Buscar

Análise e Retro-análise de Vigas de Concreto Armado e Protendido

Prévia do material em texto

27 a 31 de Maio de 2002 – Universidade de Brasília – UnB 
Brasília, DF – Brasil 
 
 
 
Jornadas Sul-Americanas de Engenharia Estrutural 
 
 
Análise e Retro-análise de Vigas de Concreto Armado e Protendido 
sujeitas aos Fenômenos Viscoelásticos 
 
Hudson Chagas dos Santos 
Doutorando do Departamento de Engenharia de Estruturas e Fundações da 
Escola Politécnica, Universidade de São Paulo, São Paulo/SP - Brasil. 
e-mail: hudson.santos@poli.usp.br ou hud_santos@yahoo.com.br 
Homepage: http://www.lmc.ep.usp.br/people/hudson/ 
 
Paulo de Mattos Pimenta 
Professor Titular, Departamento de Engenharia de Estruturas e Fundações da 
Escola Politécnica, Universidade de São Paulo, São Paulo/SP - Brasil. 
e-mail: ppimenta@usp.br 
R e s u m o 
 Apresenta-se neste trabalho uma metodologia consistente e eficiente para a análise de vigas de concreto armado e protendido 
sujeitas à fluência, retração e fissuração do concreto, relaxação e eventuais plastificações das armaduras. 
 Após uma breve descrição da fluência é proposto um algoritmo de integração de tensões na viscoelasticidade, que permite a 
integração numericamente estável das tensões normais nas seções transversais da viga. É então proposta uma função geral de fluência 
que aproxima por séries exponenciais qualquer função de fluência empírica ou de norma, e que na integração de tensões não exige o 
armazenamento de todo histórico de tensões num ponto. Assim, a integração de tensões em um incremento de tempo depende apenas 
do conhecimento de parâmetros do início do incremento. Isto é crucial para uma análise eficiente, caso contrário, as necessidades de 
armazenamento de variáveis ficariam incontroláveis. 
 O algoritmo tem profundas conseqüências na metodologia exposta. No caso da viscoelasticidade linear do concreto, não se 
considerando a plastificação da armadura e a fissuração do concreto, este algoritmo, associado ao MEF, leva a um sistema de 
equações lineares em cada incremento de tempo. Por outro lado, se estes efeitos forem considerados, obtém-se um sistema de 
equações não -lineares. 
 Finalmente, analisa-se uma viga de concreto protendido com duas etapas de concretagem, onde se mostra a eficácia do 
procedimento proposto, visando analisar os efeitos viscoelásticos quando se têm concretos diferentes. A calibração da função geral 
de fluência é feita baseada na NBR-7197 e a análise numérica com a ajuda de um programa computacional através do MEF, seguindo 
a metodologia exposta. É abordado que quando se têm concretos diferentes, mudanças de sistema estruturais, adaptação por fluência, 
retração do concreto e relaxação da protensão, a questão de se analisar tais efeitos resulta em um problema de fácil solução e 
implementação computacional. 
A b s t r a c t 
 A reliable and efficient methodology for analyzing reinforced and prestressed concrete beams, taking into account the creep, 
shrinkage a nd cracking f the concrete, and possible reinforcement plastification is presented. 
 After a brief discussion about creep, a proposal for an algorithm of stresses integration on concrete viscoelasticity is 
suggested. This algorithm is able to integrate numerically the normal stresses in the cross section of the concrete beam. Thus, it is 
suggested a general creep function that can approximate by exponential series any ah-hoc creep function, or any creep function 
presented in codes. Such suggested creep function does not require the computational storage of the entire history of stresses in a 
specified time. Thus, the integration of the stresses in an increment of time just depends on knowing the data in the beginning of this 
increment. This fact is very important for an efficient analysis. In other hand, the necessity to store the computational internal 
variables might become out of control during the computing process analysis. 
 The algorithm has reliable consequences on the methodology presented. According to the linear concrete viscoelasticity 
analysis, not taking into account the effects of the reinforced plastification and the cracking of the concrete, the algorithm, working 
together with the Finite Element Method (FEM) results in a linear system in each increment of time. In other way, if these effects are 
considered, a non-linear system is obtained. 
 Finally, a two-concrete-stage-prestressed beam is analyzed in order to show the efficiency of the procedures proposed and 
developed for analyzing the viscoelasticity effects on beams made of different concretes. The adjust of the general creep function is 
based on NBR-7197 code and the numerical analysis is performed using a computational software framework developed according 
with the methodology presented in this work and based on FEM. The question for analyzing different concrete on a beam cross-
section, when it changes the structural system, has creep adaptation, shrinkage and retardation results on an easy-solution problem 
with a simple computational code. 
X X X J O R N A D A S S U L - A M E R I C A N A S D E E N G E N H A R I A E S T R U T U R A L 
 
1 
1 - I n t r o d u ç ã o 
 Este trabalho trata de uma metodologia consistente e eficiente baseada no Método dos Elementos Finitos (MEF) 
formulada através da Teoria de Barra de Timoshenko para se analisar vigas de concreto armado e protendido 
considerando os efeitos da deformação lenta, retração e fissuração do concreto, relaxação do aço de protensão e 
eventuais plastificações das armaduras. 
 Apesar dos estudos e das grandes produções teóricas acerca da viscoelasticidade e plasticidade em estruturas de 
concreto, juntamente com o crescimento das pesquisas sobre Mecânica do Dano e do Fraturamento, somente algumas 
delas procuram analisar tais problemas isoladamente a partir de processos computacionais mais modernos. Dentro desta 
idéia, este trabalho tem o intuito de apresentar uma abordagem mais consistente para solução do problema do 
comportamento conjunto dos fenômenos da viscoelasticidade, plasticidade, fissuração, para análise e retro-análise de 
estruturas de concreto, obtendo desta forma, métodos computacionalmente eficazes que possam analisar tais estruturas 
através do MEF. Vale ressaltar que as idéias aqui discutidas dão continuidade natural aos trabalhos de SANTOS[9]e 
SANTOS&PIMENTA[10], e este está organizado da seguinte forma: 
 Na seção 2 é apresentada uma rápida introdução ao fenômeno da fluência e retração no concreto conforme foi 
desenvolvida por SANTOS[9] e que também está sendo desenvolvida de forma mais rigorosa em 
SANTOS&PIMENTA[10]. A finalidade desta seção é mostrar alguns conceitos fundamentais sobre o comportamento 
viscoelástico do concreto, assim como a nomenclatura e notação empregada. São, então, analisados, na seção 3, alguns 
algoritmos de integração de tensões que possibilita a integração numericamente estável das tensões normais nas seções 
transversais da estrutura e que dão subsidio para a formulação de um algoritmo de Integração de Tensões baseados em 
uma Função Geral de Fluência, que foi proposta por SANTOS[9]. 
 Na seção 4 é apresentada uma Função Geral de Fluência que permite aproximar por séries exponenciais 
qualquer função de fluência, e que na integração de tensões não exige o armazenamento de todo histórico de tensões em 
um ponto, tendo assim um baixo custo computacional. Com isso, a integração de tensões em um incremento de tempo 
depende apenas do conhecimento de parâmetros do início do incremento. Isto é crucial para uma análise e retro-análise 
eficiente de estruturas de concreto, pois é desejável que a função de fluência facilite a integração de tensões com o 
mínimo de variáveis armazenadas e que permita uma fácil calibração com dados experimentais . Caso contrário, as 
necessidades de armazenamento computacional de variáveis internas ficariam incontroláveis durante a análise. 
 Ao longo deste trabalho é mostrado que a Função Geralde Fluência possibilita a modelagem da fluência para 
concretos jovens, fato importante nos projetos atuais, pois a protensão tem sido efetuada em pequenas idades do 
concreto, e que o algoritmo de integração de tensões tem profundas conseqüências em um procedimento de análise e 
retro-análise como discutido por SANTOS&PIMENTA[10]. 
 É mostrado, na seção 5, que o algoritmo de integração de tensões tem profundas conseqüências no procedimento 
de análise. No caso da viscoelasticidade linear do concreto, não se considerando a plastificação da armadura e a 
fissuração do concreto, o algoritmo proposto, associado ao MEF, leva a um sistema de equações lineares em cada 
incremento de tempo. Por outro lado, se estes efeitos forem considerados, este algoritmo leva a um sistema de equações 
não-lineares. 
 Finalmente, na seção 7, é processado e exposto um exemplo prático de uma viga de concreto protendido com 
duas etapas de concretagem, onde se mostra a eficácia do procedimento aqui proposto, visando analisar o 
comportamento viscoelástico quando se têm concretos diferentes. A calibração da função geral de fluência é feita 
conforme os critérios da NBR-7197 e a análise numérica é realizada com a ajuda de um programa computacional 
baseado no MEF, e que segue a metodologia aqui exposta. Logo em seguida, na seção 8, são feitas as considerações 
finais deste trabalho, onde comenta-se que quando se têm concretos diferentes, mudanças de sistemas estruturais, 
adaptação por fluência, retração do concreto e relaxação do aço de protensão, a questão de se analisar o comportamento 
viscoelástico se torna um problema de fácil solução e simples implementação computacional. 
2 - F l u ê n c i a d o C o n c r e t o 
 A finalidade desta seção é mostrar os mecanismos básicos para o entendimento do comportamento de um 
elemento estrutural de concreto sob efeito da fluência. Dentro deste contexto apresenta-se, de forma sucinta, uma Teoria 
da Viscoelasticidade com Envelhecimento discutida minuciosamente em SANTOS[9] e que também esta sendo 
apresentada de forma mais rigorosa em SANTOS&PIMENTA[10] onde modelos matemáticos mais rigorosos foram 
abordados com o intuito de se analisar e comparar algoritmos de integrações de tensões eficientes e justificar o emprego 
da Função Geral de Fluência proposta por SANTOS[9]. 
 O Ensaio de Fluência do concreto consiste em submeter um corpo de prova de concreto fabricado no instante ct , 
a uma tensão constante 0s a partir do instante 0t , como mostra a Figura 1. Imediatamente após a aplicação da tensão é 
observada a deformação imediata, aqui denotada por e0e , e ao longo do tempo são observadas deformações indicadas 
por )(te . Estas tendem assintoticamente para ¥e quando ¥®t . 
 Cabe aqui comentar que se está utilizando subscritos para se identificar instantes e sobrescritos para se 
caracterizar as grandezas físicas. Embora em desacordo com algumas normas de estruturas de concreto, isto facilita o 
entendimento deste trabalho. Desta forma são muito úteis as seguintes definições relativas ao tempo. Seja t um instante 
qualquer e seja ct o instante de concretagem. Define-se a idade do concreto como ctt -=z . Seja 0t o instante de 
X X X J O R N A D A S S U L - A M E R I C A N A S D E E N G E N H A R I A E S T R U T U R A L 
 
2 
carregamento. A idade do concreto por ocasião do carregamento é definida, por sua vez, como ctt -= 00z . Note-se 
que o tempo ou idade do carregamento é dado por 00 zz -=- tt . 
tc
e ( )t
t0
ee0 - Deformação imediata
tc
s
t0
t - Instante de concretagemc
t - Instante de carregamento0
s0
t
ee0
e
e00 - Deformação final
t
t
too
e00
 
