Buscar

Notas de aula de Probabilidade e Estatística

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 3, do total de 91 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 6, do total de 91 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 9, do total de 91 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Prévia do material em texto

Universidade Federal de Mato Grosso
Instituto de Ciências Exatas e da Terra
Departamento de Estatística
Notas de aula de Probabilidade e Estatística
Anderson Castro Soares de Oliveira
2011
SUMÁRIO
1 Introdução 4
1.1 Amostragem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.1.1 Amostragem Simples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.1.2 Amostragem Sistemática . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.1.3 Amostragem Estratificada . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2 Método Estatístico . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2 Estatística Descritiva 9
2.1 Tipo de Variáveis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Variáveis Qualitativas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3 Variáveis Quantitativas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.4 Medidas de Posição . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.4.1 Média Aritmética . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.4.1.1Propriedades da média . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.4.2 Mediana . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.4.3 Moda . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.4.4 Comparação entre Média, Mediana e Moda . . . . . . . . . . . . . . . . . . . 20
2.4.5 Simetria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.4.6 Separatrizes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.4.6.1Quartis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.4.6.2Percentis ou Centis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.4.7 Dados agrupados . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.4.7.1Média . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.4.7.2Mediana . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.4.7.3Moda . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.4.7.4Quartil . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.4.7.5Percentil . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.4.7.6Exemplo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.5 Boxplot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.6 Medidas de dispersão . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.6.1 Amplitude Total . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.6.2 Variância e Desvio Padrão . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.6.2.1Propriedades da Variância . . . . . . . . . . . . . . . . . . . . . . . . 31
2.6.2.2Propriedades do Desvio Padrão . . . . . . . . . . . . . . . . . . . . . 32
2.6.3 Coeficiente de Variação . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.6.4 Erro Padrão da Média . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.7 Exemplos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.7.1 Dados Agrupados . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3 Noções de Probabilidade 35
3.1 Espaço Amostral e Eventos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.1.1 Operação com eventos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.2 Probabilidade . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.2.1 Probabilidade Condicional e Independência de Eventos . . . . . . . . . . . . 38
3.2.2 Árvores de probabilidade . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.3 Variável Aleatória . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.3.1 Função de Probabilidade Discreta . . . . . . . . . . . . . . . . . . . . . . . . 41
3.3.1.1Esperança Matemática e Variância de uma VAD . . . . . . . . . . . . 42
3.3.2 Função de probabilidade contínua ou função de densidade de probabilidade
(fdp). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.3.2.1Esperança Matemática e Variância de uma fdp . . . . . . . . . . . . . 45
3.4 Distribuições Discretas de Probabilidade . . . . . . . . . . . . . . . . . . . . . . . 46
3.4.1 Distribuição Uniforme Discreta . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.4.1.1Parâmetros Característicos da Distribuição Uniforme . . . . . . . . . 46
3.4.2 Distribuição Bernoulli . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.4.2.1Parâmetros Característicos da Distribuição Uniforme . . . . . . . . . 47
3.4.3 Distribuição Binomial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.4.3.1Parâmetros Característicos da Distribuição Binomial . . . . . . . . . 49
3.4.4 Distribuição Hipergeométrica . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.4.4.1Parâmetros Característicos da Distribuição Hipergeométrica . . . . . 51
3.4.5 Distribuição Geométrica . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.4.5.1Parâmetros Característicos da Distribuição Geométrica . . . . . . . . 52
3.4.6 Distribuição de Poisson . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.4.6.1Parâmetros Característicos da Distribuição de Poisson . . . . . . . . . 53
3.5 Distribuições Contínuas de Probabilidade . . . . . . . . . . . . . . . . . . . . . . . 54
3.5.1 Distribuição Uniforme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.5.1.1Parâmetros Característicos da Distribuição Uniforme . . . . . . . . . 56
3.5.2 Distribuição Exponencial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.5.2.1Parâmetros Característicos da Distribuição Exponencial . . . . . . . . 57
3.5.3 Distribuição Normal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.5.3.1Aproximação Normal das Distribuições Binomial e de Poisson . . . . 60
3.6 Distribuições Amostrais . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
3.6.1 Distribuição Amostral da Média (X) . . . . . . . . . . . . . . . . . . . . . . 63
3.6.1.1Teorema do Limite Central (TLC) . . . . . . . . . . . . . . . . . . . . 63
3.6.1.2Distribuição t de student . . . . . . . . . . . . . . . . . . . . . . . . . 64
3.6.2 Distribuição amostral para proporção . . . . . . . . . . . . . . . . . . . . . . 66
3.6.3 Distribuição Amostral da Variância . . . . . . . . . . . . . . . . . . . . . . . 67
3.6.3.1Distribuição Qui-Quadrado . . . . . . . . . . . . . . . . . . . . . . . . 67
3.6.3.2Distribuição F . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4 Inferência Estatística 74
4.1 Estimação . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.1.1 Estimação Pontual . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.1.2 Estimação Intervalar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.1.2.1 Intervalo de Confiança para proporção p . . . . . . . . . . . . . . . . 75
4.1.2.2 Intervalo de Confiança para média µ com variância σ2 conhecida . . . 76
4.1.2.3 Intervalo de Confiança para média µ com variância σ2 desconhecida . 78
4.1.2.4 Intervalo de Confiança para variância σ2 e para o desvio padrão σ . 79
4.2 Teoria da Decisão Estatística . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
4.2.1 Teste de Hipótese . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
4.2.2 Teste para médias, variância conhecida . . . . . . . . . . . . . . . . . . . . . 80
4.2.3 Teste para médias, variância desconhecida . . . . . . . . . . . . . . . . . . . 82
4.2.4Teste de hipóteses para proporção . . . . . . . . . . . . . . . . . . . . . . . . 84
4.2.5 Resumo das etapas aplicadas a qualquer teste de hipóteses . . . . . . . . . 84
4.3 Regressão e Correlação . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
1
INTRODUÇÃO
Estatística é um conjunto de conceitos e métodos científicos para coleta, organização, descri-
ção, análise e interpretação de dados experimentais, que permitem conclusões válidas e tomadas
de decisões razoáveis.
Classificação: Usualmente, a estatística se divide em:
• Estatística descritiva - é a parte que tem por objetivo organizar, apresentar e sintetizar
dados observados de determinada população, sem pretenções de tirar conclusões de caráter
extensivo.
• Teoria de probabilidade - objetiva descrever e prever as características de populações infi-
nitas
• Inferência Estatística é a parte que, baseando-se em estudos realizados sobre os dados de
uma amostra, procura inferir, induzir ou verificar leis de comportamento da população da
qual a amostra foi retirada. A estatística inferencial tem sua estrutura fundamentada na
teoria matemática das probabilidades. É, também definida como um conjunto de métodos
para a tomada de decisões.
No estudo da estatística alguns conceitos são importantes:
• População (N) - Conjunto de todos os elementos relativos a um determinado fenômeno que
possuem pelo menos uma característica em comum, a população é o conjunto Universo.
Exemplos:
– Todos os clientes de uma determinada empresa;
– Todos os produtos fabricados em uma determinada empresa;
• Amostra (n) - um subconjunto da população e deverá ser considerada finita, a amostra deve
ser selecionada seguindo certas regras e deve ser representativa, de modo que ela represente
todas as características da população como se fosse uma fotografia desta.
• Pesquisa Estatística: É qualquer informação retirada de uma população ou amostra, po-
dendo ser através de Censo ou Amostragem
• Censo - atividade de inspecionar (observar) todos os elementos de uma população, objeti-
vando conhecer, com certeza suas características;
Introdução 5
• Amostragem - É o processo de retirada de informações dos "n"elementos amostrais, no
qual deve seguir um método criterioso e adequado (tipos de amostragem).
Figura 1.1: Representação de População×Amostra
• Dados estatísticos: é qualquer característica que possa ser observada ou medida de alguma
maneira. As matérias-primas da estatística são os dados observáveis.
• Variável: É aquilo que se deseja observar para se tirar algum tipo de conclusão, geralmente
as variáveis para estudo são selecionadas por processos de amostragem. Os símbolos uti-
lizados para representar as variáveis são as letras maiúsculas do alfabeto, tais como X, Y,
Z, ... que pode assumir qualquer valor de um conjunto de dados. As variáveis podem ser
classificadas dos seguintes modos:
1.1 AMOSTRAGEM
Na realização de qualquer estudo quase nunca é possível examinar todos os elementos da
população de interesse. Temos usualmente de trabalhar com uma amostra da população. A
inferência estatística nos dá elementos para generalizar, de maneira segura, as conclusões obtidas
da amostra para a população.
É errôneo pensar que, caso tivéssemos acesso a todos os elementos da população, seríamos
mais preciosos. Os erros de coleta e manuseio de um grande número de dados são maiores do
que as imprecisões a que estamos sujeitos quando generalizamos, via inferência, as conclusões de
uma amostra bem selecionada.
Em se tratando de amostra, a preocupação central é que ela seja representativa. Assim que
decidimos obter informações através de um levantamento amostral, temos imediatamente dois
problemas:
• Definir cuidadosamente a população de interesse
• Selecionar a característica que iremos pesquisar.
Introdução 6
Há duas grandes divisões no processo de amostragem: a probabilística e a não-probabilística.
A amostragem probabilística também é chamada de amostragem aleatória ou ao acaso. Este
tipo de amostragem é submetida a tratamento estatístico que permite compensar erros amostrais.
Hoje, dificilmente se aceita uma amostragem não-probabilistica, exceto nos casos em que a
amostragem probabilística não pode ser feita.
A amostragem não-probabilística, por não fazer uso de forma aleatória de seleção, não aceita
diversas aplicações estatísticas e, por isto, é preterida.
Pontos importantes:
• É muito dispendioso entrevistar cada pessoa de toda uma população; recorremos, então,
as amostras;
• Usa-se a proporção de pessoas em uma amostra, portadoras de determinada característica,
para estimar a proporção, na população das que tem essa característica.
• O melhor método de escolha de uma amostra é a escolha aleatória, isto é, que toda amostra
possível tenha a mesma chance de ser escolhida.
• Antes de se proceder a observação de uma determinada população surge a questão se a
amostragem será com ou sem reposição. Se o tamanho da amostra é insignificante em
relação à população o impacto da reposição será desprezível, porém, se a amostra for
grande então a reposição ou não pode causar um impacto significativo no resultado da
probabilidade.
• Como as características das populações estatísticas variam, às vezes, é necessário se adequar
esta população estatística para submetê-la a um critério de seleção possível, sem, contudo,
perder seu caráter aleatório.
1.1.1 Amostragem Simples
Objetivo: Obter uma amostra representativa quando os elementos da população são todos
homogêneos. Neste processo de amostragem todos os elementos da população têm a mesma
probabilidade de serem amostrados. A característica principal é que todos os elementos da
população têm igual probabilidade de pertencer á amostra.
