Para um processo não adiabático deve-se levar em conta o calor trocado através da 
fronteira do volume de controle. Para o caso onde os reagentes entram a 298K, sofrem o 
processo de combustão a pressão constante e os gases trocam calor com a parede da câmara, a 
primeira lei da termodinâmica pode ser escrita como: 
 
W
T2
298Ps,
k
1P
PCxHyCxHy Q h.NPCIN +∆= ∑
=
*. , (1.42) 
 
onde Qw é o calor trocado com a parede da câmara. Para o mesmo caso, mas sabendo que 
10% da energia liberada pelas reações de combustão é perdida para parede, podemos 
escrever: 
 
 h.NPCI0,9.N
T2
298Ps,
k
1P
PCxHyCxHy ∆= ∑
=
*. 
 
Exemplo 1.8: 
 Em um protótipo de um pequeno motor aeronáutico do tipo estato-jato (“ramjet”) 
queima-se n-octano gasoso (C8H18) com ar. No banco de ensaio desse motor, a vazão mássica 
de ar é fixada em 100g/s. O material de construção do protótipo não suporta temperaturas 
acima 1573K. Qual a máxima vazão mássica de combustível que poderá ser ensaiada nesse 
banco mantendo a combustão com excesso de ar? Qual o excesso de oxidante nesta condição 
extrema? Admitir: combustão completa, reagentes a 298K, processo adiabático e usar a 
Tabela 1.2 para *∆hs,i. 
 
Solução: 
 
 A primeira lei da termodinâmicapara esta situação fica: 
 
 h.NPCIN
T2
298Ps,
k
1P
PCxHyCxHy ∆= ∑
=
*. . 
 
 Escrevendo a reação global de combustão para um kmol de combustível: 
 
C8H18 + α.12,5.O2 + α.47.N2 ⇒ 8CO2 + 9H2O + 12,5.(α - 1).O2 + α.47.N2 
 
Assim, a primeira lei fica: 
 
1573
298N2s,
1573
298O2s,
1573
298g
H2Os,
1573
298CO2s,CxHy
h47h1)(12,5h9h8PCI ∆α+∆−α+∆+∆= **** ...... . 
 
Dados tabelados: 
Elementos de Combustão - Pedro Teixeira Lacava 
Capítulo 1 – Termoquímica: Balanços de Massa e Energia 
 35
PCIC8H18 = 5106174 kJ/kmol, 
 
 h
1573
298N2s,
∆* = 40999 kJ/kmol, h 1573
298O2s,
∆* = 43188 kJ/kmol, h 1573
298CO2s,
∆* = 65806 kJ/kmol e 
 h
1573
298H2Os,
∆* =51815 kJ/kmol. 
 
 Substituindo o PCI e os valores de h
1573
298Ps,
∆* no balanço de energia, encontra-se α 
=1,886, ou seja, um excesso de oxidante de 88,6%. Como o peso molecular do C8H18 é igual 
114g/mol, a vazão mássica correspondente a 1mol/s de C8H18 é 114g/s e, para α =1,886, a 
vazão de ar é calculada por: 
 
mar = 1,886.(12,5.32 + 47.28) = 3236,37g/s ; 
 
assim, o consumo de combustível para 100g/s de ar e α =1,886 é: 
 
mC8H18 = (114.100) / 3236,37 = 3,52g/s 
 
 
Exemplo 1.9: 
 Utilizando o calor específico como função da temperatura (Tabela 1.3), calcular a 
temperatura de chama adiabática para combustão do metano com diversos excessos de ar. 
Assumir o processo a pressão constante e os reagentes a 298K. 
 
Solução: 
 
 A reação de um mol de metano e ar e com excesso genérico é dada por: 
 
CH4 + 2αO2 + 7,52αN2 ⇒ CO2 + 2H2O + 7,52αN2 + 2(α-1)O2 , 
 
onde α representa o excesso de ar normalizado. 
 
 O Balanço de energia pode ser resumido em: 
 
[ ]∫ −+++= F 2224 T
298
O
*
N
*
H2O
*
CO
*
CH .dTCp1).2.(αCp7,52α,Cp2.Cp1.PCI 
 
 Substituindo os resultados das Tabelas 3 e 4 (PCI em cal/mol): 
 
)].dT187700.T0,000258.T1).(8,272.(α
00100.T)07,52α,52α.).T0,000001340,00015.T2.(8,22
).T5,784.10.T9,807.100,7297.T0,8929[1.(191759
2
2
273
T
298
1/2
F
−
−−
−+−+
+++++
+−+−= ∫
 
 
 Lembrado que as integrações ficam: 
Elementos de Combustão - Pedro Teixeira Lacava 
Capítulo 1 – Termoquímica: Balanços de Massa e Energia 
 36
 
298TdT
FT
298
F −=∫ , 3/2298T.dTT
3/23/2
F
T
298
1/2
F −=∫ , 2298TT.dT
22
F
T
298
F −=∫ , 3
298T.dTT
33
F
T
298
2
F −=∫ e 
⎟⎟⎠
⎞
⎜⎜⎝
⎛ −−=∫ 2981T1.dTT F
T
298
2-
F
, 
 
tem-se como resultado: 
 
( ) ( )
( ) ( ) ( )
( ) ( ) ( )
( ) ⎟⎟⎠⎞⎜⎜⎝⎛ −−+−−+−−+
−+−+−+
−+−+−+
−−−+−−=
−
−
298
1
T
11).187702.(α298T
2
81).0,000252.(α298)1).8,27.(T2.(α
298T
2
1007,52α,52α.298T.7,52.α,52.298T
3
342.0,000001
298T
2
2.0,00015298T2.8,22.298T
3
5,784.10
298T
2
9,807.10298T
3/2
0,7297298)0,8929.(T191759
F
22
FF
22
FF
33
F
22
FF
33
F
7
22
F
3
3/23/2
FF
 
 
 Portanto, temos uma equação que relaciona a temperatura de chama adiabática com o 
excesso de ar normalizado (α). Se atribuirmos valores para α, podemos resolver 
numericamente a equação. A Figura 1.14 apresenta esse resultado. 
 
 
 
0 10 20 30 40 50 60
Excesso de ar normalizado [%]
1700
1800
1900
2000
2100
2200
2300
2400
Te
m
pe
ra
tu
ra
 d
e 
ch
am
a 
ad
ia
bá
tic
a 
[K
]
 
 
Figura 1.14 – Temperatura de chama adiabática para o metano em função do excesso de ar. 
 
Elementos de Combustão - Pedro Teixeira Lacava 
Capítulo 1 – Termoquímica: Balanços de Massa e Energia 
 37
Referências Bibliográficas 
 
1. VanWylen, G.J., Sonntag, R.E.; Fundamentos da Termodinâmica Clássica, Edgard 
Blucher, 2o edição, 1989. 
2. Turns, S.R.; An Introduction to Combustion, Concepts and Applications, McGraw-Hill, 
1996. 
3. Borman, G.L., Ragland, K.W.; Combustion Engineering, McGraw – Hill, 1998. 
4. Strehlow, R.A.; Combustion Fundamentals, McGraw-Hill, 1984. 
5. Keating, E.L.; Applied Combustion, 1993. 
6. Carvalho Jr., J.A. de; Combustão Tecnológica, Apostila, UNESP – Guaratinguetá, 1999. 
7. Carvalho Jr., J.ª de; Combustão Básica, Apostila, 9th Brazilian Congress of Thermal 
Engineering and Sciences, Caxambú, 2002.

Outros materiais