Figura 1 - Ensaio de fluência do concreto. 
 A deformação do concreto )(te observada no Ensaio de Fluência depende de diversos fatores físicos, e são 
agrupados resumidamente na Tabela 1, que não pretende ser exaustiva (veja mais detalhes em SANTOS[9]). Os fatores 
ambientais e geométricos têm, na verdade, a ver com os problemas de difusão de umidade e calor no concreto. Note-se 
também que os fatores ambientais são funções do tempo, isto é, )(tAA = . Pode-se, então, escrever que, em geral, a 
deformação no concreto ao longo do tempo é dada por 
( ) ( )000 ,,,,,, szzee ttGMAt -= . (1) 
Tabela 1 - Fatores que influenciam a fluência do concreto. 
Grupos Fatores Símbolos 
Fatores ambientais Umidade relativa do ar, Temperatura do ar, Ventilação e Radiação solar )(tA 
Fatores materiais Tipo de cimento, relação A/C, % de pasta, aditivos, agregados e fck M 
Fatores geométricos Forma e espessura média G 
Fatores mecânicos Intensidade do carregamento 0s 
Fatores temporais 
Idade do concreto 
Idade do concreto no carregamento 
Tempo de carregamento 
ctt -=z 
ctt -= 00z 
0tt - 
 Considerando-se essas idéias, seja um Ensaio de Carregamento de vários corpos de provas, todos com a mesma 
composição, mesma idade de concretagem ct , mesma geometria e sujeitos aos mesmos fatores ambientais. Como pode 
ser visto na Figura 2, a resposta da fluência é função da duração do carregamento e da idade do concreto no instante de 
aplicação da carga, já mostrados na Tabela 1. Isto é, quanto maior a duração de carregamento, maior a deformação do 
concreto )(te , e quanto maior a idade do concreto no instante de carregamento, ctt -= 00z , menor será sua 
deformação )(te . Note-se, também, outro fato relevante neste Ensaio de Carregamento. Quanto menor o instante de 
carregamento, maior será a deformação elástica imediata, ou seja, pode-se escrever que eee 321 eee >> com 321 ttt << . 
Dentro deste contexto, é esperado que a deformação imediata seja função da idade do concreto, ou seja, de z . 
t1 t2 t3
t
e
ee1
ee2
ee3
 
Figura 2 - Ensaio de carregamento de vários corpos de provas. 
 Suponha-se agora um outro ensaio chamado de Ensaio de Descarregamento de vários corpos de provas com as 
mesmas condições do Ensaio de Carregamento descrito anteriormente, porém, neste todos os corpos de provas são 
carregados no mesmo instante 0t e descarregados em instantes diferentes, como mostra a Figura 3. Como pode ser 
visto a resposta da fluência, também, é função da duração do carregamento e agora da idade do concreto no instante de 
descarregamento. Note-se que as deformações imediatas de descarregamento, em qualquer instante, são menores que as 
deformações imediatas de carregamento. Observe-se, também, que quanto maior a idade do concreto no instante de 
X X X J O R N A D A S S U L - A M E R I C A N A S D E E N G E N H A R I A E S T R U T U R A L 
 
3 
descarregamento, menores serão as deformações imediatas no concreto causadas pelo descarregamento, isto é, 
ddde
3210 eeee >>> com 
ddd tttt 3210 <<< . 
t
t0
ed1
ed2
ed3
ee0
 
Figura 3 - Ensaio de descarregamento de vários corpos de provas. 
 Este comportamento, mostrado tanto no Ensaio de Carregamento quanto no Ensaio de Descarregamento, 
permite classificar o concreto como um material viscoelástico que se altera com a idade, o que é esperado porque as 
reações de hidratação se processam com o tempo. De fato, SANTOS[9] mostra que a maioria das propriedades 
mecânicas do concreto são dependentes da idade. A formulação matemática para se analisar materiais que se modificam 
com a idade é mais complexa que para aqueles que não se modificam. 
 Uma hipótese básica comumente utilizada é admitir que a expressão (1) seja linear na intensidade do 
carregamento. Dela resulta a seguinte decomposição aditiva 
( ) ( ) ( )zeszzee ,,,,,,,,, 000 GMAttGMAt sc +-= . (2) 
onde 
( ) ( ) 000 ,,,,, szzzze -= GMAJtc (3) 
é a deformação por fluência no concreto devida ao carregamento e 
( ) ( )zee ,,, GMAt ss = (4) 
é a deformação por retração. Note-se a linearidade de (3), na qual foi introduzida a seguinte função de fluência 
( ) ( )0000 ,,,,),(,,,,, ttttttGMtAJGMAJ cc---=-zzzz . (5) 
A hipótese de linearidade acima é considerada razoável para carregamentos da ordem de 40% da resistência média do 
concreto. 
 Outra hipótese útil na análise de estruturas de concreto é o Princípio da Superposição de McHenry[5], o qual 
afirma que as deformações devidas a diversos carregamentos podem ser superpostas. Matematicamente isto significa 
que o acréscimo de deformação ),( xe td c em um instante t devido a um carregamento sd no instante t<x é dado 
por 
( ) )( ,,,,,),( xsxxxe dttttGMAJtd ccc ---= . (6) 
Supondo-se uma variação das tensões contínua no tempo e integrando-se (6), chega-se à seguinte integral 
( )ò ---=
t
t
cc
c
c
d
d
d
ttttGMAJt x
x
s
xxe ,,,,,)( (7) 
que permite determinar a deformação do concreto ao longo do tempo devido a um carregamento geral contínuo no 
tempo. A expressão (7) pode ser generalizada para carregamentos descontínuos. Para isso suponha-se que nos instantes 
mjj ,,1, K=x , com tj <x , sejam aplicados os carregamentos súbitos mjj ,,1, K=Ds respectivamente. No lugar de (7) 
tem-se então 
( ) ( )åò
=
D---+---=
m
j
jcc
t
t
cc
c ttttGMAJd
d
d
ttttGMAJt
c 1
 ,,,,,,,,,,)( sxxx
x
s
xxe . (8) 
 Uma forma usual para a função de fluência é 
( )
( )
( )0000 ,,,,
,,,
1
,,,,, ttGMAC
GMAE
tttGMAJ
ec
-+=-- z
z
zz . (9) 
Esta expressão permite escrever 
( ) ( ) ( )ttt vec eee += , (10) 
onde 
( )
( )
( )t
E
t
e
e s
z
e 1= (11) 
é a deformação imediata e 
( ) ( ) ( )åò
=
D--+--=
m
j
jjcj
t
t
c
v ttCd
d
d
ttCt
c 1
 ,, sxxx
x
s
xxe (12) 
X X X J O R N A D A S S U L - A M E R I C A N A S D E E N G E N H A R I A E S T R U T U R A L 
 
4 
é a deformação lenta ou deformação viscosa. Em (11) e (12), para não se sobrecarregar a notação, não se expressou a 
dependência dos fatores ambientais, materiais e geométricos. Esta simplificação da notação será adotada doravante. A 
expressão (9) separa aditivamente a deformação imediata dada por (11), na qual ( )zeE é o módulo de deformação 
imediata do concreto na idade z , da deformação viscosa definida por (12). Observe-se que a deformação imediata no 
instante t é aqui definida como a tensão no instante t dividida pelo módulo de deformação imediata do concreto na 
idade ctt -=z . Logo, 
ee varia mesmo para carregamentos constantes. É comum encontrar-se outras definições para a 
deformação imediata. SANTOS[9] mostra algumas delas. 
tc
e ( )t
t0
tc
s
tt0
t - Instante de concretagemc
t - Instante de carregamento0s0
t
ee0
e
td
t - Instante de descarregamentod
ei - Deformação viscosa irreversível
er - Deformação viscosa reversível
ee - Deformação imediata
er evd
eed
t
ei
too
too
 
Figura 4 - Ensaio de carga e descarga. 
 Dentro de todo contexto até agora abordado, é de fundamental importância discutir um outro ensaio chamado de 
Ensaio Carga e Descarga, descrito na Figura 4. Nele um corpo de prova é carregado em 0t com uma tensão 0s e 
mantido sob carregamento até o instante dt , quando a carga é totalmente retirada. As deformações imediatas nos 
instantes de carga e descarga são dadas por 
( ) 00
0
1 s
z
e
e
e
E
= (13) 
e 
( ) 0
1 s
z
e
d
e
e
d E
= (14) 
respectivamente. Para ¥®t é observada uma deformação viscosa permanente. Ela é chamada de deformação viscosa 
irreversível e é dada por 
( ) ( )[ ] 00 ,, szze ¥-¥= di CC (15) 
 Observe-se que, com a definição de deformação imediata aqui adotada, a deformação viscosa irreversível não 
depende de ( )zeE . Observe-se também que a deformação viscosa irreversível depende de dois instantes. Em 
SANTOS[9] conclui-se que, a deformação viscosa irreversível decresce com a idade do concreto por ocasião do 
carregamento dz e cresce com o tempo de carregamento 00 zz -=- dd tt . 
 Finalmente, a deformação viscosa reversível ao longo do tempo pode ser definida por 
( ) ( ) ( )[ ] idr CCt eszze -¥-¥= 00 ,, , (16) 
onde ie é dado por (15). Em PIMENTA&SANTOS[8] comenta-se sobre a NBR-7197[1], e sua expressão para 
deformação total considerando a fluência é dada por 
( )
( )
( )00
280
, tt
EE
t
e
-+= zjs
z
se (17) 
onde eE28 é o módulo de deformação imediata do concreto na idade de 28 dias, que pode ser escrita na forma de (9). 
Então, não sendo exaustivo, com a ajuda de (17) e de seus termos na NBR-7197[1], a segunda parcela de (9) pode ser 
escrita como 
( ) ( )00
28
00 ,
1
, tt
E
ttC
e
-=- zjz (18) 
onde 
( ) ( )( ) ÷
÷
ø
ö
çç
è
æ
+-
+-
+÷
÷
ø
ö
ç
ç
è
æ
++
++
-
++
++
+÷÷
ø
ö
çç
è
æ
¥
-=- ¥¥¥ 70
20
1,
0
0
0
2
0
0
2
0
2
2
0
00 tt
tt
DCtt
BAtt
DCtt
BAtt
tt dfa jj
b
zb
jzj . (19) 
 Observe que a primeira parcela de (19) representa uma “deformação viscosa imediata” (na norma denominada 
rápida irreversível) e procura compensar deformações imediatas não incluídas na definição de deformação imediata, 
assim como introduzir deformações viscosas irreversíveis para idades jovens. Esta denominação é, no entanto, confusa. 
Uma deformação lenta ou viscosa não pode ser imediata. Se ela é imediata deve ser incorporada à parcela de 
X X X J O R N A D A S S U L - A M E R I C A N A S D E E N G E N H A R I A E S T R U T U R A L 
 