Procedimento: Na prática a amostragem aleatória simples pode ser realizada numerando-se
a população de 1 a N e sorteando-se, a seguir, por meio de um dispositivo aleatório qualquer, k
números dessa seqüência, os quais corresponderão aos elementos pertencentes á amostra.
Exemplo: Vamos obter uma amostra representativa, de 10% dos valores, para obtermos a
estatura média de noventa alunos de uma escola:
• Numeramos os alunos de 01 a 90
• Sorteamos os números, de 01 a 90, um a um, nove números que formarão a amostra.
1.1.2 Amostragem Sistemática
Objetivo: Aumentar a representatividade da amostra dando maior cobertura à população. É
usada quando todos os elementos são homogêneos.
Introdução 7
Procedimento: Quando os elementos da população já estão ordenados, não há necessidade
de construirmos um sistema de referência, para selecionarmos a amostra. São exemplos os
prontuários médicos de um hospital, os prédios de uma rua, uma linha de produção, os nomes
em uma lista telefônica, etc. Nestes casos a seleção dos elementos que constituirão a amostra pode
ser feita por um sistema imposto pelo pesquisador. A esse tipo de amostragem denominamos de
sistemática.
Exemplo: Consideremos uma população, com elementos ordenados, de tamanho N e dela
tiramos uma amostra de tamanho n, através de uma amostragem sistemática, da seguinte ma-
neira:
• Definimos FS como fator de sistematização, dado por FS = N/n.
• Sorteamos um número entre 1 e FS. Esse número é simbolizado por m, que será o primeiro
elemento da amostra.
• O segundo elemento da amostra é o de número FS +m.
• O terceiro elemento da amostra é o de número 2FS +m.
• O k-ésimo elemento da amostra é o número (k − 1)FS +m
Exemplo: Uma rua contém 1000 prédios, dos quais desejamos obter uma amostra sistemática
formada por 100 deles.
FS = 1000/100 = 10
m será um número entre 1 e 10. Vamos supor que m = 7. Então temos:
• 1o elemento da amostra = (1− 1)10 + 7 = 7 »> 7o elemento da população.
• ...
• 100o elemento da amostra = (100− 1)10 + 7 = 997 »> 997o elemento da população.
1.1.3 Amostragem Estratificada
Objetivo: Melhorar arepresentatividade da amostra quando os elementos da população são
heterogêneos, porém, podem ser agrupados em subpopulações (ESTRATOS) contendo elementos
homogêneos.
Procedimento: A população é dividida em grupos ou estratos contendo elementos homogêneos
e as amostras são retiradas separadamente de cada um desses grupos.
Exemplo; Dada a população de 50.000 operários da indústria, selecionar uma amostra pro-
porcional estratificada de 5% de operários para estimar seu salário médio. Usando a variável
critério "cargo"para estratificar essa população, e considerando amostras de 5% de cada estrato
obtido, chegamos ao seguinte quadro:
1.2 MÉTODO ESTATÍSTICO
O Método Estatístico pode ser descrito pelas etapas a seguir:
Introdução 8
CARGO POPULAÇÃO 5% AMOSTRA
Chefes de seção 5000 5(5000)/100 = 250 250
Operários especializados 15000 5(15000)/100 = 750 750
Operários não especializados 30000 5(30000)/100 = 1500 1500
TOTAL 50000 5(50000)/100 = 2500 2500
• Definição do problema - Consiste na:
– formulação correta do problema;
– examinar outros levantamentos realizados no mesmo campo (revisão da literatura);
– saber exatamente o que se pretende pesquisar definindo o problema corretamente
(variáveis, população, hipóteses, etc.)
• Planejamento -Determinar o procedimento necessário para resolver o problema:
– Como levantar informações;
– Tipos de levantamentos: Por Censo (completo); Por Amostragem (parcial).
– Cronograma, Custos, etc.
• Coleta da dados - Consiste na obtenção dos dados referentes ao trabalho que desejamos
fazer.;
– A coleta pode ser: Direta - diretamente da fonte ou Indireta - feita através de outras
fontes.
– Os dados podem ser obtidos pela própria pessoa (primários) ou se baseia no registro
de terceiros (secundários).
• Apuração dos dados - Consiste em resumir os dados, através de uma contagem e agrupa-
mento. É um trabalho de coordenação e de tabulação.
• Apresentação dos dados -É a fase em que vamos mostrar os resultados obtidos na coleta e
na organização. Esta apresentação pode ser:
– Tabular (apresentação numérica)
– Gráfica (apresentação geométrica)
• Análise e interpretação dos dados - É a fase mais importante e também a mais delicada.
Tira conclusões que auxiliam o pesquisador a resolver seu problema.
2
ESTATÍSTICA DESCRITIVA
A estatística descritiva é parte da estatística que lida com a organização, resumo e apresentação
de dados. Esta é feita por meio de:
• Tabelas;
• Gráficos;
• Medidas Descritivas (média, variância, entre outras).
2.1 TIPO DE VARIÁVEIS
As variáveis podem ter valores numéricos ou não numéricos.
• Variáveis Qualitativas (ou categóricas) - são as características que não possuem valores
quantitativos, mas, ao contrário, são definidas por várias categorias, ou seja, representam
uma classificação dos indivíduos
– Variáveis nominais: não existe ordenação dentre as categorias.
Exemplos: sexo, cor dos olhos, fumante/não fumante, doente/sadio.
– Variáveis ordinais: existe uma ordenação entre as categorias.
Exemplos: escolaridade (1o, 2o, 3o graus), estágio da doença (inicial, intermediário,
terminal), mês de observação (janeiro, fevereiro,..., dezembro).
• Variáveis Quantitativas - são as características que podem ser medidas em uma escala
quantitativa, ou seja, apresentam valores numéricos
– Variáveis discretas: são aquelas variáveis que pode assumir somente valores inteiros
num conjunto de valores. É gerada pelo processo de contagem
Exemplos: número de filhos, número de empregados, número de processos.
– Variáveis contínuas: são aquelas variáveis que podem assumir um valor dentro de um
intervalo de valores. É gerada pelo processo de medição
Exemplos: pressão arterial, idade, salário, atraso de transmissão de bytes por uma
rede de internet.
2.2 VARIÁVEIS QUALITATIVAS
Para resumir dados qualitativos, utiliza-se contagens, proporções, porcentagens, taxas por
1000, taxas por 1.000.000, etc, dependendo da escala apropriada. Por exemplo, se encontrar-
Estatística Descritiva 10
mos que 7 empresas com faturamento mensal acima de R$20.000,00 em uma amostra de 500
propriedades, poderíamos expressar isto como uma proporção (0,014) ou percentual (1,4%).
Freqüentemente o primeiro passo da descrição de dados é criar uma tabela de freqüências.
Antes de montar a tabela de distribuição de freqüências temos algumas definições:
• Freqüência - medida que quantifica a ocorrência dos valores de uma variável a um dado
conjunto de dados. As freqüências podem ser:
– Absoluta (fa) - contagem das observações de uma variável;
– Relativa (fr) - divisão da freqüência absoluta pelo total de observações
fr =
fa
n
– Percentual (fp) - é a freqüência relativa multiplicada por 100
fp = 100× fr
Exemplo: Para adequar os produtos às preferências dos clientes, um provedor fez uma pes-
quisa sobre os provedores a qualidade dos serviços prestados utilizando uma amostra de 20
clientes, obtendo as seguintes variáveis:
Tabela 2.1: Variáveis observadas de 20 clientes de um provedor.
Amostra Sexo Qualidade Amostra Sexo Qualidade
1 feminino Boa 11 feminino Ruim
2 feminino Boa 12 feminino Ruim
3 feminino Boa 13 masculino Boa
4 feminino Boa 14 masculino Boa
5 feminino Boa 15 masculino Ótimo
6 feminino Ótimo 16 masculino Regular
7 feminino Ótimo 17 masculino Regular
8 feminino Regular 18 masculino Ruim
9 feminino Regular 19 masculino Ruim
10 feminino Ruim 20 masculino Ruim
Neste é apresentado duas variáveis qualitativas sendo:
• Sexo - variável qualitativa nominal;
• Qualidade - variável qualitativa ordinal;
Para resumir separadamente cada variável podemos utilizar a tabelas simples, que são na
maioria das vezes suficientes para descrever dados qualitativos especialmente quando existem
poucas categorias.
Para a variável sexo, podemos utilizar as freqüências apresentadas na tabela 2.2:
Para a variável qualidade no atendimento, além das freqüências utilizadas para a variável
sexo, podemos utilizar mais duas freqüências:
• Freqüência Acumulada (FA)- obtida pelo soma das freqüências absolutas;
Estatística Descritiva 11
Tabela 2.2: Distribuição de freqüência do sexo de 20 clientes de um provedor.
Sexo Freqüência Freqüência Freqüência
Absoluta Relativa Percentual
(fa) (fr) (fp)
feminino 12 0,60 60%
masculino 8 0,40 40%
20 1,00 100%
• Freqüência Percentual Acumulada (FP) - obtida pela soma das freqüências percentuais.
Tabela 2.3: Distribuição de freqüência qualidade no atendimento de um provedor de acordo com
20 clientes
Qualidade no Freqüência Freqüência Freqüência Freqüência Freqüência
Atendimento Absoluta Relativa Percentual Acumulada Percentual
(fa) (fr) (fp) (FA) Acumulada
(FP)
Ótima 3 0,15 15% 3 15%
Boa 7 0,35 35% 10 50%
Regular 4 0,20 20% 14 70%
Ruim 6 0,30 30% 20 100%
Total 20 1,00 100% - -
Dados qualitativos são usualmente bem ilustrados num simples gráfico de barras onde a altura
da barra é igual à freqüência. O gráfico na Figura 2.1 apresenta as freqüências percentuais da
Tabela 2.2.
Figura 2.1: Qualidade no atendimento de um provedor de acordo com 20 clientes
Em alguns casos podemos estar interessados em resumir duas variáveis qualitativas ao mesmo
tempo, neste caso vamos estudar a relação entre duas variáveis qualitativas que pode ser repre-
sentada em uma tabulação cruzada. Nesta tabela conta-se quantos valores correspondem a cada
par de possíveis resultados, para as duas variáveis. O resultado pode ser apresentado como
freqüência absoluta ou relativa, em relação as colunas ou as linhas (nunca ambas).
Tabela 2.4: Distribuição de freqüência absoluta de 20 clientes de um provador de acordo com a
qualidade de atendimento e o sexo
Qualidade Sexo Total
Feminino Masculino
Boa 5 2 7
Ótimo 2 1 3
Regular 2 2 4
Ruim 3 3 6
Total 12 8 20
Estatística Descritiva 12
O gráfico de barras, com barras justapostas de acordo comcategorias diferentes, pode ser
usado para apresentar a relação entre duas variáveis qualitativas.