5 
deformação imediata dada por (11). E além disso, se ela é imediata e irreversível ela é plástica e, por conseguinte, não 
satisfaz ao Princípio da Superposição de McHenry[5], não podendo ser incorporada às deformações viscosas de (12), 
cuja integral depende da validade deste Princípio. Observe também que a segunda parcela de (19) não obedece o 
formato de uma função ( )0ttff -= e sim ( )0 , ttff = . Uma explicação para este fato foi dado em 
PIMENTA&SANTOS[8]. Já a terceira parcela de (19) apresenta também uma parcela imediata para 0tt - . Isto advém 
da utilização de uma função racional. Resta agora discutir qual seria a melhor forma da função de fluência. Aqui, 
defende-se que a melhor forma geral da função de fluência é a dada por (9) com as suas parcelas definidas por funções 
gerais que facilitem as seguintes tarefas: 
· Calibração com dados experimentais; 
· Calibração com funções especificadas em normas; 
· Análise de estruturas por meio do MEF ou mesmo de forma manual; 
· Retro-análise com estruturas instrumentadas; 
· Possibilidade de modelagem para concretos jovens; 
· Facilidade de integração das tensões com baixo custo de armazenamento de variáveis computacionais. 
 Uma resposta a esta questão é delineada ao longo das seções seguintes. 
3 - A l g o r i t m o G e r a l d e I n t e g r a ç ã o d e T e n s õ e s 
 Apresenta-se nesta seção um procedimento para a formulação de um Algoritmo Geral de Integração de Tensões 
na viscoelasticidade do concreto, que não pretende ser exaustivo (veja SANTOS&PIMENTA[10]). As idéias, aqui, 
expostas, são de fundamental importância para se formular um algoritmo consistente, analisado na seção 4, de simples 
implementação computacional, e que facilita a análise e retro-análise de estruturas de concreto apresentado na seção 6. 
 A determinação das tensões, deslocamentos e deformações ao longo do tempo em uma estrutura reticulada de 
concreto sujeita à deformação lenta pode ser resolvida de forma “aproximada” através de uma análise incremental1. Esta 
é uma análise discreta no tempo, na qual as tensões, deslocamentos e deformações são determinadas em instantes pré-
selecionados dados por { }KK ,,,,,,, 13210 +ii tttttt . Nos instantes { }ittttt ,,,,, 3210 K o estado de tensões, deslocamentos 
e deformações é suposto conhecido. De forma recursiva busca-se então determinar o estado no instante 1+it . 
si
si+1
s
ti ti+1
t
 
Figura 5 - Hipótese básica de integraçãonumérica no tempo. 
 Admite-se, portanto, que as tensões variem linearmente dentro de um intervalo de tempo. Esta hipótese implica 
em continuidade das tensões ao logo do tempo. Variações súbitas de tensão devidas a variações súbitas de carregamento 
podem ser simuladas por pequenos intervalos de tempo e, assim, não oferecem problemas. Analiticamente a hipótese 
numérica da Figura 5 implica em 
( ) 1
1
1
1
1
1
 , e 1 +
+
+
+
+
+
££
D
-
=÷÷
ø
ö
çç
è
æ
D
-
+÷÷
ø
ö
çç
è
æ
D
-
-= ii
i
ii
i
i
i
i
i
i ttttd
d
t
tt
t
tt
t
ss
e
ssss (20) 
onde introduziu-se o incremento de tempo iii ttt -=D ++ 11 . Logo, com a ajuda de (8), que é uma generalização de (7) 
para carregamentos descontínuos, e considerando-se a decomposição aditiva de (2), tem-se no instante 1+i 
( ) ( ) si
i
j
t
t
icci
j
jj
t
t
icci
i
ii
i
j
j
i
i
dttttJ
t
dttttJ
t 11
11
1
11
1
1
1
1
1
 ,, ,, +
=
++
-
++
+
+
+ +---D
-
+---
D
-
= å òò
-
+
exxx
ss
xxx
ss
e . (21) 
Resolvendo-se (21) para 1+is , obtém-se o seguinte Algoritmo Geral de Integração de Tensões. 
( )
( )
( ) ( )å òò
ò
=
++
-
++
+
+
++
+
+
+++++
-
+
+
---
D
-
+---
D
-=
---
D
=
--=
i
j
t
t
icci
j
jj
t
t
icci
i
i
i
t
t
icci
ia
i
i
s
ii
a
ii
j
j
i
i
i
i
dttttJ
t
dttttJ
t
dttttJ
tD
D
1
11
1
11
1
1
11
1lg
1
111
lg
11
1
1
1
 ,, ,, .3
 ,,
 .2
 .1
xxx
ss
xxx
s
a
xxx
aees
 
Figura 6 - Algoritmo Geral de Integração de Tensões. 
 Note-se que com a hipótese numérica, a análise incremental implica em resultados “exatos” quando se têm 
somente carregamentos lineares no tempo. Observe-se que o Algoritmo Geral de Integração de Tensões resulta em uma 
 
1 Vale ressaltar que para a hipótese numérica proposta, a análise incremental ao longo do tempo fornece resultados “exatos” desde que se tenha 
somente variação linear de carregamentos, o que é bastante comum nesse tipo de análise. 
X X X J O R N A D A S S U L - A M E R I C A N A S D E E N G E N H A R I A E S T R U T U R A L 
 
6 
relação linear entre 1+is e 1+ie , e 
lg
1
a
iD + depende da função de fluência J e, portanto, dos fatores ambientais, materiais 
e geométricos apresentados na Tabela 1. lg1
a
iD + , é óbvio, varia ao longo dos incrementos de tempo. No entanto, para um 
concreto submetido a um conjunto de fatores ambientais, ele não depende da posição na seção transversal, o que facilita 
algumas das integrações mostradas na seção 5. 1+ia é, por sua vez, uma espécie de deformação inicial e depende da 
função de fluência J e de { }issss ,...,,, 210 , ou seja, de todos os estados de tensão nos instantes anteriores a 1+it . 
Este fato pode prejudicar imensamente a análise incremental pois as necessidades de armazenamento computacional de 
dados podem crescer de forma incontrolável, impossibilitando-a. Por isso é desejável que J seja de tal forma que o 
armazenamento de { }issss ,...,,, 210 não seja necessário na integração de tensões. É também desejável que a função 
de fluência seja analiticamente integrável, de forma a facilitar o cálculo das expressões na qual ela aparece dentro de 
uma integral. Todavia, no trabalho de SANTOS&PIMENTA[10], que discutiu essa questão minuciosamente, nem todas 
as funções de fluência analisadas naquele trabalho permitem isso. Vale comentar que todas as funções de fluência 
analisadas em SANTOS&PIMENTA[10], foram retiradas de SANTOS[9], onde aborda-se a grande variedade de 
funções de fluência obtidas de modelos reológicos ou de normas ou código, e analisa-se a questão da integração de 
tensões sob a luz de duas formulações: uma formulação diferencial, e outra formulação integral. 
4 - F u n ç ã o G e r a l d e F l u ê n c i a 
 Com o auxílio do Algoritmo Geral de Integração de Tensões exposto na seção 3, apresenta-se agora uma Função 
Geral de Fluência que permite aproximar por séries exponenciais qualquer função de fluência, e que na integração de 
tensões não exige o armazenamento de todo histórico de tensões num ponto, tendo assim um baixo custo 
computacional. Com isso, a integração de tensões em um incremento de tempo depende apenas do conhecimento de 
parâmetros do início do incremento. Isto é crucial para uma análise e retro-análise eficiente de estruturas de concreto, 
como será visto na seção 6, pois é desejável que a função de fluência facilite esta integração com o mínimo de variáveis 
armazenadas e que permita fácil calibração com dados experimentais. Vale lembra que caso contrário, as necessidades 
de armazenamento de variáveis computacionais ficariam incontroláveis. A Função Geral de Fluência proposta por 
SANTOS[9], além de realizar todas essas tarefas de forma muito eficiente, permite, também, analisar a protensão em 
concretos jovens, relevante nos projetos atuais, tendo profundas conseqüências numa metodologia através do MEF. 
E1 E2 E3 Ek E n
h1 h2 h3 hk hn
E ( )e z
 
Figura 7 - Cadeia Generalizada em Série de Kelvin-Voigt. 
 Seja o modelo, conforme mostra a Figura 7, representado por uma cadeia em série de n elementos de Kelvin-
Voigt ( )nk ,...,1= com coeficientes constantes, representado por k)(· , associada a um elemento elástico com 
envelhecimento que muda com o tempo segundo a primeira parcela da função de fluência ( )xz -++ 11 , ii tJ em (23), e 
sujeito a um carregamento linear no intervalo de tempo dado por 
( ) ( ) ( ) ( ) ( ){ }11221100 ,,,,,,,,,,0 ++= iiii ttttt sssss K , (22) 
com a condição inicial ( ) iit ee = . A função de fluência para este modelo se escreve como 
( )
( ) å=
-
-
+
++ ÷
÷
ø
ö
ç
ç
è
æ
-+=-
+n
k
t
k
i
eii
k
i
e
EE
tJ
11
11
1
1
11
, q
x
z
xz com 
n
n
k
k
k
EEEE
hhhhq ====== LL
2
2
1
1
. (23) 
com os índices de fluência nkk ,,2,1, K=q constantes com dimensão de tempo. 
( )
( )
( )111lg11
1
1
1
lg
1
1
111111
1
1
1
1
 .5
1
1
 .4
,,2,1 , .3
,,2,1 ,11
1
 e 111
1
 .2
 .1
1
11
+++++
=
+
+
+
=
+++++
D
-
+
D
-
+
+
D
-
+
=
--=
Y+
=
=Y+=®÷
÷
ø
ö
ç
ç
è
æ
Y+=
=
÷÷
÷
ø
ö
çç
ç
è
æ
÷
÷
ø
ö
ç
ç
è
æ
-
D
-=Y
÷÷
÷
ø
ö
çç
ç
è
æ
-÷
÷
ø
ö
ç
ç
è
æ
-÷
÷
ø
ö
ç
ç
è
æ
D
+=Y
÷
÷
ø
ö
ç
ç
è
æ
--=
å
å
å
+
++
i
s
ii
a
ii
n
k
k
i
i
e
a
i
n
k
k
iii
k
i
k
ii
t
k
ii
t
i
k
k
k
i
t
i
k
k
k
i
n
k
k
i
s
iii
e
i
D
E
D
nke
nke
tE
e
tE
E
k
i
k
i
k
i
aees
z
saesea
qq
eeezs
q
qq
K
K
 
Figura 8 - Algoritmo de Integração de Tensões - Cadeia Generalizada em Série de Kelvin-Voigt. 
X X X J O R N A D A S S U L - A M E R I C A N A S D E E N G E N H A R I A E S T R U T U R A L 
 
7 
 O Algoritmo de Integração de Tensões para esse modelo é mostrado na Figura 8. Note-se que este algoritmo 
permite a integração de tensões sem a necessidade de se armazenar o histórico completo de tensões num ponto, mas é 
necessário armazenar s e nkk ,,2,1 , K=e em cada incremento i . Verifica-se, no entanto, que este algoritmo não 
apresenta a parcela de deformação viscosa irreversível. 
 Considere-se agora a Função de Dischinger Generalizada, que sugeriu para (9) a seguinte expressão 
( ) ( )00000 ,
1
, ttC
EttJ -+=- zz (24) 
onde 0E é uma constante, que representa o módulo de deformação imediata no instante 0t , e a parcela lenta 
( )00 , ttC -z pode ser escrita como 
( ) ( ) ( ) ( ) ( )
( ) ( ) ngettfeBF
FFttfFttC
gg
tt
ggg
n
g
gg
n
g
gg
,,2,1 com ,1 e 
onde ,
00
00
1
0
1
0000
K=-=-=
-=-=-
-
--
==
åå
JJ
z
z
zzzz
. (25) 
Esta função apresenta a parcela de deformação viscosa irreversível e deixa -se integrar conforme mostra a Figura 9. 
Note-se que este algoritmo novamente não necessita armazenar computacionalmente o histórico completo de tensões, 
mas é necessário armazenar s e be , em cada incremento de tempo. 
( )
( )111lg11
1
10
lg
1
0
1
110
1
1
1
1
1
0
 .5
1
1
 .4
 
1
 .3
,...,2,1,111 e 11 .2
 .1
11
+++++
=
+
+
+
++
=
+
D
-
+
-
-
+
D
-
+
-
-
--=
F+
=
-=®
ú
ú
û
ù
ê
ê
ë
é
-F+=
=
÷÷
÷
ø
ö
çç
ç
è
æ
-
÷
÷
ø
ö
ç
ç
è
æ
-÷
÷
ø
ö
ç
ç
è
æ
D
+=F
÷÷
÷
ø
ö
çç
ç
è
æ
÷
÷
ø
ö
ç
ç
è
æ
-
D
-=F
--=
å
å
++
i
s
ii
a
ii
n
g
g
i
a
i
i
i
b
i
n
g
g
ii
b
ii
t
i
gtt
gg
i
t
i
gtt
gg
i
b
i
s
iii
D
E
D
EE
mge
t
eBe
t
eB
E
g
i
g
ci
g
i
g
ci
aees
seesea
JJ
eees
JJJJ
 
Figura 9 - Algoritmo de Integração de Tensões - Função de Dischinger Generalizada. 
 Apresenta-se, agora, a seguinte classe geral de função de fluência proposta por SANTOS[9], na qual a parcela 
elástica com envelhecimento de deformação tem a mesma interpretação das funções derivadas de modelos 
viscoelásticos e a parcela viscosa ( )00 , ttC -z combina somente a parte viscosa da Cadeia de Generalizada em Série 
de Kelvin-Voigt com a parte viscosa da Função de Dischinger Generalizada 
( )
( ) åå =
-
--
=
-
-
÷
÷
ø
ö
ç
ç
è
æ
-+÷
÷
ø
ö
ç
ç
è
æ
-+=-
m
g
tt
g
n
k
tt
k
e
ggk eeBeA
E
ttJ
11
00
000
11
1
,, JJ
z
q
z
zz . (26) 
Esta Função Geral de Fluência apresenta a parcela de deformação viscosa irreversível e caracteriza, em sua 
globalidade, o comportamento da fluência no concreto descrito na seção 2, além de deixar-se integrar por meio ao 
algoritmo apresentado na Figura 10. Vale ressaltar que em SANTOS[9] são discutidas as grandes vantagens da 
utilização da Função Geral de Fluência proposta com uma metodologia consistente e eficiente baseada no MEF. O 
emprego desta também é defendido neste trabalho. 
 Note-se que este algoritmo exige que vee e ke , nk ,...,2,1= , sejam armazenados em cada incremento i , isto é, 
1+n variáveis. Note-se que a Função Geral de Fluência proposta não exige na integração de tensões o armazenamento 
de todo histórico de tensões, assim como permite a integração analítica das expressões. O algoritmo mostrado acima é 
incondicionalmente estável, isto é, não colapsa quando ¥®Dt , e sim fornece resultados exatos quando isto acontece, 
facilitando a integração de longo prazo. Além disso, não oferece problemas quando 0®Dt , pois as singularidades são 
facilmente removeis por Séries de Taylor (veja SANTOS[9] ou SANTOS&PIMENTA[10]). 
 Observe-se, também, para a obtenção de kiY , 
k
i 1+Y , 
g
iF e 
g
i 1+F uma somatória de funções exponenciais deve 
ser computada, que dependendo da expressão da função de fluência a ser ajustada obtém-se poucos termos dessa 
somatória, isto é, com 6<n e 6<m . Atualmente está se testando Algoritmos Genéticos para calibração da função de 
fluência proposta com 63 ££ n e 63 ££ m que por falta de espaço serão apresentados em outro trabalho. Vale 
ressaltar, também, que o Algoritmo de Integração de Tensões da Figura 10 resulta em uma relação linear entre 1+is e 
1+ie . Note-se que 
lg
1
a
iD + depende da função de fluência e, portanto, dos fatores ambientais, materiais e geométricos. 
lg
1
a
iD + , é óbvio, varia ao longo dos incrementos de tempo. No entanto, para um concreto submetido a um conjunto de 
X X X J O R N A D A S S U L - A M E R I C A N A S D E E N G E N H A R I A E S T R U T U R A L 
 
8 
fatores ambientais, ele não depende da posição na seção transversal, o que facilita algumas das integrações mostradas 
no seção 5 abaixo . 
( )( )
( )
( )
( )
( )1
1
11
111
111
lg
11
1
1
1
1
1
lg
1
1 11
1
1
1
1
1
1
1
 .8
,...,2,1 , .7
 .6
1
1
 .5
1
1 .4
,...,2,1 ,111 e 11 .3
,,2,1 ,11 e 111 .2
 .1
1
11
11
+
+
++
++
D
-
+
+++++
=
+
=
+
+
+
= ==
D
-
+
D
-
+
-
-
+
D
-
+
-
-
D
-
+
+
D
-
+
-=
=Y+Y+=
--=
F+Y+
=
÷
÷
ø
ö
ç
ç
è
æ
-F+Y+÷
÷
ø
ö
ç
ç
è
æ
--=
=
÷÷
÷
ø
ö
çç
ç
è
æ
-÷
÷
ø
ö
ç
ç
è
æ
-÷
÷
ø
ö
ç
ç
è
æ
D
-=F
÷÷
÷
ø
ö
çç
ç
è
æ
÷
÷
ø
ö
ç
ç
è
æ
-÷
÷
ø
ö
ç
ç
è
æ
D
-=F
=
÷÷
÷
ø
ö
çç
ç
è
æ
÷
÷
ø
ö
ç
ç
è
æ
-
D
-=Y
÷÷
÷
ø
ö
çç
ç
è
æ
-÷
÷
ø
ö
ç
ç
è
æ
-÷
÷
ø
ö
ç
ç
è
æ
D
+=Y
--=
+
++
++
åå
å åå
i
e
i
i
ve
i
k
ii
k
ii
t
k
i
k
i
i
s
ii
a
ii
m
g
g
i
n
k
k
i
i
e
a
i
n
k i
e
m
g
g
i
k
ii
n
k
t
k
iii
t
i
gtt
gg
i
t
i
gtt
gg
i
t
i
k
kk
i
t
i
k
kk
i
s
i
ve
iii
e
i
E
nke
D
E
D
E
e
mge
t
eBe
t
eB
nke
t
Ae
t
A
E
k
i
k
g
i
g
ci
g
i
g
ci
k
i
k
i
z
s
ee
ssee
aees
z
z
seea
JJ
qq
eeezs
q
q
JJJJ
qq K
 
Figura 10 - Algoritmo de Integração de Tensões - Função Geral de Fluência. 
5 - A n á l i s e d e V i g a s P l a n a s d e C o n c r e t o 
 Na análise de vigas planas por meio do MEF utiliza-se ou a teoria estrutural de Bernoulli-Euler ou a de 
Timoshenko. Em ambas as teorias as deformações específicas nas seções transversais são dadas por 
( ) ( ) ( )xyxyx kee -=, (27) 
onde x é a coordenada ao longo do eixo da barra, y é a coordenada ao longo da altura da seção transversal, ( )xe é 
deformação específica no eixo da barra e ( )xk é a rotação específica das seções transversais. Na opinião dos autores a 
teoria de Timoshenko é preferível na análise por meio do MEF, pois leva a elementos finitos mais simples e no caso 
tridimensional não depende da posição do eixo das barras. Em SANTOS[9] se faz uma abordagem mais detalhada sobre 
a análise da viscoelasticidade do concreto sob o ponto de vista da aplicação do MEF através da teoria de Timoshenko 
para solução de problemas em estruturas aporticadas planas de concreto armado e protendido. 
 Pode-se então construir o vetor das deformações generalizadas da seção transversal e o vetor dos esforços 
internos energeticamente conjugado com o vetor das deformações generalizadas, respectivamente, por meio de 
ú
ú
ú
û
ù
ê
ê
ê
ë
é
-
=ú
û
ù
ê
ë
é
=ú
û
ù
ê
ë
é
=
ò
ò
A
A
dAy
dA
M
N
 
 
 e 
s
s
k
e
ssee (28) 
onde A é a seção transversal. N e M são os esforços solicitantes, normais e fletores, de uma seção transversal, ou 
seja, o esforço normal e o momento fletor respectivamente. Observe-se que )(yss = e dyybdA )(= , onde )(yb é a 
largura da seção transversal na coordenada y . Note-se que, em geral, a seção transversal é heterogênea,como ilustrado 
na Figura 11, composta por concreto, aço passivo e aço de protensão. A seção de concreto pode ser, por sua vez, 
também heterogênea, composta por concretos de diversos tipos e idades submetidos a ambientes diferentes. 
Ap
As
Ac
 
Figura 11 - Seção Transversal Genérica. 
 Supondo-se comportamento elástico linear para os aços de (28) e do Algoritmo de Integração de Tensões 
mostrado na Figura 10 resulta 
1111 ++++ += iiii sseess D (29) 
onde 
X X X J O R N A D A S S U L - A M E R I C A N A S D E E N G E N H A R I A E S T R U T U R A L 
 