Figura 2.2: Distribuição de freqüência absoluta de 20 clientes de um provador de acordo com a
qualidade de atendimento e o sexo
2.3 VARIÁVEIS QUANTITATIVAS
Da mesma forma que as variáveis qualitativas, podemos resumir dados quantitativos por
meio de tabelas de freqüências, entretanto a distinção entre as variáveis quantitativas discretas
e contínuas na forma de preparação destas tabelas.
A tabela de distribuição de freqüências de uma variável discreta é, em geral bastante seme-
lhante à das variáveis qualitativas ordinais, pois os valores inteiros que a variável assume podem
ser considerados como "categorias", ou "classes naturais".
Exemplo: Sejam dados referentes a um levantamento onde observou-se o numero de peças
defeituosas em 25 maquinas de uma empresas.
Tabela 2.5: Número de peças defeituosas em 25 maquinas de uma empresa
3 5 7 1 3
6 5 5 5 3
8 5 2 6 2
4 4 4 3 5
6 2 2 4 5
Observa-se que a disposição da variável número de de peças defeituosas é semelhante a de
uma variável qualitativa ordinal com 8 categorias e sua distribuição de freqüência pode ser vista
na tabela 2.6. A representação gráfica pode ser feita por meio de um gráfico de barras conforme
figura 2.4.
Estatística Descritiva 13
Tabela 2.6: Distribuição de freqüências do número de peças defeituosas de 25 maquinas de uma
empresa
Número de Freqüência Freqüência Freqüência Freqüência Freqüência
Minerais Absoluta Relativa Percentual Acumulada Percentual
(fa) (fr) (fp) (FA) Acumulada
(FP)
1 1 0,04 4% 1 4%
2 4 0,16 16% 5 20%
3 4 0,16 16% 9 36%
4 4 0,16 16% 13 52%
5 7 0,28 28% 20 80%
6 3 0,12 12% 23 92%
7 1 0,04 4% 24 96%
8 1 0,04 4% 25 100%
Total 25 1 100%
Figura 2.3: Número número de peças defeituosas de 25 maquinas de uma empresa
A construção de tabelas de distribuição de freqüências para variáveis quantitativas contínuas
é feita agrupando os dados em classes e obtendo as freqüências observadas em cada classe. É
importante notar que ao resumir dados referentes a uma variável contínua sempre se perde alguma
informação já que não temos idéia de como se distribuem as observações dentro de cada classe.
Para isso temos duas definições:
• Amplitude (A) - corresponde a diferença enter o maior valor e o menor valor de um conjunto
de dados;
• Amplitude da classe (c) - consiste na diferença entre o limite superior e o limite inferior de
uma classe em uma distribuição de freqüência.
O procedimento para construir tabelas de distribuição freqüências para variáveis quantitativas
contínuas envolve os seguintes passos (algoritmo):
Estatística Descritiva 14
• Decidir sobre o numero de classes k, entre 5 e 20. Para que a decisão não seja totalmente
arbitrária pode-se usar a raiz quadrada do total de valores como o número de classes, ou
seja, k ∼= √n
• Determinar a amplitude dos dados: A = Max - Min.
• Determinar a amplitude de classe c:
c =
A
k − 1
• Determinar o limite inferior da primeira classe LI1:
LI1 = Min− c
2
• Determinar o limite superior da primeira classe LS1:
LS1 = LI1 + c
sendo que o limite inferior da segunda classe LI2 é igual ao LS1, e assim
LS2 = LI2 + c
e assim, sucessivamente todas as classes vão sendo construídas.
• Após a construção das classes, são contados quantos dados estão contidos em cada classe
e se obtem as freqüências.
Tabela 2.7: Dados ordenados, relativos ao tempo em segundos para carga de um aplicativo num
sistema compartilhado (30 observações).
6,94 7,27 7,46 7,97 8,03 8,37
8,56 8,66 8,88 8,95 9,30 9,33
9,55 9,76 9,80 9,82 9,98 9,99
10,14 10,19 10,42 10,44 10,66 10,88
10,88 11,16 11,80 11,88 12,25 12,34
k =
√
30 = 5, 47 ≈ 5
A = Max−Min = 12, 34− 6, 94 = 5, 40
c =
A
k − 1 =
5, 40
4
= 1, 35
LI1 = Min− c
2
= 6, 94− 1, 35
2
= 6, 94− 0, 67 = 6, 27
Uma forma de representar graficamente à distribuição de freqüência das variáveis contínuas
é por meio do histograma e do polígono de freqüência . Para elaboração deste gráfico é comum
Estatística Descritiva 15
Tabela 2.8: Distribuição de freqüências, relativa ao ao tempo em segundos para carga de um
aplicativo num sistema compartilhado.
Classes Freqüência Freqüência Freqüência Freqüência Freqüência
Absoluta Relativa Percentual Acumulada Percentual
(fa) (fr) (fp) (FA) Acumulada
(FP)
6,27 ` 7,62 3 0,10 10% 3 10%
7,62 ` 8,97 7 0,23 23% 10 33%
8,97 ` 10,32 10 0,33 33% 20 67%
10,32 ` 11,67 6 0,20 20% 26 87%
11,67 ` 13,02 4 0,13 13% 30 100%
30 1,00 100%
utilizar a chamada densidade de freqüência absoluta (dfa)
dfa =
fr
c
O histograma é semelhante ao gráfico de barras verticais, no eixo vertical pode-se utilizar as
freqüências ou densidades de freqüências e no eixo horizontal as classes. O polígono de freqüências
é um gráfico de linhas em que no eixo vertical pode-se utilizar as freqüências ou densidades de
freqüências e no eixo horizontal o ponto médio de cada classe.
Figura 2.4: Histograma e Polígono de freqüências do relativa ao tempo em segundos para carga
de um aplicativo num sistema compartilhado
Muitas vezes, a análise da distribuição de freqüências acumuladas é mais interessante do que
a de freqüências simples, representada pelo histograma. O gráfico usado na representação gráfica
da distribuição de freqüências acumuladas de uma variável contínua é a ogiva, apresentada na
Figura 2.5. Para a construção da ogiva, são usadas as freqüências acumuladas (absolutas ou
percentuais) no eixo vertical e os limites superiores de classe no eixo horizontal.
Estatística Descritiva 16
O primeiro ponto da ogiva é formado pelo limite inferior da primeira classe e o valor zero,
indicando que abaixo do limite inferior da primeira classe não existem observações. Daí por
diante, são usados os limites superiores das classes e suas respectivas freqüências acumuladas,
até a última classe, que acumula todas as observações. Assim, uma ogiva deve começar no valor
zero e, se for construída com as freqüências relativas acumuladas, terminar com o valor 100.
Figura 2.5: Ogiva para o tempo em segundos para carga de um aplicativo num sistema compar-
tilhado
Estatística Descritiva 17
2.4 MEDIDAS DE POSIÇÃO
Medidas de Posição - São medidas de tendência central, ou seja, representativas do valor
central, ao redor do qual se agrupam a maioria dos valores.
2.4.1 Média Aritmética
Amédia de uma população ou amostra é a soma de todos os elementos da população (amostra)
dividida pelo número de elementos. Esta medida apresenta a mesma unidade dos dados.
• Para a população a média é representada por
µ =
N∑
i=1
xi
N
em que N é o tamanho da população
• Para a amostra a média é representada por
X =
n∑
i=1
xi
n
em que n é o tamanho da amostra.
A média calculada dos dados originais e dados agrupados podem ser diferentes, devido ao
erro de agrupamento. O erro de agrupamento é obtido fazendo a diferença entre o valor obtido
pelos dados originais e o valor obtido pelos dados agrupados.
Exemplo: O tempo de vida útil (em horas) de uma amostra de 6 lâmpadas incadescentes é:
612, 983, 623, 883, 666 , 970. A média amostral do tempo de vida é dado por:
X =
n∑
i=1
xi
n
=
612 + 983 + 623 + 883 + 666 + 970
6
=
4737
6
= 789, 5
2.4.1.1 Propriedades da média
A média aritmética de uma amostra apresenta um conjunto vasto de propriedades, todas
elas, sem dúvida, de grande utilidade no cálculo do seu valor.
1. Adição ou Subtração por uma constanteSeja (X1, X2, X3, ..., Xn) uma amostra aleatória de
tamanho n, k uma constante e X a média da amostra. Se somarmos ou subtrairmos todos
os valores de uma variável X pela constante k, o valor de X MÉDIA fica multiplicada ou
Estatística Descritiva 18
dividida pela constante.
X
∗
=
n∑
i=1
(Xi + k)
n
=
n∑
i=1
Xi +n∑
i=1
k
n
=
n∑
i=1
Xi
n
+
n∑
i=1
k
n
= X +
nk
n
= X + k
Se no exemplo das lâmpadas somarmos a constante 2 a cada um dos valores da variável
temos 614, 985, 625, 885, 667,972
X
∗
=
614 + 985 + 625 + 885 + 668 + 972
6
=
4749
6
= 791, 5
Utilizando a propriedade,
X
∗
= X + k = 789, 5 + 2 = 791, 5
2. Multiplicação ou divisão por uma constante
Seja (X1, X2, X3, ..., Xn) uma amostra aleatória de tamanho n, k uma constante e X a
média da amostra. Se multiplicarmos ou dividirmos todos os valores de uma variável X
pela constante k, o valor de X MÉDIA fica multiplicada ou dividida pela constante.
X
∗
=
n∑
i=1
kxi
n
= k
n∑
i=1
xi
n
= kX
Se no exemplo das lâmpadas multiplicarmos a constante 2 a cada um dos valores da variável
temos 1224, 1966, 1246, 1766, 1332, 1940.
X
∗
=
1224 + 1966 + 1246 + 1766 + 1332 + 1940
6
=
9474
6
= 1579
Estatística Descritiva 19
Utilizando a propriedade,
X
∗
= kX = 2× 789, 5 = 1579
3. Soma dos desvios
Seja (X1, X2, X3, ..., Xn) uma amostra aleatória de tamanho n e X a média da amostra.
Se subtrairmos cada valor da variável X pelar média obtemos os desvios. A soma algébrica
dos desvios é igual a zero
n∑
i=1
(
Xi −X
)
n
=
n∑
i=1
Xi −
n∑
i=1
X
n
=
n∑
i=1
Xi
n
−
n∑
i=1
X
n
= X − nX
n
= X −X = 0
No exemplo da lampâda, temos:
Amostra X Desvio
612 789,5 -177,5
983 789,5 193,5
623 789,5 -166,5
883 789,5 93,5
666 789,5 -123,5
970 789,5 180,5
soma dos desvios 0
2.4.2 Mediana
Num conjunto de dados ordenados, a mediana (Md) é o valor que deixa metade da freqüência
abaixo dele. A mediana, como a média, possui a mesma unidade de cada observação.
A mediana pode ser obtida por meio da expressão:
Md =

Xn+1
2
se n for ímpar
Xn
2
+Xn+2
2
2 se n for par
Exemplo: Considere o conjunto de dados: 5, 2, 6, 13, 9, 15, 10.
Primeiro é necessário ordenar os dados: 2, 5, 6, 9, 10, 13, 15. Como se de uma conjunto com
n = 7 (ímpar), então:
Md = Xn+1
2
= X 7+1
2
= X4
Estatística Descritiva 20
Logo a Mediana é igual ao elemento que está na quarta posição do conjunto de dados, assim
Md = 9
Exemplo: Considere o conjunto de dados: 1, 3, 8, 6, 2, 4.
Primeiro é necessário ordenar os dados: 1, 2, 3, 4, 6, 8. Como se de uma conjunto com n = 6
(par), então
Md =
Xn
2
+Xn+2
2
2
=
X 6
2
+X 6+2
2
2
=
X3 +X4
2
Logo para obter a mediana é necessário obter os elementos que estão na terceira e quarta
posição do conjunto de dados, assim:
Md =
3 + 4
2
= 3, 5
2.4.3 Moda
A moda Mo de um conjunto de dados é o valor mais freqüente e também tem a mesma
unidade dos dados. Para obter a moda basta observar qual o dado que mais se repete.
Exemplo: No conjunto de dados 7 , 8 , 9 , 10 , 10 , 10 , 11 , 12 a moda é igual a 10, pois é
único que se repete.
Exemplo: No conjunto de dados 3 , 5 , 8 , 10 , 12 não apresenta moda. O conjunto é amodal
Exemplo: No conjunto de dados 2 , 3 , 4 , 4 , 4 , 5 , 6 , 7 , 7 , 7 , 8 , 9 temos duas modas:
4 e 7. O conjunto é bimodal.
2.4.4 Comparação entre Média, Mediana e Moda
• Média
– Definição: Soma de todos os valores dividido pelo total de elementos do conjunto.
– Vantagens: Reflete cada valor;Possui propriedades matemáticas atraentes.
– Limitações: É influenciada porvalores externos.
– Quando usar:
1. Deseja-se obter a medida de posição que possui a maior estabilidade;
2. Houver necessidade de um tratamento algébrico posterior.
• Mediana
– Definição: Valor que divide o conjunto em duas partes iguais.
– Vantagens: Menos sensível a valores extremos que a média.
– Limitações: Difícil de determinar para grande quantidade de dados
– Quando usar:
1. Deseja-se obter o ponto que divide o conjunto em partes iguais;
2. Há valores extremos que afetam de maneira acentuada a média;
• Moda
Estatística Descritiva 21
– Definição: Valor mais freqüente.
– Vantagens: Valor "típico"; Maior quantidade de valores concentrados neste ponto
– Limitações: Não se presta a análise matemática; Pode não haver moda para certos
conjuntos de dados
– Quando usar:
1. Deseja-se obter uma medida rápida e aproximada da posição;
2. A medida de posição deve ser o valor mais típico da distribuição.
2.4.5 Simetria
A determinação das medidas de posição permite discutir sobre a simetria da distribuição dos
dados.
• Distribuição simétrica - X = Md = Mo
• Distribuição assimétrica - ocorrem diferenças entre os valores da média, mediana e moda.
A assimetria pode ser:
– à direita - X > Md > Mo
– à esquerda - X < Md < Mo
2.4.6 Separatrizes
Além das medidas de posição que estudamos, há outras que, consideradas individualmente,
não são medidas de tendência central, mas estão ligadas à mediana relativamente à sua carac-
terística de separar a série em duas partes que apresentam o mesmo número de valores. Essas
medidas - os quartis, os decis e os percentis - são, juntamente com a mediana, conhecidas pelo
nome genérico de separatrizes.
2.4.6.1 Quartis
Denominamos quartis os valores de uma série que a dividem em quatro partes iguais.
Q1: 1o quartil. Deixa 25% dos elementos antes do seu valor;
Q2: 2o quartil. Deixa 50% dos elementos antes do seu valor. Coincide com a mediana;
Q3: 3o quartil. Deixa 75% dos elementos antes do seu valor. (Consequentemente, 25% dos
elementos acima do seu valor.)
Genericamente, para determinar a ordem ou posição do quartil a ser calculado, usaremos a
seguinte expressão:
EQi =
in
4
em que
Estatística Descritiva 22
• i = número do quartil a ser calculado;
• n = número de observações;
Exemplo: Calcule os quartis do conjunto de dados 5, 2, 6, 9, 10, 13, 15
O primeiro passo a ser dado é o da ordenação (crescente ou decrescente) dos valores: 2, 5,
6, 9, 10, 13, 15
1o quartil
EQ1 =
1× 7
4
= 1, 75
Logo o quartil 1 está entre o 1o e o 2o elemento (1o antecede 1,75o e 2o é posterior a ele.). Assim,
o 1o quartil será dado pela média entre os 1o e o 2o elemento.
Q1 =
2 + 5
2
= 4, 5
2o quartil
EQ2 =
2× 7
4
= 3, 5
Logo o quartil 2 está entre o 3o e o 4o elemento (3o antecede 3,5o e 4o é posterior a ele.). Assim,
o 2o quartil será dado pela média entre os 3o e o 4o elemento.
Q2 =
6 + 9
2
= 10, 5
3o quartil
EQ3 =
3× 7
4
= 5, 25
Logo o quartil 3 está entre o 5o e o 6o elemento (5o antecede 5,25o e 6o é posterior a ele.). Assim,
o 3o quartil será dado pela média entre os 5o e o 6o elemento.
Q2 =
10 + 13
2
= 16, 5
2.4.6.2 Percentis ou Centis
São as medidas que dividem a amostra em 100 partes iguais. Assim:
O elemento que definirá a ordem do percentil será encontrado pelo emprego da expressão:
EPi =
in
100
em que:
• i = número identificador do percentil;
• n = número total de observações;
Estatística Descritiva 23
Relação entre percentil, quuartil e mediana
• P25 = Q1
• P50 = Q2 = Md
• P75 = Q3
Exemplo: Calcule os percentil 90 do conjunto de dados 1,4,2,4,7,9,2
O primeiro passo a ser dado é o da ordenação (crescente ou decrescente) dos valores: 1, 2, 2,
4, 4, 7, 9
Perdential 90
EP90 =
90× 7
100
= 6, 3
Logo o percentil 90 está entre o 6o e o 7o elemento (6o antecede 6,3o e 7o é posterior a ele.).
Assim, o 90o percentil será dado pela média entre os 6o e o 7o elemento.
P90 =
7 + 9
2
= 8
2.4.7 Dados agrupados
2.4.7.1 Média
Quando os dados são agrupados (Distribuição de freqüência) a média é representada por
X =
n∑
i=1
faixi
n∑
i=1
fai
em que
• para variáveis contínuas xi é o ponto médio da classe
• fai é o freqüência absoluta de xi
A média calculada dos dados originais e dados agrupados podem ser diferentes, devido ao
erro de agrupamento. O erro de agrupamento é obtido fazendo adiferença entre o valor obtido
pelos dados originais e o valor obtido pelos dados agrupados.
2.4.7.2 Mediana
Para calcular a mediana em dados agrupados é necessário observar a freqüência acumulada
para definir a classe mediana.
A posição da mediana EMd é definida da seguinte forma
EMd =

n+1
2 se n for ímpar
n
2 se n for par
Estatística Descritiva 24
Definida a classe mediana utiliza-se a expressão abaixo para obter a mediana
Md = LIi +
n1
n2
c
em que:
• LIi é o limite inferior da classe mediana
• c é a amplitude da classe mediana
• n1 é a diferença entre a Posição da mediana e a freqüência acumulada da classe anterior a
classe mediana
• n2 é a freqüência absoluta da classe mediana
2.4.7.3 Moda
A moda Mo de um conjunto de dados é o valor mais freqüente e também tem a mesma
unidade dos dados. Para obter a moda basta observar qual o dado que mais se repete.
Para dados agrupados de variáveis continuas a moda se localiza na classe de maior freqüência
(classe modal) e é obtida por meio da expressão:
Mo = LIi +
∆1
∆1 + ∆2
c
• LIi é o limite inferior da classe modal;
• c é a amplitude da classe modal;
• ∆1 é a diferença da freqüência da classe modal e a freqüência da classe imediatamente
anterior;
• ∆2 é a diferença da freqüência da classe modal e a freqüência da classe imediatamente
posterior.
2.4.7.4 Quartil
Para calcular o quartil em dados agrupados é necessário observar a freqüência acumulada
para definir a classe quartílica.
A posição da mediana EQi é definida da seguinte forma
EQi =
in
4
Definida a classe quartílica utiliza-se a expressão abaixo para obter o quartil
Qi = LIi +
n1
n2
c
em que:
• LIi é o limite inferior da classe quartílica
Estatística Descritiva 25
• c é a amplitude da classe quartílica
• n1 é a diferença entre a Posição do quartil e a freqüência acumulada da classe anterior a
classe quartílica
• n2 é a freqüência absoluta da classe quartílica
2.4.7.5 Percentil
Para calcular o percentil em dados agrupados é necessário observar a freqüência acumulada
para definir a classe percentílica.
A posição da mediana EPi é definida da seguinte forma
EPi =
in
100
Definida a classe percentílica utiliza-se a expressão abaixo para obter o percentil
Pi = LIi +
n1
n2
c
em que:
• LIi é o limite inferior da classe percentílica
• c é a amplitude da classe percentílica
• n1 é a diferença entre a Posição do percentílica e a freqüência acumulada da classe anterior
a classe percentílica
• n2 é a freqüência absoluta da classe percentílica
2.4.7.6 Exemplo
Tabela 2.9: Dados ordenados, relativos ao tempo em segundos para carga de um aplicativo num
sistema compartilhado (30 observações).
6,94 7,27 7,46 7,97 8,03 8,37
8,56 8,66 8,88 8,95 9,30 9,33
9,55 9,76 9,80 9,82 9,98 9,99
10,14 10,19 10,42 10,44 10,66 10,88
10,88 11,16 11,80 11,88 12,25 12,34
Assim,
X =
n∑
i=1
faixi
n∑
i=1
fai
=
290, 55
30
= 9, 685 ∼= 9, 68
Para dados agrupados, primeiro vamos obter a classe mediana
n
2
=
30
2
= 15
Estatística Descritiva 26
Tabela 2.10: Resumo da distribuição de freqüências, relativa ao ao tempo em segundos para
carga de um aplicativo num sistema compartilhado.