9 
( )
( )
ú
ú
ú
ú
û
ù
ê
ê
ê
ê
ë
é
-+
++-
=
ú
ú
ú
ú
û
ù
ê
ê
ê
ê
ë
é
++·
---++
=
ò ò
òò
òòò
òòòòòò
+++
+++
+
+
++
+
c p
pc
psc
pscpsc
A A
pp
i
s
ii
A
pp
A
i
s
ii
i
A
p
A
s
A
i
A
p
A
s
A
i
A
p
A
s
A
i
i
ydAEydAD
dAEdAD
dAyEdAyEdAyD
ydAEydAEydADdAEdAEdAD
0111
0111
1
222
1
11
1
 
 
eae
eae
ss
D
. (30) 
Em (30) sE é o módulo de elasticidade da armadura passiva, pE é o módulo de elasticidade do aço de protensão e p0e 
é a deformação inicial na armadura ativa devida somente à protensão, isto é, imaginando-se a estrutura de concreto 
infinitamente rígida e já incluído o efeito do atrito e de outras perdas imediatas. 
 Note-se que a heterogeneidade da seção acopla os esforços normais com os momentos fletores. Observe-se que 
(29) é linear em 1+iee . Em cada incremento o problema a ser resolvido pelo MEF ou manualmente é linear e muito 
semelhante à análise elástica convencional. Esta linearidade é, todavia, perdida se for admitida fissuração no concreto 
na tração, plastificação do concreto na compressão ou plastificação nos aços. As não-linearidades, tanto geométricas, 
como as devidas à plasticidade ou à fissuração podem ser tratadas como indicado em PIMENTA[7] ou SANTOS[9]. 
 Observe-se que em (30) 1+iD e 
s
i 1+e são homogêneos dentro da seção transversal para concretos de mesma idade 
e submetidos aos mesmos fatores ambientais. Já 1+ia tem distribuição linear para concretos de mesma idade e 
submetidos aos mesmos fatores ambientais. Observe-se também que as integrais sobre as armaduras podem ser 
substituídas por somatórias. Estes fatos devem ser levados em conta nas integrações que constam de (30). 
 Em uma análise elástica convencional, mas incluindo os efeitos da retração, tem-se no lugar de (30) para uma 
análise incremental 
òòò
ò
òòò
òòòòòò
==
ú
ú
ú
ú
û
ù
ê
ê
ê
ê
ë
é
+
+-
=
ú
ú
ú
ú
û
ù
ê
ê
ê
ê
ë
é
++·
---++
=
+
+
+
+
+
pp
c
c
psc
pscpsc
A
ppp
A
ppp
A
ps
i
c
p
A
s
i
c
i
A
p
A
s
A
c
A
p
A
s
A
c
A
p
A
s
A
i
i
ydAEMdAEN
MydAE
NdAE
dAyEdAyEdAyE
ydAEydAEydAEdAEdAEdAD
0000
01
01
1
222
1
1
 e sendo , ee
e
e
ss
D
, (31) 
onde cE é o módulo de elasticidade do concreto, assim como pN0 e 
pM0 são esforços iniciais devidos a protensão. 
 Caso se despreze a contribuição das armaduras à rigidez, se suponha que a seção de concreto seja homogênea, 
isto é, composta por um só concreto submetido aos mesmos fatores ambientais e se coloque o eixo no centro de 
gravidade da seção transversal, tem-se no lugar de (31) para uma análise incremental as seguintes expressões 
( )
( )
ú
ú
ú
ú
û
ù
ê
ê
ê
ê
ë
é
++
++-
=ú
û
ù
ê
ë
é
·
=
ò
ò
+++
+++
+
+
+
+
c
c
A
p
i
s
ii
p
A
i
s
ii
i
i
i
i MydAD
NdAD
ID
AD
0111
0111
1
1
1
1 
 
 e 
 
0 
ae
ae
ssD , (32) 
onde A e I são a área e o momento de inércia da seção transversal. Em uma análise manual, pode-se utilizar as 
expressões acima. Este tipo de análise pode ser considerada uma generalização da análise descrita em FERRAZ[2]. No 
entanto, acredita-se que as hipóteses simplificadoras tenham ficado muito mais claras. 
6 - C a l i b r a ç ã o e R e t r o - a n á l i s e c o m a F u n ç ã o G e r a l d e F l u ê n c i a P r o p o s t a 
 Seja a parcela viscosa da função de fluência adotada como referência dada por 
( )00 , ttC ref -z , (33) 
e com a qual se deseja calibrar a parcela viscosa de (26) expressa por 
( ) åå
=
-
--
=
-
-
÷
÷
ø
ö
ç
ç
è
æ
-+÷
÷
ø
ö
ç
ç
è
æ
-=-
m
g
tt
g
n
k
tt
k ggk eeBeAttC
11
00
000
11, JJ
z
qz . (34) 
A função expressa por (33) pode ser uma função obtida experimentalmente ou prescrita por alguma norma técnica. Para 
parcela de deformação imediata de (26), qualquer função pode ser utilizada, sem conseqüências para a análise 
incremental, e, por isso, não se descreve aqui a sua calibração. 
 Para a Função Geral de Fluência proposta a calibração com funções ad-hoc ou empiricamente determinadas em 
um intervalo de tempo pode ser elaborada por diversos métodos. Um método bastante geral comumente usado é o 
Método dos Mínimos Quadrados. Aqui, entretanto, propõe-se um método bem simples de calibração baseado no 
X X X J O R N A D A S S U L - A M E R I C A N A S D E E N G E N H A R I A E S T R U T U R A L 
 
10 
Método da Colocação que evita integrações complexas, problemas de minimização trabalhosos e que tem dado bons 
resultados. Vale comentar que tanto em SANTOS[9], quanto em SANTOS&PIMENTA[10] utilizou-se esse método. 
 Uma das formas de calibração consiste em adotar-se, a priori, valores para n , m , nkk ,,2,1 , K=q e 
mg
g
,,2,1 , K=J ; e utilizar mn + pares ( ) mnrrr += ,,2,1 , , Kxz , como pontos de colocação. Fazendo-se 
( ) ( )rr
m
g
g
n
k
k fFeeBeA g
r
g
r
k
r
xzJ
x
J
x
q
x
=
÷
÷
ø
ö
ç
ç
è
æ
-+
÷
÷
ø
ö
ç
ç
è
æ
- åå
=
--
=
-
11
11 , (35) 
obtém-se um sistema de mn + equações lineares nas mn + incógnitas nkkA ,,2,1 , K= , e mggB ,,2,1 , K= . Este sistema 
pode ser expresso por 
ú
ú
ú
ú
ú
ú
ú
ú
û
ù
ê
ê
ê
ê
ê
ê
ê
ê
ë
é
=
ú
ú
ú
ú
ú
ú
ú
ú
û
ù
ê
ê
ê
ê
ê
ê
ê
ê
ë
é
ú
ú
ú
ú
ú
ú
ú
ú
û
ù
ê
ê
ê
ê
ê
ê
ê
ê
ë
é
+
+
++++
++++
mn
n
n
m
n
m
mnmn
n
mnmn
m
nn
n
nn
m
nn
n
nn
mn
c
c
c
c
B
B
A
A
bbaa
bbaa
bbaa
bbaa
M
M
M
M
LL
MOMMOM
LL
LL
MOMMOM
LL
1
1
1
1
11
1
1
11
1
1
11
1
1
11
1
1
, (36) 
onde 
mnr
k
r
k
r
ea +=
-
-= ,,2,1 ,1 Kq
x
, (37) 
mnr
g
r
g
r
g
r
eeb +=
--
÷
÷
ø
ö
ç
ç
è
æ
-= ,,2,1 , 1 KJ
x
J
x
 (38) 
e 
( ) ( ) mnrrrr fFc +== ,,2,1 , Kxz . (39) 
 Este problema pode ser escrito de outra forma, ainda mais interessante, como, também, descrito em SANTOS[9]. 
Inicialmente adota-se um conjunto de valores para nkk ,,2,1, K=q e mgg ,,2,1, K=J . A seguir p pontos de colocação, 
dados por 
( ) prrttC ,,2,100 , , K=-z (40) 
são escolhidos, e o seguinte problema de minimização é resolvido 
sup a sujeito
)(min 
xxx
x
££nfi
h
 (41) 
onde { }mgnkgk BA ,,2,1,,2,1 , ,, KK ===x é um vetor que coleciona os parâmetros de (34) a serem calibrados, assim como 
infx e supx estabelecem limites inferiores e superiores para os parâmetros. Note-se que 0inf ³x e que supx limita a 
deformação lenta para ¥®t . Para )(xh propõe-se a seguinte função objetivo 
( ) ( ) ( ) 1 , ,,, 1
1
0000 ³---= å
=
mtCtC
m
Wh
mp
r
r
ref
rr zzzzxx (42) 
 Em PIMENTA&SANTOS[8] utilizou-se tanto1=m como 2=m . Em (42) rW são pesos que ajudam a 
calibração. Pode-se utilizar, por exemplo, pesos maiores para idades jovens do concreto de modo a ter uma melhor 
calibração nesta fase. Exemplos de experimentações numéricas são mostrados em SANTOS[9], onde foi implementado 
um programa computacional para realizar a calibração de forma automática, considerando mn = parâmetros com 
nk
kk
,...,2,1 , ==Jq . Diversas combinações de pontos de colocação têm sido testadas com êxito, pelos autores, como por 
exemplo, 100 pontos eqüidistantes do instante inicial até o instante final de calibração. Para a solução de (42) têm sido 
testados algoritmos genéticos de GOLDBERG[3] e MICHALEWICZ[6]. Por falta de espaço, detalhes destes algoritmos 
serão abordados em outro trabalho. 
Tabela 2 - Parâmetros para obtenção da função de fluência da NBR-7197. 
Parâmetros 
1=a CT 020= %70=U 
MPaf ck 30= mu ar 98,9= 3829,0=ficth 
4493,1=g 2 3183,1 mAc = diast 280 = 
 Para exemplificar a força da metodologia aqui exposta considere-se a seção da Figura 12 e os parâmetros para 
obtenção da função de fluência segundo a NBR-7197[1] da Tabela 2. 
X X X J O R N A D A S S U L - A M E R I C A N A S D E E N G E N H A R I A E S T R U T U R A L 
 
11 
 Os cálculos para função de fluência2 da NBR-7197[1] são baseados conforme o procedimento descrito em 
SANTOS[9] e a calibração conforme o método da colocação, aqui apresentado. 
 
Figura 12 - Seção transversal usada para obtenção dos índices da função de fluência da NBR-7197. 
 Para a calibração da função geral de fluência proposta, utilizou-se 7== mn parâmetros com 
7,...,1
3 ,10.5 =-== kkkk Jq . Os resultados são mostrados na Figura 13 com os seguintes parâmetros da função de 
fluência proposta calibrada expressa por (35): 
{ }
{ }.01,1,69,0,74,0,02,0,08,0,10,0,10,0
;08,0,36,0,33,1,59,0,02,0,01,0,01,0
7654321
7654321
=======
=======
BBBBBBB
AAAAAAA
 (43) 
0,5
1,0
1,5
2,0
2,5
3,0
0 2000 4000 6000 8000 10000
Função de fluência proposta
Função de fluência da NBR
 
Figura 13 - Calibração da função geral de fluência segundo a função de fluência da NBR-7197. 
 A partir desta calibração, uma ainda melhor pode ser obtida com a inclusão dos parâmetros nkk ,...,2,1 , =q e 
mg
g
,...,2,1 , =J no vetor x . Chama-se atenção para o fato de que em SANTOS[9], quando se introduziu os parâmetros 
nk
k
,...,2,1 , =q e mgg ,...,2,1 , =J no vetor x a função calibrada tornou-se quase perfeita, com erros menores que %1 em 
todos os pontos de colocação e a sua transposição para o mesmo gráfico ficou desnecessária, pois não seria possível 
distinguí-la da função de referência. 
 Pode-se agora discutir a questão da retro-análise de estruturas de concreto instrumentadas. Considere-se que se 
tenham leituras instrumentadas da deformação de uma estrutura com pnp ,...,2,1= locais diferentes, nos quais as 
deformações específicas foram medidas em qnq ,...,2,1= instantes diferentes. Logo, tem-se um conjunto de qp nn + 
medidas experimentais dado por 
( ){ }qnqpnpqp tx ,,2,1 ,,,2,1exp , , KK ==e . (44) 
Por outro lado, por meio de análise incremental com o Algoritmo de Integração de Tensões proposto pela Figura 10, 
obtém-se um conjunto de qp nn + deformações dado por 
( ){ }qnqpnpqpan tx ,,2,1 ,,,2,1 , ,, KK ==ye , (45) 
onde 
{ }cnrmgnkgrkr BA ,,2,1,,,2,1,,,2,1,, KKK ====y (46) 
é o conjunto de parâmetros da Função Geral de Fluência proposta para cn concretos diferentes utilizados na análise. 
 A retro-análise consiste no seguinte problema de minimização 
 
2 O exemplo da função de fluência da NBR-7197 foi retirado de ISHITANI[4]. 
X X X J O R N A D A S S U L - A M E R I C A N A S D E E N G E N H A R I A E S T R U T U R A L 
 
12 
sup a sujeito
)(min 
yyy
y
££nfi
h
 (47) 
onde infy e supy estabelecem limites inferiores e superiores respectivamente para os parâmetros. Note-se que 0inf ³y 
e que supy limita a deformação lenta para ¥®t . Para ( )yh propõe-se a seguinte função objetivo 
( ) ( ) ( ) 1
1 1
exp , ,,, 
1
³
= =
åå -= m
mn
p
n
q
qpqp
an
pq
p q
txtx
m
Wh ee yy . (48) 
Os valores de ( )qp tx ,expe devem receber um tratamento de modo a suavizar as oscilações comumente observadas em 
leituras reais e em (48), pqW são pesos que ajudam a minorar o efeito de más medidas experimentais ou a majorar 
medidas experimentais consideradas mais relevantes. Sugere-se, que nas aplicações, as medidas experimentais sejam 
também filtradas de modo a se extrair o comportamento oscilatório muitas vezes registrado. Vale ressaltar que a função 
objetivo (48) incorpora a hipótese do concreto ser heterogêneo, no que diz respeito a equação constitutiva da fluência, 
pois ( )qpan tx ,,ye é a deformação calculada computacionalmente nos pnp ,...,2,1= locais em que qnq ,...,2,1= 
instantes diferentes para os parâmetros nkkrA ,,2,1 , K= e mg
g
rB ,,2,1 , K= , com cnr ,,2,1 K= , onde cn é o número de 
diferentes materiais considerados. Neste caso o vetor y terá ( )mnnc + graus de liberdade. Em SANTOS[9], este 
aspecto foi bastante útil, pois a fluência do concreto pode ser afetada por parâmetros geométricos tais como espessura 
média e taxa de armação, ou parâmetros físicos ambientais como temperatura média, radiação solar e umidade relativa 
do ar. Para solução de (47) também têm sido testados algoritmos genéticos de GOLDBERG[3] e MICHALEWICZ[6]. 
Novamente, por falta de espaço, esta questão será abordada em outro trabalho. 
7 - E x e m p l o N u m é r i c o 
 Seja uma viga isostática de ponte rodoviária em concreto protendido, com aderência posterior, realizada 
conforme as quatro etapas construtivas descritas abaixo e mostrada na Figura 14. 
Etapa 1
Etapa 2
Etapa 3
Etapa 4
g=1.5 tf/m
g1=1.5 tf/m + g2=0.965 tf/m
g1=1.5 tf/m + g2=2.11 tf/m
 
Figura 14 - Esquema do histórico de carregamento para ponte sobre viga isostática. 
Etapa 1 - Execução da viga pré-moldada de concreto protendido: 
· 0=t indica o início da concretagem; 
· 30=t indica fim de cura do concreto da viga pré-moldada. 
Etapa 2 - Protensão e carregamento (somente peso próprio) da viga pré-moldada após 31 dias: 
· 31=t indica o início da solicitação de esforços devido a protensão e ao peso próprio da viga pré-moldada; 
· 60=t marca o final do carregamento somente devido ao peso próprio da viga pré-moldada. 
Etapa 3 - Concretagem da laje de colaboração in-loco: 
· 61=t indica o início da solicitação de esforços devido ao peso próprio da viga pré-moldada + peso da laje de 
colaboração. Neste instante a laje de colaboração não contribui para a resistência da estrutura; 
· 90=t marca o final do carregamento somente devido ao peso próprio da viga pré-moldada + laje de 
colaboração. Neste instante a laje de colaboração já está contribuindo para a resistência da estrutura como um 
todo, mas a seção transversal apresenta dois tipos diferentes de concreto (idades diferentes), isto é, duas 
funções de fluência distintas numa mesma seção transversal. 
X X X J O R N A D A S S U L - A M E R I C A N A S D E E N G E N H A R I A E S T R U T U R A L 
 
13 
Etapa 4 - Pavimentação e execução do guarda rodas: 
· 91=t indica o início da solicitação de esforços devido ao peso próprio da viga pré-moldada + peso da laje de 
colaboração + a influência do peso próprio da pavimentação e do guarda rodas sobre a viga; 
· 10950=t (30 anos) indica o final de todo processo (histórico de carregamento). 
 O histórico de carregamento é mostrado na Figura 15. 
t
s
t=30 t=90t=60
t=31
t=61
t=91
Concretagem
Protensão e
Carregamento
Concretagem da laje
 de colaboração
Pavimentação e execução
do guarda rodas
s s3160a
t=10950
t=31
t=91
s s61 90a
s s91 10950a
 
Figura 15 - Histórico de carregamento para ponte sobre viga isostática. 
 Na modelagem computacional, por elementos finitos, deste problema, considerou-se uma viga isostática dividida 
em vinte trechos iguais, cujas características geométricas de cada seção transversal de concreto e o posicionamento do 
aço da armadura ativa e passiva encontram-se na Figura 16, Figura 17 e Figura 18. 
 A calibração foi realizada com base na função de fluência da NBR-7197 com a ajuda do método da colocação 
apresentado na seção anterior, com 4 pontos eqüidistantes, com 4== nm , no intervalo [ ]10950,30 dias. Note-se que 
os dados para a realização desta calibração estão apresentados na Tabela 3. O crescimento do módulo de elasticidade 
( )zE e o efeito da relaxação no aço de protensão, também, seguem os critérios recomendados pela NBR-7197. Uma 
proposta para caracterizar esses fenômenos de uma forma mais eficiente, baseado na metodologia aqui abordada esta 
sendo realizada pelos autores, que pretendem expô-las em outro trabalho. 
 Neste problema dar-se importância ao fato de que em um determinado momento, as seções transversais 
apresentarem concretos diferentes, ou seja, com diferentes idades. Com isso, a deformação por fluência tem funções 
distintas para cada concreto. Vale lembrar que concretos mais velhos apresentam menos deformação por fluência que 
concretos mais novos, como foi discutido na seção 2. Tendo em vista as disposições na NBR-7197 que somente 
considera o fenômeno da fluência do concreto após três dias, e como a calibração da função de fluência foi feita 
segundo referida norma, o processamento computacional da laje de colaboração não sofre deformação por fluência, e 
não contribui para resistência da estrutura antes de três dias de idade, sendo esta considerada apenas como “peso morto” 
neste período de tempo. Outro fato importante é que o programa computacional de elementos finitos leva em 
consideração a não-contribuição do concreto tracionado no cálculo da rigidez da estrutura como apresentado na seção 5. 
 Apesar de não ter sido exposta minuciosamente, neste trabalho, a questão da inibição da fluência quando se eleva 
a taxa de aço de armadura passiva, mas sendo esta importante para análise do comportamento conjunto dos fenômenos 
aqui analisados, remete-se, todavia, a consulta deste tratamento a SANTOS[9], onde referida abordagem encontra-se 
detalhada. Vale destacar que o programa computacional leva em consideração estas idéias em sua implementação. 
 No caso de haver plastificação das armaduras ou do concreto por compressão, e fissuração do concreto sob 
tração, o algoritmo proposto, associado ao MEF leva a um sistema de equações não-lineares em cada incremento de 
tempo. Isto é, quando há uma região de concreto sob tração, ou tanto o aço quanto o concreto sob compressão estão no 
regime plástico, a análise se torna não-linear, pois não se tem a posição da linha neutra, e assim não se consegue montar 
o vetor das tensões generalizadas 1+iss dado em (29). No entanto, utilizando-se do Processo Iterativo de Newton, este 
problema pode ser solucionado facilmente, como foi mostrado em SANTOS[9]. 
7.1 -Dados do Problema 
 Considere-se as características do concreto, aço passivo e aço de protensão como mostra a Tabela 3 e as 
características geométricas e esquema estrutural como mostrado nos desenhos da Figura 16, Figura 17 e Figura 18. 
Tabela 3 - Características do concreto e aços usados no exemplo de ponte sobre viga. 
Concreto Aços Dados para fluência 
MPafck 35= ACA50 (armadura passiva) mu inicialar 02,6)( = 
MPaEc 3514228, = RBCP190 (armadura de protensão) mu finalar 15,7)( = 
2
max / 75,202 mtf=s mmdeas cordoalh comCabos 7.12 10 =f % 75=U 
2
min / 2100 mtf-=s MPaE p 500.19= 
2
)( 60,0 mA inicialc = 
 MPaf ptk 900.1= 2)( 986,0 mA finalc = 
 Força de Protensão nominal = cabo tf /126 CT o 20= 
 sup,sA e inf,sA vide Figura 16 2=a 
X X X J O R N A D A S S U L - A M E R I C A N A S D E E N G E N H A R I A E S T R U T U R A L 
 
14 
 
 
Figura 16 - Detalhe das armações (armadura frouxa). 
 
X X X J O R N A D A S S U L - A M E R I C A N A S D E E N G E N H A R I A E S T R U T U R A L 
 
15 
 
Figura 17 - Detalhe em elevação da armadura de protensão. 
 
X X X J O R N A D A S S U L - A M E R I C A N A S D E E N G E N H A R I A E S T R U T U R A L 
 
16 
 
Figura 18 - Detalhe das seções transversais da armadura de protensão. 
X X X J O R N A D A S S U L - A M E R I C A N A S D E E N G E N H A R I A E S T R U T U R A L 
 
17 
7.2 -Resultados Obtidos 
 Após 31 dias, isto é, no instante 31=t a viga é protendida. As perdas imediatas de protensão são mostradas na 
Tabela 4 e os momentos, tensões e deslocamentos mostrados na Tabela 5. O vão foi dividido em vinte partes iguais, 
para modelagem e análise utilizando-se do programa computacional desenvolvido através do MEF com a metodologia 
abordada. Os resultados são apresentados a seguir: 
1. para 31=t 
Tabela 4 - Perdas Imediatas de protensão (início da etapa 2. 
Distância Mp Hp Vp
[m] [tf/m] [tf] [tf]
1 0 -26,58 -434,46 -47,99
2 1,5 -91,09 -436,64 -45,96
3 3,0 -155,87 -440,50 -39,48
4 4,5 -211,41 -444,25 -32,85
5 6,0 -260,40 -452,10 -26,19
6 7,5 -299,35 -459,37 -19,30
7 9,0 -325,21 -462,78 -12,18
8 10,5 -340,36 -465,84 -5,25
9 12,0 -346,26 -468,22 -0,90
10 13,5 -346,93 -468,91 0,00
11 15,0 -346,15 -467,83 0,00
12 16,5 -346,93 -468,91 0,00
13 18,0 -346,26 -468,22 0,90
14 19,5 -340,36 -465,84 5,25
15 21,0 -325,21 -462,78 12,18
16 22,5 -299,35 -459,37 19,30
17 24,0 -260,40 -452,10 26,19
18 25,5 -211,41 -444,25 32,85
19 27,0 -155,87 -440,50 39,48
20 28,5 -91,09 -436,64 45,96
21 30,0 -26,58 -434,46 47,99
Seção
 