Classes x Frequencia fa× x Frequencia
Absoluta Acumulada
(fa) (FA)
6,27 ` 7,62 6,94 3 20,82 3
7,62 ` 8,97 8,29 7 58,03 10
8,97 ` 10,32 9,64 10 96,4 20
10,32 ` 11,67 10,99 6 65,94 26
11,67 ` 13,02 12,34 4 49,36 30
Total 30 290,55
Assim a classe mediana é a que contém a freqüência acumulada 15, ou seja é a classe 8, 97 ` 10, 32.
Então temos:
• LIi = 8, 97
• c=1,35
• n1 = 15− 10 = 5
• n2 = 10
Substituindo nas formula, temos
Md = LIi +
n1
n2
c = 8, 97 +
5
10
1, 35 = 8, 97 + 0, 67 = 9, 64
Para obter a moda, primeiro vamos obter a classe modal.
A maior freqüência absoluta é 10, assim a classe modal é 8, 97 ` 10, 32. Assim, temos
Mo = LIi +
∆1
∆1 + ∆2
c
• LIi = 8, 97;
• c = 1, 35;
• ∆1 = 10− 7 = 3;
• ∆2 = 10− 6 = 4
Mo = LIi +
∆1
∆1 + ∆2
c = 8, 97 +
3
3 + 4
1, 35 = 8, 97 + 0, 58 = 9, 55
2.5 BOXPLOT
O gráfico Boxplot (ou desenho esquemático) é uma análise gráfica que oferece a ideia da
posição, dispersão, assimetria, caudas e dados discrepantes. Para construí-lo, desenhamos uma
"caixa"com o nível superior dado pelo terceiro quartil (Q3) e o nível inferior pelo primeiro quartil
Estatística Descritiva 27
(Q1). A mediana (Q2) é representada por um traço no interior da caixa e segmentos de reta são
colocados da caixa até dos limites inferior (LI) e superior (LS), dados por
LI = Q1 − 1.5dq
LS = Q3 + 1.5dq
em que dq = Q3 −Q1 denominando diferença quartilica.
Para traçarmos o boxplot utilizamos as seguintes etapas:
• Contruir um retângulo de tal maneira que suas bases têm alturas correspondentes aos
primeiro e terceiro quartis da distribuição.
• Cortar o retângulo por um segmento paralelo às bases, na altura correspondente à mediana;
• Traçar um segmento paralelo ao eixo, partindo do ponto médio da base superior do retân-
gulo até o maior valor observado que NÃO supere LS;
• Traçar um segmento paralelo ao eixo, partindo do ponto médio da base inferior do retân-
gulo, até o menor valor que NÃO é menor LI;
• Case tenha valores que superior a LS ou inferior a LI, marcar os pontos, este valores são
considerados observações discrepantes.
• Podemos opcionalmente marca o valor da média;
Para o conjunto de dados do tempo de carga de um aplicativo temos:
Md = 9, 81
Q1 = 8, 71
Q3 = 10, 61
dq = 10, 61− 8, 71 = 1, 9
LI = 8, 71− 1, 5× 1, 9 = 5, 86
LS = 10, 61 + 1, 5× 1, 9 = 13, 46
Estatística Descritiva 28
Figura 2.6: Boxplot para o tempo em segundos para carga de um aplicativo num sistema com-
partilhado
Estatística Descritiva 29
2.6 MEDIDAS DE DISPERSÃO
As medidas de posição são importantes para caracterizar um conjunto de dados, mas não
são suficientes para caracterizar completamente a distribuição dos dados. Para isso é necessário
obter as medidas de dispersão, que medem a variabilidade dos dados.
Por exemplo: Considere as amostras referentes a altura, em cm, de dois grupos de pessoas.
Grupo A: 185 185 185
Grupo B: 187 183 185
A média para os dois grupos é a mesma XA = 185 e XB = 185.
Os 2 conjuntos não diferem entre si e consideramos somente a média, pois se basearmos
somente por essa medida os dois grupos são considerados como de mesma altura. Entretanto o
grupo A tem todas as observações iguais a média. Já no grupo B ocorre uma certa dispersão nos
dados.
As medidas de variabilidade ou dispersão possibilitam que façamos distinção entre os con-
juntos quanto à sua homogeneidade, isto é, o grau de concentração em torno de uma medida de
tendência central.
2.6.1 Amplitude Total
Amplitude Total (A) é a diferença entre o maior e o menor valor da amostra. Essa medida é
bastante simples, e obtida pela expressão:
A = Max−Min
Para dados agrupados a amplitude total é a diferença entre o ponto médio da última e da
primeira classe.
Para expressar variabilidade a amplitude total não é muito usada, pois baseia-se em apenas
dois dados.
2.6.2 Variância e Desvio Padrão
A variância é baseada pela quadrado dos desvios dos dados em relação à média. Esta medida
é expressa na unidade dos dados ao quadrado.
• Para a população a variância é representada por
σ2 =
N∑
i=1
(xi − µ)2
N
em que N é o tamanho da população
• Para a amostra a variância é representada por
S2 =
n∑
i=1
(
xi −X
)2
n− 1
Estatística Descritiva 30
em que n é o tamanho da população
Para dados agrupados, a variância é obtida por meio da expressão:
• Para a população a variância é representada por
σ2 =
k∑
i=1
(xi − µ)2 fai
k∑
i=1
fai
• Para a amostra a variância é representada por
S2 =
n∑
i=1
(
xi −X
)2fai
k∑
i=1
fai − 1
O desvio padrão é a raíz quadrada positiva da variância. Esta medida é expressa na mesma
unidade dos dados.
• Para a população o desvio padrão é representada por
σ =
√
σ2
• Para a amostra o desvio padrão é representada por
S =
√
S2
em que n é o tamanho da população
Nota:
• O desvio padrão e a variância são medidas de dispersão ou variabilidade, a opção do uso
de um ou outro, depende da finalidade da informação.
• A variância tem pouca utilidade na estatística descritiva, porém é muito importante na
inferência estatística e em combinações de amostras.
• O desvio padrão é muito usado na estatística descritiva.
• É importante notar que, se os dados representarem uma amostra e não toda a população,
a expressão matemática da variância deve ter (n− 1) no denominador em substituição ao
fator n, esta mudança é chamada de fator de correção de Bessel ou conforme os estatísticos,
número de graus de liberdade. Dessa forma temos a variância da amostra.
Estatística Descritiva 31
2.6.2.1 Propriedades da Variância
A variância apresenta um conjunto vasto de propriedades, todas elas, sem dúvida, de grande
utilidade no cálculo do seu valor.
1. A variância de uma constante k é nula;
S2
∗
=
n∑
i=1
(
k −X)2
n− 1
=
n∑
i=1
(k − k)2
n− 1
=
n∑
i=1
(0)2
n− 1
= 0
2. Somando-se ou subtraindo-se uma constante k a todos os dados a variância não se altera.
X∗i = Xi + k
X
∗
= X + k
S2
∗
=
n∑
i=1
(
X∗i −X∗
)2
n− 1
=
n∑
i=1
(
Xi + k − (X + k)
)2
n− 1
=
n∑
i=1
(
Xi + k −X − k
)2
n− 1
=
n∑
i=1
(
Xi −X
)2
n− 1
= S2
Estatística Descritiva 32
3. Multiplicando-se todos os dados por uma constante k, a variância fica multiplicada por k2.
X∗i = kXi
X
∗
= kX
S2
∗
=
n∑
i=1
(
X∗i −X∗
)2
n− 1
=
n∑
i=1
(
kXi − kX
)2
n− 1
=
n∑
i=1
(
k
(
Xi −X
))2
n− 1
=
n∑
i=1
k2
(
Xi −X
)2
n− 1
= k2S2
2.6.2.2 Propriedades do Desvio Padrão
1. Somando-se ou subtraindo-se uma constante k a todos os dados o desvio padrão não se
altera.
X∗i = Xi + k
S2
∗
= S2
S =
√
S2
2. Multiplicando-se todos os dados por uma constante k, a variância fica multiplicada por k2.
X∗i = kXi
S2
∗
= k2S2
S =
√
k2S2 = kS
2.6.3 Coeficiente de Variação
O coeficiente de variação (CV ) é uma medida de dispersão que expressa o desvio padrão em
termos da média de forma percentual
CV = 100
S
X
Se as amostras tiverem unidade diferentes ou médias diferentes o CV pode ser utilizado para
comparar a variabilidade entre duas amostras.
Estatística Descritiva 33
2.6.4 Erro Padrão da Média
O erro padrão da média é uma medida de dispersão que dá a precisão com que a média
populacional está sendo estimada. É obtido pela fórmula
S(X) =
S√
n
em que:
• S é o desvio padrão da amostra;
• n é o tamanho da amostra.
2.7 EXEMPLOS
Sejam dados referentes a um levantamento onde observou-se o numero de peças defeituosas
em 25 maquinas de uma empresas.
Tabela 2.11: Número de peças defeituosas em 25 maquinas de uma empresa
1 3 4 5 6
2 3 4 5 6
2 3 4 5 6
2 3 5 5 7
2 4 5 5 8
A amplitude total
A = Max−Min = 8− 1 = 7
Temos que a média é X = 4 e como se trata de uma amostra temos:
S2 =
n∑
i=1
(
xi −X
)2
n− 1 =
(
(1− 4)2 + (2− 4)2 + ...+ (8− 4)2)
25− 1 = 3, 041666667
∼= 3, 04
O desvio padrão
S =
√
S2 =
√
3, 04 = 1, 7435595 ∼= 2
O coeficiente de variação
CV = 100
S
X
= 100
2
4
= 50%
O erro padrão da médio
S(X) =
S√
n
=
2√
25
= 0, 4
2.7.1 Dados Agrupados
Assim, Amplitude total
A = Max−Min = 12, 34− 6, 94 = 5, 40
Estatística Descritiva 34
Tabela 2.12: Resumo da distribuição de freqüências, relativa ao tempo em segundos para carga
de um aplicativo num sistema compartilhado (30 observações)
Classes x Frequencia x−X (x−X)fa
Absoluta
(fa)
6,27 ` 7,62 6,94 3 7,5076 22,5228
7,62 ` 8,97 8,29 7 1,9321 13,5247
8,97 ` 10,32 9,64 10 0,0016 0,016
10,32 ` 11,67 10,99 6 1,7161 10,2966
11,67 ` 13,02 12,34 4 7,0756 28,3024
Total 30 74,6625
Temos que a média é X = 9, 68 e como se trata de uma amostra temos:
S2 =
n∑
i=1
(
xi −X
)2
fai
k∑
i=1
fai − 1
=
74, 6625
29
= 2, 5745689 ∼= 2, 5746
O desvio padrão
S =
√
S2 =
√
2, 5746 = 1, 604556 ∼= 1, 60
O coeficiente de variação
CV = 100
S
X
= 100
1, 60
9, 68
= 16, 53%
O erro padrão da média
S(X) =
S√
n
=
1, 60√
30
= 0, 29
3
NOÇÕES DE PROBABILIDADE
Já vimos que para se obter informações sobre alguma característica da população, podemos
utilizar uma amostra. Estudaremos agora a probabilidade, que é uma ferramenta usada e neces-
sária para se fazer ligações entre a amostra e a população, de modo que a partir de informações
da amostra se possa fazer afirmações sobre características da população.
As probabilidades são utilizadas para exprimir a chance de ocorrência de determinado evento.
O estudo das probabilidades é importante pois elas são a base para o estudo estatístico
A teoria de probabilidades tem por objetivo o estudo de fenômenos aleatórios. Um fenômeno
é chamado de aleatório se ele tem a seguinte propriedade: quando observado repetidamente sob
as mesmas condições ele produz resultados diferentes. Mesmo que a chance da ocorrência seja
alta, os resultados não são conhecidos antes de ocorrer, mas de certa forma, mantém uma certa
regularidade, o que permite determinar a chance de ocorrência; a Probabilidade.
Exemplos:
• Jogar uma moeda repetidamente e observar o resultado da face de cima;
• Jogar um dado e observar o número mostrado na face superior;
• Número de filhos de um casal;
Observação: quando a possibilidade de repetir o fenômeno está na mão do experimentador,
este fenômeno aleatório é chamado de experimento aleatório.
3.1 ESPAÇO AMOSTRAL E EVENTOS
Espaço amostral (Ω) - é o conjunto de todos os possíveis resultados de um experimento.
Um espaço amostral é
Exemplo:
• Lançamento de um dado não viciado. Neste caso o espaço amostral é
Ω = {1, 2, 3, 4, 5, 6}
• Lançar uma moeda duas vezes e observar as faces obtidas
Ω = {(Ca,Co), (Ca,Ca), (Co,Ca), (Co,Co)}
Noções de Probabilidade 36
No lançamento de um dado pode-se interessar, por exemplo, somente na ocorrência de número
ímpares. O subconjunto A = {1, 3, 5} do espaço amostral Ω representa o evento A definido pela
ocorrência de números ímpares.
Evento - é um subconjunto do espaço amostral que representa um resultado definido.
Ponto amostral - é apenas um elemento do espaço amostral.
3.1.1 Operação com eventos
Sejam A e B dois eventos de um mesmo espaço amostral O evento intersecção de A e B,
denotado A ∩B, e o evento em que A e B ocorrem simultaneamente.
Dois eventos A e B são mutuamente exclusivos ou disjuntos se eles não podem ocorrer simul-
taneamente A ∩B = ∅.
O evento União de A e B, denotado A ∪ B, e o evento em que A ocorre ou B ocorre (ou
ambos).
O evento complementar de A, denotado Ac, é o evento em que A não ocorre.
Exemplo: Seja o espaço amostral Ω = {1, 2, 3, 4, 5, 6} e considere os eventos:
A = {1, 3, 5} B = {2, 4, 6} C = {3, 4, 5, 6}
Vamos fazer as seguintes operações:
A ∩B = ∅ Conjuntos mutuamente exclusivos ou disjunto
A ∩ C = {3, 5}
A ∪B = {1, 2, 3, 4, 5, 6} = Ω
A ∩Bc = {1, 3, 5} = A os elementos de Ω que não estão no conjunto B⇒ Bc{1, 3, 5}
Noções de Probabilidade 37
3.2 PROBABILIDADE
Probabilidade - freqüência relativa associada a um variável descritora de uma população.
Num espaço amostral Ω, a probabilidade de ocorrer um evento A, representado por P (A), é
dado pela medida de A em Ω nas seguintes condições: Exemplo: A probabilidade de ocorrer face
ímpar no lançamento de um dado não viciado é
P (A) =
n
N
=
3
6
=
12
= 0, 5 = 50%
Algumas propriedades de probabilidade:
• A probabilidade de ocorrência de Ω vale 1, ou seja, P (Ω) = 1
• Probabilidade de em evento certo e de um evento impossível
P (Ω) = 1; P (∅) = 0
• A probabilidade de ocorrência do evento A é não negativa, ou seja, P (A) ≥ 0
• Domínio da Probabilidade
0 ≤ P (A) ≤ 1
• Regra da Adição de probabilidades de dois eventos A e B:
P (A ∪B) = P (A) + P (B)− P (A ∩B)
No exemplo do lançamento de um dado seja os eventos A = {2, 4, 6} e B = {3, 4, 5, 6}. A
união entre os dois conjuntos daria {2, 3, 4, 5, 6}. Assim:
P (A ∪B) = 5
6
= 0, 83 = 83%
Utilizando a regra da adição teriamos:
P (A ∪B) = P (A) + P (B)− P (A ∩B) = 3
6
+
4
6
− 2
6
=
5
6
= 0, 83 = 83%
em que A ∩B = {4, 6}
• Probabilidade complementar
P (Ac) = 1− P (A)
No exemplo do lançamento de um dado seja o evento A = {3, 4, 5, 6}, então Ac = {1, 2},
logo
P (A) =
4
6
e P (Ac) =
2
6
utilizando a regra da probabilidade complementar teriamos:
P (Ac) = 1− P (A) = 1− 4
6
=
6− 4
6
=
2
6
Noções de Probabilidade 38
3.2.1 Probabilidade Condicional e Independência de Eventos
A probabilidade condicional surge, por exemplo, quando se deseja calcular a probabilidade
de um evento A ocorrer sabendo que um evento B já ocorreu.
Sejam A e B dois eventos associados a um mesmo espaço amostral Ω. Denota-se por P (A|B)
a probabilidade condicionada do evento A, quando o evento B tiver ocorrido.
Sempre que calculamos P (A|B), estamos essencialmente calculando P (A) em relação ao
espaço amostral reduzido devido a B ter ocorrido, em lugar de faze-lo em relação ao espaço
amostral original Ω.
Dados dois eventos A e B , a probabilidade condicional de A dado que ocorreu B é represen-
tada por P (A|B) e definida por
P (A|B) = P (A ∩B)
P (B)
, P (B) 6= 0.
Isso significa que a probabilidade de A ocorrer, dado que B ocorreu, é igual à probabilidade
de ocorrência simultânea de A e B dividida pela probabilidade de ocorrência de B.
Exemplo: Na tabela a seguir temos dados referentes a alunos matriculados em três cursos de
uma universidade em dado ano.
Tabela 3.1: Dados referentes a alunos de uma dada universidade.
Cursos Sexo Total
Feminino Masculino
Administração 70 40 110
Psicologia 10 20 30
Geologia 20 15 35
Total 100 75 175
Qual a probabilidade de escolhermos um aluno ao acaso e ele ser:
• Homem (H) e da Administração (Adm)?
P (H ∩Adm) = 40
175
= 0, 2285
b) Homem (H) ou da Administração (Adm)?
P (H ∪Adm) = P (H) + P (Adm)− P (H ∩Adm)
=
75
175
+
110
175
− 40
175
=
145
175
= 0, 8285
• Psicologia (Psi) ou Geologia (Geo)?
P (Psi ∪Geo) = P (Psi) + P (Geo)− P (Psi ∩Geo)
=
30
175
+
35
175
− 0 = 65
175
= 0, 3714
Noções de Probabilidade 39
• De ser um aluno da psicologia dado que é mulher.
P (Psi|M) = P (Psi ∩M)
P (M)
=
10
175
100
175
=
10
175
175
100
=
10
100
= 0, 10
Das expressões acima resulta a regra do produto, que se refere ao cálculo da probabilidade
do evento interseção,
P (A ∩B) = P (A|B).P (B)
A ordem do condicionamento pode ser invertida. Para três eventos, por exemplo, pode-se
escrever:
P (A ∩B ∩ C) = P (A).P (B|A).P (C|A ∩B) (3.1)
Dois eventos A e B são independentes se a ocorrência de um não altera a probabilidade
de ocorrência do outro, isto é, P (A|B) = P (A) ou P (B|A) = P (B), ou ainda, a seguinte forma
equivalente:
P (A ∩B) = P (A).P (B)
3.2.2 Árvores de probabilidade
A contrução de uma árvore de probabilidade fornece uma ferramenta muito útil para a
solução de problemas envolvendo duas ou mais etapas. A árvore consiste em uma representação
gráfica na qual diversas possibilidades são representadas, juntamente com as respectivas proba-
bilidades condicionadas a cada situação. Isso permite, pela utilização direta da regra do produto
das probabilidades, associar a cada nó terminal da árvore a respectiva probabilidade.
O uso das árvores de probabilidade ajudam e simplificam o entendimento da aplicação de
dois teoremas que serão apresentados a seguir, conforme será visto no exemplo.
Exemplo: Em certo colégio, 5% dos homens e 2% das mulheres têm mais de 1,80m de altura.
Por outro lado, 40% dos estudantes são homens. Sorteando-se um estudante aleatoriamente,
qual a probabilidade de:
• Ser mulher (M) e ter mais de 1,80m?
P (M∩ > 1, 80) = 0, 60× 0, 02 = 0, 012
• Ter mais de 1,80m?
P (> 1, 80) = P (M∩ > 1, 80) + P (H∩ > 1, 80)
P (H∩ > 1, 80) = 0, 40× 0, 05 = 0, 02
P (> 1, 80) = 0, 012 + 0, 02 = 0, 032
Noções de Probabilidade 40
• Um estudante é escolhido ao acaso e tem mais de 1,80m. Qual a probabilidade de que o
estudante seja mulher?
P (M | > 1, 80) = P (M∩ > 1, 80)
P (> 1, 80)
=
0, 012
0, 032
= 0, 375
3.3 VARIÁVEL ALEATÓRIA
Variável Aleatória - variável descritora de populações, cujos valores são associados a proba-
bilidades de ocorrência.
Exemplo: Um estudante é submetido a três questões de múltipla escolha, em cada questão
tinha cinco alternativas. Logo a chance de acerta uma questão no chute é 20%
• Correto (C) - P (C) = 20% = 15
• Errado (E) - P (E) = 80% = 45
A questões e resultados possíveis são:
Noções de Probabilidade 41
Ω = {CCC,CCE,CEC,CEE,ECC,ECE,EEC,EEE}
Supondo que sua variável aleatória é acertar a questão, temos que o ocorrência no espaço
amostral pode ser:
Ω =
{
CCC
3
,
CCE
2
,
CEC
2
,
CEE
1
,
ECC
2
,
ECE
1
,
EEC
1
,
EEE
0
}
As probabilidade dos pontos amostrais são:
P (CCC) =
1
5
1
5
1
5
=
1
125
P (CCE) =
1
5
1
5
4
5
=
4
125
P (CEC) =
1
5
4
5
1
5
=
4
125
P (CEE) =
1
5
4
5
4
5
=
16
125
P (ECC) =
4
5
1
5
1
5
=
4
125
P (ECE) =
4
5
1
5
4
5
=
16
125
P (EEC) =
4
5
4
5
1
5
=
16
125
P (EEE) =
4
5
4
5
4
5
=
64
125
Pode-se construir uma tabela, em que X é o número de questões corretas e f(x) é a probabi-
lidade de ocorrer o resultado X.
x 0 1 2 3
f(x) 64/125 48/125 12/125 1/125
Nesta tabela X assume os valores (X = 0, 1, 2, 3) que são valores numéricos que descrevem
os resultados da experiência, logo os valores de X são de uma variável aleatória.