 Logo após a protensão, a viga é carregada, ou seja, com solicitação somente devido ao peso próprio da viga pré-
moldada. Os dados no instante 31=t , esforços solicitantes, tensões e flecha, são mostradas na Tabela 5 a seguir: 
Tabela 5 - Momentos, tensões e deslocamento (início da etapa 2) - ponte sobre viga isostática. 
Distância M Mp sss ss i Flecha
[m] [tf.m] [tf.m] [tf/m2] [tf/m2] [cm]
1 0,0 0,000 -26,580 -626,019 -838,669 0,0000000
2 1,5 32,063 -91,090 -509,922 -982,160 0,3993148
3 3,0 60,750 -155,870 -383,170 -1144,167 0,7825959
4 4,5 86,062 -211,410 -277,878 -1280,710 1,1372794
5 6,0 108,000 -260,400 -191,138 -1410,397 1,4534680
6 7,5 126,562 -299,350 -128,023 -1510,393 1,7238845
7 9,0 141,750 -325,210 -94,326 -1562,076 1,9439382
8 10,5 153,563 -340,360 -87,112 -1581,559 2,1116850
9 12,0 162,000 -346,260 -100,440 -1574,591 2,2279960
10 13,5 167,063 -346,930 -117,801 -1556,805 2,2959089
11 15,0 168,750 -346,150 -125,104 -1544,372 2,3182716
12 16,5 167,063 -346,130 -117,801 -1556,805 2,2959089
13 18,0 162,000 -345,120 -100,440 -1574,591 2,2279960
14 19,5 153,563 -339,240 -87,112 -1581,559 2,1116850
15 21,0 141,750 -324,150 -94,326 -1562,076 1,9439382
16 22,5 126,562 -298,490 -128,023 -1510,393 1,7238845
17 24,0 108,000 -259,590 -191,138 -1410,397 1,4534680
18 25,5 86,062 -211,100 -277,878 -1280,710 1,1372794
19 27,0 60,750 -155,710 -383,170 -1144,167 0,7825959
20 28,5 32,062 -91,170 -509,918 -982,164 0,3993148
21 30,0 0,000 -26,450 -626,019 -838,669 0,0000000
Seção
 
 Note-se que neste instante, 31=t , as tensões de compressão são mais críticas pois estas se apresentam com seus 
valores máximos em comparação com as demais etapas construtivas. 
X X X J O R N A D A S S U L - A M E R I C A N A S D E E N G E N H A R I A E S T R U T U R A L 
 
18 
 Observe-se, também, que neste instante, 31=t , o deslocamento, ou seja, a flecha da viga é positiva, indicando 
um deslocamento para cima. Isto se dá devido às resultantes dos esforços de protensão serem maiores que as resultantes 
dosesforços solicitantes de peso-próprio. Vale ressaltar que esta etapa é uma das mais críticas, pois se deve ter sempre 
uma grande preocupação com tensões elevadas de compressão no concreto, para que a estrutura não venha a apresentar 
um colapso por esmagamento do concreto na seção transversal. 
2. para 60=t 
Tabela 6 - Momento, tensões e deslocamento (fim da etapa 2) - ponte sobre viga isostática. 
Distância M Mp sss ss i Flecha
[m] [tf.m] [tf.m] [tf/m2] [tf/m2] [cm]
1 0,0 0,000 -25,544 -613,427 -817,790 0,0000000
2 1,5 32,063 -88,731 -502,616 -955,980 0,3603309
3 3,0 60,750 -152,253 -380,902 -1112,963 0,7058612
4 4,5 86,062 -206,823 -279,525 -1245,656 1,0250673
5 6,0 108,000 -255,088 -195,732 -1372,494 1,3089432
6 7,5 126,562 -293,507 -134,782 -1470,408 1,5509574
7 9,0 141,750 -318,997 -102,592 -1520,635 1,7471165
8 10,5 153,563 -333,935 -96,237 -1539,280 1,8959269
9 12,0 162,000 -339,777 -109,803 -1532,087 1,9985597
10 13,5 167,063 -340,450 -127,154 -1514,315 2,0582146
11 15,0 168,750 -339,668 -134,462 -1501,875 2,0778149
12 16,5 167,063 -339,655 -128,255 -1509,054 2,0582146
13 18,0 162,000 -338,648 -111,436 -1524,687 1,9985597
14 19,5 153,563 -332,827 -97,791 -1531,973 1,8959269
15 21,0 141,750 -317,926 -103,994 -1513,468 1,7471165
16 22,5 126,562 -292,650 -135,614 -1464,379 1,5509574
17 24,0 108,000 -254,291 -196,142 -1366,524 1,3089432
18 25,5 86,062 -206,515 -278,845 -1242,513 1,0250673
19 27,0 60,750 -152,101 -379,517 -1110,357 0,7058612
20 28,5 32,062 -88,830 -500,298 -954,464 0,3603309
21 30,0 0,000 -25,419 -608,656 -812,017 0,0000000
Seção
 
3. para 61=t 
Tabela 7 - Momentos, tensões e deslocamento (início da etapa 3) - ponte sobre viga isostática. 
Distância M Mp sss ss i Flecha
[m] [tf.m] [tf.m] [tf/m2] [tf/m2] [cm]
1 0,0 0,000 -25,544 -603,359 -804,369 0,0000000
2 1,5 53,040 -88,731 -573,909 -848,140 -0,0034318
3 3,0 100,500 -152,253 -525,168 -920,491 -0,0110198
4 4,5 142,370 -206,823 -487,885 -978,827 -0,0250684
5 6,0 178,670 -255,088 -459,405 -1041,475 -0,0464577
6 7,5 209,370 -293,507 -444,993 -1085,346 -0,0746718
7 9,0 234,500 -318,997 -450,600 -1091,635 -0,1077427
8 10,5 254,040 -333,935 -473,372 -1076,375 -0,1422808
9 12,0 268,000 -339,777 -507,503 -1045,196 -0,1733180
10 13,5 276,370 -340,450 -537,083 -1013,141 -0,1949512
11 15,0 279,160 -339,668 -548,468 -995,939 -0,2026317
12 16,5 276,370 -339,655 -538,185 -1007,879 -0,1949512
13 18,0 268,000 -338,648 -509,136 -1037,796 -0,1733180
14 19,5 254,040 -332,827 -474,925 -1069,068 -0,1422808
15 21,0 234,500 -317,926 -452,002 -1084,468 -0,1077427
16 22,5 209,370 -292,650 -445,827 -1079,314 -0,0746718
17 24,0 178,670 -254,291 -459,819 -1035,501 -0,0464577
18 25,5 142,370 -206,515 -487,217 -975,674 -0,0250684
19 27,0 100,500 -152,101 -523,798 -917,870 -0,0110198
20 28,5 53,040 -88,830 -571,616 -846,598 -0,0034318
21 30,0 0,000 -25,419 -598,593 -798,592 0,0000000
Seção
 
 Note-se, agora, para o instante 61=t , um alívio de tensão provocado pelo acréscimo de peso-próprio da laje de 
colaboração, isto é, 22 / 965,0 mtfg = com já foi mostrado na Figura 14. É importante frisar que de acordo com as 
X X X J O R N A D A S S U L - A M E R I C A N A S D E E N G E N H A R I A E S T R U T U R A L 
 
19 
disposições na NBR-7197, tanto a fluência, quanto à contribuição, da laje de colaboração para resistência da estrutura 
só será processada após 3 dias, em 64>t , sendo esta considerada apenas como “peso morto” em 6461 ££ t dias. 
4. para 90=t 
Tabela 8 - Momento, tensões e deslocamento (fim da etapa 3) - ponte sobre viga isostática. 
Distância M Mp sss ss i Flecha
[m] [tf.m] [tf.m] [tf/m2] [tf/m2] [cm]
1 0,0 0,000 -25,125 -381,698 -505,414 0,0000000
2 1,5 53,040 -87,318 -369,074 -537,855 -0,0467028
3 3,0 100,500 -149,912 -348,175 -591,484 -0,0962198
4 4,5 142,370 -203,739 -332,405 -634,565 -0,1497160
5 6,0 178,670 -251,420 -321,667 -679,914 -0,2070879
6 7,5 209,370 -289,414 -317,113 -711,232 -0,2669893
7 9,0 234,500 -314,624 -320,575 -715,113 -0,3267770
8 10,5 254,040 -329,411 -331,680 -702,811 -0,3825404
9 12,0 268,000 -335,206 -347,725 -678,659 -0,4289474
10 13,5 276,370 -335,877 -361,266 -654,265 -0,4598781
11 15,0 279,160 -335,095 -366,126 -641,531 -0,4706715
12 16,5 276,370 -335,082 -361,476 -650,559 -0,4598781
13 18,0 268,000 -334,077 -348,065 -673,440 -0,4289474
14 19,5 254,040 -328,304 -331,985 -697,662 -0,3825404
15 21,0 234,500 -313,552 -320,808 -710,072 -0,3267770
16 22,5 209,370 -288,555 -317,124 -707,017 -0,2669893
17 24,0 178,670 -250,622 -321,457 -675,772 -0,2070879
18 25,5 142,370 -203,428 -331,819 -632,449 -0,1497160
19 27,0 100,500 -149,756 -347,250 -589,790 -0,0962198
20 28,5 53,040 -87,412 -367,733 -536,977 -0,0467028
21 30,0 0,000 -24,999 -378,724 -501,818 0,0000000
Seção
 
5. para 91=t 
Tabela 9 - Momentos, tensões e deslocamento (início da etapa 4) - ponte sobre viga isostática. 
Distância M Mp sss ss i Flecha
[m] [tf.m] [tf.m] [tf/m2] [tf/m2] [cm]
1 0,0 0,000 -25,125 -381,698 -505,414 0,0000000
2 1,5 77,163 -87,318 -409,277 -459,282 -0,2050150
3 3,0 146,205 -149,912 -424,351 -442,605 -0,4082116
4 4,5 207,123 -203,739 -440,320 -423,656 -0,6067426
5 6,0 259,920 -251,420 -457,092 -415,240 -0,7969681
6 7,5 304,593 -289,414 -475,813 -401,070 -0,9744748
7 9,0 341,145 -314,624 -498,320 -367,728 -1,1340251
8 10,5 369,574 -329,411 -524,238 -326,477 -1,2695831
9 12,0 389,880 -335,206 -550,862 -281,648 -1,3741642
10 13,5 402,064 -335,877 -570,751 -244,847 -1,4404721
11 15,0 406,124 -335,095 -577,726 -227,981 -1,4631383
12 16,5 402,063 -335,082 -570,960 -241,144 -1,4404721
13 18,0 389,879 -334,077 -551,201 -276,432 -1,3741642
14 19,5 369,574 -328,304 -524,542 -321,328 -1,2695831
15 21,0 341,144 -313,552 -498,552 -362,691 -1,1340251
16 22,5 304,594 -288,555 -475,825 -396,851 -0,9744748
17 24,0 259,920 -250,622 -456,881 -411,098 -0,7969681
18 25,5 207,123 -203,428 -439,734 -421,540 -0,6067426
19 27,0 146,205 -149,756 -423,427 -440,911 -0,4082116
20 28,5 77,163 -87,412 -407,936 -458,404 -0,2050150
21 30,0 0,000 -24,999 -378,724 -501,818 0,0000000
Seção
 