Uma função que transforma em resultados de um espaço amostral em números reais, chama-se
variável aleatória.
• X é o nome da variável aleatória definida. Ex. número de questões corretas;
• x são os valores assumidos pela variável. Ex. x = 0, 1, 2, 3.
3.3.1 Função de Probabilidade Discreta
É uma função f(x) que associa a cada valor x da variável aleatória a sua respectiva proba-
bilidade. Esta função deve atender duas condições:
1. f(x) ≥ 0;
2.
∑
f(x) = 1
Noções de Probabilidade 42
x 0 1 2 3
f(x) 64/125 48/125 12/125 1/125
Ex.: Para a três questões, considerando X número de acertos e x=(0,1,2,3)
Verificação da duas condições:
1. f(x) ≥ 0;
• Para x < 0→ f(x) = 0
• Para 0 ≤ x ≤ 2→ f(x) > 0
• Para x > 2→ f(x) = 0
2.
∑
f(x) =
64
125
+
48
125
+
12
125
+
1
125
=
125
125
= 1
Uma função de probabilidade discreta pode ser representada por
f(x) ouP (x) ouP (X = x)
Outra forma de representar uma distribuição de probabilidade de uma variável aleaória é por
meio de sua função de distribuição acumulado, que é definida por
F (x) = P (X ≤ x) =
n∑
i=1
P (X = xi)
Utilizando o exemplo das questões, temos que a função de distribuição é
x 0 1 2 3
f(x) 64/125 48/125 12/125 1/125
Assim a função de distribuição acumulado é dada por
x 0 1 2 3
F(x) 64/125 112/125 124/125 125/125
E sua representação gráfica:
3.3.1.1 Esperança Matemática e Variância de uma VAD
Definição: Seja X uma V.A.D., com valores possíveis x1, x2, ..., xn; Seja P (xi)= P (X =
xi), i = 1, 2, ..., n. Então, o valor esperado de X (ou Esperança Matemática de X), denotado por
E(X) é definido como
E(X) =
∞∑
i=1
xiP (xi)
esta expressão é também denominado o valor médio de X.
Noções de Probabilidade 43
Definição: Seja X uma V.A.D. . Define-se a variância de X, denotada por V (X) ou σ2X , da
seguinte maneira:
V (X) =
∞∑
i=1
(xi − E(X))2 P (xi) = ou V (X) = E(X2)− (E(X))2
e a raiz quadrada positiva de V(X) é denominada o desvio-padrão de X, e denotado por σX .
No exemplo das questões
E(X) =
4∑
i=1
xiP (xi) = 0
64
125
+ 1
48
125
+ 2
12
125
+ 3
1
125
= 0 +
48
125
+
24
125
+
3
125
= 0, 60
V (x) =
4∑
i=1
(xi − E(X))2 P (xi) = (0− 0, 60)2 64
125
+ (1− 0, 60)2 48
125
+ (2− 0, 60)2 12
125
+ (3− 0, 60)2 1
125
= 0, 36
64
125
+ 0, 16
48
125
+ 1, 96
12
125
+ 5, 76
1
125
=
23, 04
125
+
7, 68
125
+
23, 52
125
+
5, 76
125
=
60
125
= 0, 48
V (X) = E(X2)− (E(X))2
E(X2) =
4∑
i=1
x2iP (xi) = 0
2 64
125
+ 12
48
125
+ 22
12
125
+ 32
1
125
= 0
64
125
+ 1
48
125
+ 4
12
125
+ 9
1
125
= 0 +
48
125
+
48
125
+
9
125
=
105
125
= 0, 84
V (X) = 0, 84− (0, 60)2 = 0, 84− 0, 36 = 0, 48
3.3.2 Função de probabilidade contínua ou função de densidade de probabilidade
(fdp).
Se a variável aleatória é contínua a sua função de probabilidade é uma função contínua
conhecida por função de densidade de probabilidade (fdp). Esta função atende duas condições:
1. f(x) ≥ 0 ∀x ∈ R
2.
∫
R
f(x)dx = 1
Noções de Probabilidade 44
Das duas condições verifica-se que
P (a < x < b) =
∫ b
a
f(x)dx
No casa das variáveis contínuas a função de distribuição acumulada, que é definida por
F (x) = P (X ≤ x) =
∫ x
−∞
f(x)dx
E sua representação gráfica:
Ex.: O tempo gasto, em minutos, por um estudante para responder a uma questão de um
teste é uma variável aleatória contínua com função dada por
f(x) =
{
x
4 para 1 ≤ x ≤ 3
0 para outros valores
Pela notação verifica-se que o estudante gasta um tempo entre 1 e 3 minutos.
Verificar as duas condições
1. f(x) ≥ 0 ∀x ∈ R
• Para x < 1→ f(x) = 0
• Para 1 ≤ x ≤ 3→ f(x) > 0
• Para x > 3→ f(x) > 0
2.
∫
R
f(x)dx = 1
∫ ∞
−∞
f(x)dx =
∫ ∞
−∞
x
4
dx =
∫ 3
1
x
4
dx =
1
4
∫ 3
1
xdx =
1
4
x2
2
]3
1
=
1
4
(
32
2
− 1
2
2
)
=
1
4
(
9
2
− 1
2
)
=
1
4
8
2
= 1
Noções de Probabilidade 45
Para obter a probabilidade utiliza-se a integral, por exemplo,
P (2 < x < 3) =
∫ 3
2
x
4
dx
=
1
4
∫ 3
2
xdx
=
1
4
x2
2
]3
2
=
1
4
(
32
2
− 2
2
2
)
=
1
4
(
9
2
− 4
2
)
=
1
4
5
2
=
5
8
= 0, 625
3.3.2.1 Esperança Matemática e Variância de uma fdp
Definição: Seja X uma V.A. continua, com fdp f(x). Então, o valor esperado de X (ou
Esperança Matemática de X), denotado por E(X) é definido como
E(X) =
∫ ∞
−∞
xf(x)dx
esta expressão é também denominado o valor médio de X.
Definição: Seja X uma V.A.D. . Define-se a variância de X, denotada por V (X) ou σ2X , da
seguinte maneira:
V (X) =
∫ ∞
−∞
(x− E(X))2 f(x)dx ou V (X) = E(X2)− (E(X))2
em que
E(X2) =
∫ ∞
−∞
x2f(x)dx
e a raiz quadrada positiva de V(X) é denominada o desvio-padrão de X, e denotado por σX .
No exemplo da o tempo gasto, em minutos, por um estudante para responder a uma questão
de um teste, temos que:
E(X) =
∫ ∞
−∞
xf(x)dx =
∫ 3
1
x
x
4
dx = 2, 17
V (X) =
∫ ∞
−∞
(x− E(X))2 f(x)dx =
∫ 3
1
(x− 2, 17)2 x
4
dx = 0, 30
E(X2) =
∫ ∞
−∞
x2f(x)dx =
∫ 3
1
x2
x
4
dx = 5, 00
V (X) = E(X2)− (E(X))2 = 5− (2, 17)2 = 0, 30
Noções de Probabilidade 46
3.4 DISTRIBUIÇÕES DISCRETAS DE PROBABILIDADE
A distribuição discreta descreve quantidades aleatórias (dados de interesse) que podem as-
sumir valores particulares e os valores são finitos. Por exemplo, uma variável aleatória discreta
pode assumir somente os valores 0 e 1, ou qualquer inteiro não negativo, etc.
Exemplos
1. Lança-se uma moeda 10 vezes e anota-se o número de caras. Este número pode ser 0, 1, 2
...10.
2. Em uma pesquisa de mercado feita com 200 pessoas, perguntam-se estes compram um
determinado produto. O número de pessoas que compram o produto varia de 0 a 200.
3. Conta-se o número de acidentes que ocorrem em uma rodovia num feriado prolongado. O
número de acidentes em questão pode ser: 0, 1, 2... Como não temos um valor que limite
esse número, supomos que o número de acidentes é qualquer inteiro não negativo.
4. Número de chamadas telefônicas que chegam a uma central em um intervalo de tempo.
Existem várias distribuições discretas ou modelos probabilísticos discretos que podem ser
usados em diversas situações práticas. O problema é determinar qual modelo é mais adequado
para a situação em estudo, e como aplicá-lo adequadamente.
3.4.1 Distribuição Uniforme Discreta
É a mais simples das distribuições discretas e recebe o nome de uniforme porque todos os
valores da variável aleatória são assumidos com a mesma probabilidade.
Exemplo o lançamento de um dado não viciado, definindo como X, a variável aleatória que
representa a face voltada para cima, X assume os valores x = 1, 2, 3, 4, 5, 6 com a mesma proba-
bilidade 1/6.
A distribuição uniforme neste caso é dada por
f(x) =
1
6
para x = 1, 2, 3, 4, 5, 6
Generalizado obtém-se a função de probabilidade
f(x) =
1
k
para x = x1, x2, x3, ..., xk
k numero de termos.
Verifica-se então que f(x) depende de k.
3.4.1.1 Parâmetros Característicos da Distribuição Uniforme
1. Média µ = k+12
No exemplo dos dados µ = 6+12 = 3, 5
2. Variância σ2 = k
2−1
12
No exemplo dos alérgicos sigma2 == 6
2−1
12 = 2, 92 s
Noções de Probabilidade 47
3.4.2 Distribuição Bernoulli
Na prática existem muitos experimentos que admitem apenas dois resultados. Exemplos:
1. Uma peça é classificada como boa ou defeituosa;
2. Um entrevistado concorda ou não com a afirmação feita;
3. Um servidor de internet está ativo ou não;
4. Numa linha de produção observa-se se um item é defeituoso ou não.
Situações com alternativas dicotômicas podem ser representadas genericamente por respostas
do tipo sucesso-fracasso.
Esses experimentos recebem o nome de ensaio de Bernoulli e originam uma variável alea-
tória com distribuição Bernoulli. Neste caso, consideramos uma experiência com dois possíveis
resultados
• Sucesso → P (sucesso) = p;
• Fracasso → P (fracasso) = q.
Temos que:
Ω = {Sucesso, Fracasso} ∴ P (Ω) = 1
p+ q = 1 q = 1− p
3.4.2.1 Parâmetros Característicos da Distribuição Uniforme
1. Média µ = p
No exemplo dos dados µ = 6+12 = 3, 5
2. Variância σ2 = pq
No exemplo dos alérgicos sigma2 == 6
2−1
12 = 2, 92 s
3.4.3 Distribuição Binomial
Na maior parte das vezes, são realizados n ensaios de Bernoulli. O interesse está no número
X de ocorrências de sucessos.
Exemplos:
1. lançar uma moeda cinco vezes e observar o número de caras;
2. numa linha de produção, observar dez itens, e verificar quantos são defeituosos;
3. verificar, num dado instante, o número de processadores ativos, num sistema com multi-
processadores;
Uma experimento binomial é dado da seguinte forma:
1. consiste em n ensaios de Bernoulli;
Noções de Probabilidade 48
2. cujos ensaios são independentes; e
3. para o qual a probabilidade de sucesso em cada ensaio é sempre igual a p, 0 < p < 1
A variável aleatória X, correspondente ao número de sucessos num experimento binomial,
tem distribuição binomial com parâmetros n e p, com função de probabilidade dada por
P (X = x) = Cnx p
xqn−xA fórmula de cálculo de uma combinação é a seguinte:
Cnx =
(
n
x
)
=
n!
x! (n− x)!
A função f(x) permite calcular a probabilidade de acontecer o resultado x (número de sucessos
da variável aleatória), não importando a ordem de ocorrência de x dentro da experiência.
Exemplo: Numa família com n = 5 filhos, qual a probabilidade de não haver homens? Qual
a probabilidade de haver dois homens? n = 5, p = 12 , q =
1
2
f(x) = C5xp
xq5−x; x = 0, 1, 2, 4, 5
A variável aleatória representa o número de homens (filhos do sexo masculino) encontrado
em famílias de 5 filhos
1. x = 0 homem
f(x) = C50p
0q5−0
=
5!
0! (5− 0)!
(
1
2
)0(1
2
)5
=
1
32
= 0, 0313 ou 3, 13%
2. x = 2 homens
f(x) = C52p
2q5−2
=
5!
2! (5− 2)!
(
1
2
)2(1
2
)3
=
20
2
1
4
1
8
=
10
32
= 0, 3125 ou 31, 25%
Exemplo: Lançada oito moedas (ou uma moeda oito vezes), qual a chance de obter
• Três caras?
• no máximo três caras?
• no mínimo quatro caras?
Noções de Probabilidade 49
A variável aleatória x neste caso é o número de caras obtidos no lançamento, logo neste caso
o sucesso sair cara nas moedas lançadas. Assim temos:
n = 8, p =
1
2
= 0, 5 q = 1− q = 1− 0, 5 = 0, 5
A função de probabilidade
f(x) = Cnx p
xqn−x
Probabilidade de sair três caras
P [X = 3] = C83p
3q8−3
=
8!
3! (8− 3)!(0, 5)
3(0, 5)5
= 56× 0, 125× 0, 03125 = 0, 2187 ou 21, 87%
Probabilidade de sair no máximo três caras
P [X ≤ 3] = P [X = 0] + P [X = 1] + P [X = 2] + P [X = 3]
P [X = 0] = C80p
0q8−0 = 0, 0039
P [X = 1] = C81p
1q8−1 = 0, 0313
P [X = 2] = C82p
2q8−2 = 0, 1094
P [X = 3] = 0, 2187
P [X ≤ 3] = 0, 0039 + 0, 0313 + 0, 1094 + 0, 2187 = 0, 3633 ou 36, 33%
Probabilidade de sair no mínimo quatro caras
P [X ≥ 4] = P [X = 4] + P [X = 5] + P [X = 6] + P [X = 7] + P [X = 8]
ou
P [X ≥ 4] = 1− P [X < 4] = 1− (P [X = 0] + P [X = 1] + P [X = 2] + P [X = 3])
= 1− 0, 3633 = 0, 6367 ou 63, 67%
3.4.3.1 Parâmetros Característicos da Distribuição Binomial
1. Média µ = np
2. Variância σ2 = npq
3. Desvio Padrão σ = √npq
Utilizando o exemplo das moedas temos:
1. Média µ = np = 8× 0, 5 = 4
Noções de Probabilidade 50
2. Variância σ2 = 8× 0, 5× 0, 5 = 2
3. Desvio Padrão σ = √npq = √2 = 1, 41
3.4.4 Distribuição Hipergeométrica
A distribuição hipergeométrica é intimamente relacionada à distribuição binomial. Enquanto
a distribuição binomial é o modelo aproximado de amostragem sem reposição de uma população,
dicotômica finita, a distribuição hipergeométrica é o modelo de probabilidade para o número
de sucessos em uma amostra. As hipóteses que levam à distribuição hipergeométrica são as
seguintes:
1. 1. A população ou o conjunto de onde é retirada a amostra consiste de N indivíduos,
objetos ou elementos (população finita).
2. Cada indivíduo é classificado como sucesso (p) ou fracassos (q) e há M sucessos na popu-
lação.
3. É selecionada uma amostra sem reposição de n indivíduos de forma que cada subconjunto
de tamanho n seja igualmente provável de ser escolhido.
A distribuição hipergeométrica tem a seguinte função de probabilidade
f(x) =
CkxC
(N−k)
(n−x) ,
CNn
x = 0, 1, 2, 3, ....
em que:
• x é uma variável aleatória discreta;
• N quantidade de itens;
• n tamanho da amostra;
• k numero de sucessos;
Exemplo: Pequenos motores elétricos são expedidos em lotes de 50 unidades. Antes que
uma remessa seja aprovada, um inspetor escolhe 5 desses motores e os inspeciona. Se nenhum
dos motores inspecionados for defeituoso, o lote é aprovado. Se um ou mais forem verificados
defeituosos, todos os motores da remessa são inspecionados. Suponha que existam, de fato,
três motores defeituosos no lote. Qual a probabilidade de que a inspeção de todo o lote seja
necessária?
Se fizermos igual a X o numero de motores defeituosos encontrados, inspeção de todo o lote
seja necessária se X ≥ 1
Noções de Probabilidade 51
Neste caso temos k = 3 n = 5 N = 50;
P [X = x] =
CkxC
(N−k)
(n−x) ,
CNn
P [X ≥ 1] = 1− P [X < 1] = 1− P [X = 0])
P [X = 0] = =
C30C
(50−3)
(5−0) ,
C505
=
C30C
47
5 ,
C505
= 0, 7239
P [X ≥ 1] = 1− 0, 7239 = 0, 2761
Quando se tem nN < 0, 1, pode-se utilizar a distribuição binomial para aproximar a distribui-
ção hipergeométrica.
3.4.4.1 Parâmetros Característicos da Distribuição Hipergeométrica
1. Considerando p =
k
N
e q = 1− p
2. Média µ = np
3. Variância σ2 = npq
N − n
N − 1
3.4.5 Distribuição Geométrica
A distribuição geométrica está também associada à seqüência de uma prova de Bernoulli
excetuando-se que o número de provas não é fixada, e, na verdade, a variável aleatória de interesse
X é definida como o número de provas necessárias para obter o primeiro sucesso.
Exemplos:
• numero de vezes que uma pessoa estaciona num certo local proibido até apanhar uma
multa;
• numero de tentativas até acertar no alvo (jogo de tiro ao alvo);
• numero de lançamentos de uma moeda até sair cara;
A distribuição geométrica tem a seguinte função de probabilidade
f(x) = pqx x = 0, 1, 2, 3, ....
em que:
• x é uma variável aleatória discreta;
• p probabilidade de sucesso;
• q probabilidade de fracasso.
Exemplo: Se 0, 05 é a probabilidade de uma fábrica produzir uma peça defeituosa, qual é
a probabilidade de pelo menos 2 peças boas sejam produzidas antes de se produzir a primeira
defeituosa.
Noções de Probabilidade 52
X o numero peças boas, então pelo menos 2 peças boas X ≥ 2
Neste caso temos p = 0, 05 q = 0, 95;
P [X = x] = pqx
P [X ≥ 2] = 1− P [X < 2] = 1− (P [X = 0] + P [X = 1])
P [X = 0] = (0, 05)(0, 95)0 = 0, 05
P [X = 1] = (0, 05)(0, 95)1 = 0, 0475
P [X ≥ 2] = 1− (0, 05 + 0, 0475) = 1− 0, 0975
3.4.5.1 Parâmetros Característicos da Distribuição Geométrica
1. Média µ =
q
p
2. Variância σ2 =
q
p2
3.4.6 Distribuição de Poisson
A distribuição de Poisson é empregada em experimentos nos quais não se está interessado no
número de sucessos obtido em n tentativas, como ocorre no caso da distribuição binomial, mas
sim no número de sucessos ocorridos durante um intervalo contínuo, que pode ser um intervalo
de tempo, espaço, comprimento, área, ou volume. Alguns exemplos de variáveis que podem ter
a distribuição de Poisson são:
1. número de defeitos por centímetro quadrado;
2. número de acidentes por dia;
3. número de clientes por hora;
4. número de chamadas telefônicas recebidas por minuto;
5. número de falhas de um computador num dia de operação;
6. número de relatórios de acidentes enviados a uma companhia de seguros numa semana.
A distribuição de Poisson tem a seguinte função de probabilidade
f(x) = e−λ
λx
x!
, x = 0, 1, 2, 3, ....
em que:
• x é uma variável aleatória discreta;
• e base dos logaritmos neperianos (2,718...)
• λ - média da distribuição (λp)
Noções de Probabilidade 53
Exemplo: O número médio de dias por ano que ocorrem chuvas acima de 50mm.h−1 em uma
determinada região é 1,5. Qual a probabilidade de haver mais de dois dias com chuvas acima
dessa intensidade.
P [X = x] = e−λ
λx
x!
P [X > 2] = 1− P [X ≤ 2] = 1− (P [X = 0] + P [X = 1] + P [X = 2])
P [X = 0] = = e−1,5
1, 50
0!
= 0, 2231
P [X = 1] = = e−1,5
1, 51
1!
= 0, 3347
P [X = 2] = = e−1,5
1, 52
2!
= 0, 2510
P [X > 2] = 1− (0, 2231 + 0, 3347 + 2510) = 1− 0, 8088 = 0, 1912 ou 19, 12%
A distribuição de Poisson também é conhecida na prática com lei dos eventos raros. Evento
raro pode ser considerado quando n ≥ 50 e p ≤ 0, 10.Nestes casos podemos utilizar a distribuição
de Poisson para probabilidades de situações que seriam utilizadas uma distribuição binomial.
Exemplo: A probabilidade de que um indivíduo apresente reação alérgica após a aplicação
de um soro é de 0,002. Esse mesmo soro foi aplicado a um grupo de

Outros materiais