 Observe-se, também, que para o instante 91=t , há um alívio de tensão provocado pelo acréscimo da carga 
permanente devido a pavimentação e a execução do guarda-rodas, isto é, 22 / 11,2 mtfg = como também já foi 
mostrado na Figura 14. Esta etapa é marcada pelo fim da execução da obra, todavia, os efeitos viscoelásticos continuam 
se processando ao longo do tempo. Basicamente, só os efeitos devido a fluência ou deformação lenta, pois grande parte 
dos efeitos provocados pela relaxação do aço de protensão já foram computados na análise para 91£t dias. Em 
SANTOS[9] discute-se o fato da relaxação se processar mais rapidamente em comparação com a fluência. 
X X X J O R N A D A S S U L - A M E R I C A N A S D E E N G E N H A R I A E S T R U T U R A L 
 
20 
6. para 10950=t 
Tabela 10 - Momento, tensões e deslocamento (fim da etapa 4) - ponte sobre viga isostática. 
Distância M Mp sss ss i Flecha
[m] [tf.m] [tf.m] [tf/m2] [tf/m2] [cm]
1 0,0 0,000 -22,699 -344,845 -456,616 0,0000000
2 1,5 77,163 -78,977 -382,465 -391,398 -0,6059127
3 3,0 146,205 -135,735 -407,265 -355,711 -1,1974772
4 4,5 207,123 -184,615 -431,392 -320,563 -1,7612366
5 6,0 259,920 -228,096 -454,875 -298,174 -2,2844161
6 7,5 304,593 -262,855 -478,735 -273,217 -2,7549200
7 9,0 341,145 -285,975 -504,717 -233,059 -3,1612996
8 10,5 369,574 -299,697 -532,511 -188,435 -3,4927649
9 12,0 389,880 -305,254 -559,703 -143,005 -3,7390725
10 13,5 402,064 -306,049 -579,575 -106,796 -3,8910499
11 15,0 406,124 -305,363 -586,523 -90,375 -3,9423885
12 16,5 402,063 -305,291 -579,774 -103,272 -3,8910499
13 18,0 389,879 -304,179 -560,025 -138,036 -3,7390725
14 19,5 369,574 -298,641 -532,801 -183,529 -3,4927649
15 21,0 341,144 -284,958 -504,937 -228,277 -3,1612996
16 22,5 304,594 -262,035 -478,751 -269,191 -2,754920017 24,0 259,920 -227,329 -454,680 -294,201 -2,2844161
18 25,5 207,123 -184,305 -430,848 -318,494 -1,7612366
19 27,0 146,205 -135,568 -406,397 -354,020 -1,1974772
20 28,5 77,163 -79,048 -381,207 -390,489 -0,6059127
21 30,0 0,000 -22,573 -341,969 -453,116 0,0000000
Seção
 
 No final de 30 anos, ou seja, após 10950 dias as alterações nos momentos de protensão e as tensões devido ao 
fenômeno da fluência do concreto e relaxação do aço de armadura ativa são mostrados na Tabela 10. Note-se que a 
seção 11 é a mais solicitada, o que era de se esperar, pois ela é a seção do meio do vão da viga isostática aqui analisada. 
Pode-se perceber, com o auxílio da Tabela 11, como a tensão no bordo superior, ss e a tensão no bordo inferior, is 
variam ao longo do tempo. 
Tabela 11 - Evolução das tensões e deslocamento ao longo do tempo na seção 11. 
SEÇÃO 11 t=31 t=60 t=61 t=90 t=91 t=10950
sss [tf/m
2] -125,104 -134,462 -548,468 -366,126 -577,726 -586,523
ss i [tf/m
2] -1544,372 -1501,875 -995,939 -614,531 -227,981 -90,375
flecha [cm] 2,3182716 2,0778149 -0,2026317 -0,4706715 -1,4631383 -3,9423885
 
 Observe-se que em todos os instantes analisados, as tensões são sempre de compressão, ou seja, em nenhum 
momento da análise, 109500 ££ t , nem ss quanto is são de tração. Note-se também que no final da execução da 
obra, isto é, depois da pavimentação e execução do guarda-rodas (etapa 4) não há grande variação de ss , porém is 
tem uma variação considerável devido à fluência do concreto. Vale lembrar que nesta análise estão sendo considerados 
todos os fenômenos viscoelásticos do concreto protendido: fluência e retração do concreto e relaxação do aço. No 
entanto, a variação de is no intervalo de [ ]10950 , 91 , ou seja, 1095091 ££ t é causada basicamente pela fluência, 
pois grande parte da relaxação do aço de protensão já foi computada na análise para 91£t dias (veja mais detalhes em 
SANTOS[9]). A Figura 19 abaixo mostra de forma gráfica a variação da tensão ao longo do tempo na seção 11 em 
todos os instantes de processamento. Note-se a redução das tensões no intervalo 9061 ££ t devido a contribuição da 
laje de colaboração para resistência da estrutura após três dias dela concretada, segundo disposições da NBR-7197, 
como já foi comentado no início desta seção. 
ss =-125,104 s s=-134,462 s s=-548,468 ss=-366,126 ss=-577,726 s s=-586,523
s i=-1544,372 si=-1501,875 si=-995,939 si=-614,531 s i=-227,981 s i=-90,375
t=31 t=60 t=90t=61 t=91 t=10950
 
Figura 19 - Variação das tensões ao longo no tempo na seção 11. 
 Outro fato de grande relevância, também mostrado na Tabela 11, é a variação do deslocamento da seção 11 ao 
longo do tempo, ou seja, a alteração da flecha durante todas as etapas construtivas e seu valor no final de 30 anos, isto é, 
10950=t dias. Esta variação pode ser melhor visualizada através da Figura 20 abaixo . Note-se que no intervalo 
X X X J O R N A D A S S U L - A M E R I C A N A S D E E N G E N H A R I A E S T R U T U R A L 
 
21 
6031 ££ t , correspondente a protensão + solicitação de peso-próprio da viga pré-moldada, o deslocamento é para 
cima, pois os esforços devido a protensão são maiores que as solicitações devido ao peso-próprio. Note-se, também, que 
mesmo depois do final da execução da obra, isto é, 91=t dias (etapa 4), há uma grande variação do deslocamento 
devido aos fenômenos viscoelásticos relacionados ao concreto protendido, em especial, devido à fluência do concreto. 
Variação da flecha ao longo do tempo
2 , 3 1 8
2 , 0 7 8
- 0 , 2 0 3 - 0 , 4 7 1
- 1 , 4 6 3
- 3 , 9 4 2
-5
-4
-3
-2
-1
0
1
2
3
T e m p o [ d i a s ]
F l e c h a [ c m ]
t=31
t=60
t=61
t=90
t=91
t=10950
 
Figura 20 - Variação da flecha ao longo do tempo na seção 11. 
8 - C o n s i d e r a ç õ e s F i n a i s 
 Procurou-se nesse trabalho, fixar os conceitos relacionados aos fenômenos viscoelásticos do concreto, abordando 
sucintamente os fenômenos da fluência, retração e relaxação do aço, através de uma metodologia consistente e eficiente 
para análise e retro-análise de vigas de concreto armado e protendido. 
 Vale ressaltar que quando se deseja analisar as deformações causadas em um concreto estrutural, utilizando-se 
de um modelo prático proposto em normas técnicas ou códigos, tem-se sempre uma grande complexidade na análise, 
pois é sempre difícil “fugir” do histórico de tensão, e quase sempre se deve guardar este histórico para se prever o 
fenômeno da fluência ao longo do tempo. Hipóteses simplificadoras para o histórico de tensão, muitas vezes, não 
representam o que acontece com a estrutura de concreto. Porém, uma das propostas de continuação deste trabalho é 
realizar a retro-análise em estruturas instrumentadas. Além de facilitar tarefas como: integração de tensões na seção 
transversal da estrutura com o mínimo de variáveis armazenadas tendo um baixo custo computacional sem a 
necessidade de se armazenar todo histórico de tensões em um ponto; modelagem da fluência para concretos jovens, o 
que é importante, pois a protensão tem sido efetuada em pequenas idades do concreto, a Função Geral de Fluência 
apresentada aqui, e analisada minuciosamente em SANTOS[9] e em SANTOS&PIMENTA[10] permite a fácil 
calibração com dados experimentais, facilitando assim a retro-análise com leituras obtidas em estruturas reais. 
 Um problema estrutural, muito comum hoje em dia, e de grande importância, é a possibilidade de num dado 
instante da análise as seções transversais apresentarem concretos diferentes, ou seja, deformações por fluência com 
funções distintas para cada concreto. Outros fatos importantes ainda a serem abordados, futuramente, são as questões de 
mudança de sistema estrutural em um certo instante do processamento, possibilitando assim o estudo e análise da 
adaptação por fluência; e a consideração da contribuição do concreto tracionado no cálculo da rigidez da estrutura assim 
como a não-contribuição deste para a deformação lenta. Note-se que a metodologia abordada neste trabalho permite a 
inserção destas novas idéias, possibilitando o uso desta nova metodologia ao emprego de estruturas pré-moldadas. 
R e f e r ê n c i a s B i b l i o g r á f i c a s 
[1] ABNT - Associação Brasileira de Normas Técnicas. NBR - 7197: Projeto e execução de pontes de concreto - procedimentos, 
1989. 
[2] FERRAZ, J.C.F.: Vigas protendidas: alterações das tensões, deformações e des locamentos ao longo do tempo, BT/PEF-8616, 
1986. 
[3] GOLDBERG, D. E.: Genetic Algorithms in Search, Optimization & Machine Learning, Addison-Wesley, 1989. 
[4] ISHITANI, H.: PEF 313 - Concreto Protendido - Notas de aula - Escola Politécnica da USP, 1997. 
[5] McHENRY, D. A.: A new aspect of creep in concrete and its application to design, ASTM Proceedings, 43, 1943. 
[6] MICHALEWICZ, Z.; Genetic Algorithms + Data Structures = Evolu tion Programs, Berlin, Springer, 1996. 
[7] PIMENTA, P. M.: On the analysis of viscoelasticity plane frames, Structural Design, Analysis and Testing, American Society 
of Civil Engineers, New York, 1989. 
[8] PIMENTA, P. M. e SANTOS, H. C.: Análise e Retro -análise de Estruturas de Concreto sujeitas à Deformação Lenta - IV 
SIMPÓSIO EPUSP sobre ESTRUTURAS de CONCRETO, Escola Politécnica da USP, 2000. 
[9] SANTOS, H. C.: Análise de Estruturas Aporticadas de Concreto Armado e Protendido com a Consideração da Deformação 
Lenta, Dissertação de Mestrado, São Paulo, EPUSP, 2001. 
[10] SANTOS, H. C. e PIMENTA, P. M.: Algoritmos de Integração de Tensões na Viscoelasticidade do Concreto, XXX Jornadas 
Sul-Americanas de Engenharia Estrutural, UnB - Universidade de Brasília, 27-31 de Maio, Brasília -DF, 2002.

Continue navegando