Buscar

Pu04

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 3, do total de 19 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 6, do total de 19 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 9, do total de 19 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Prévia do material em texto

REPRESENTAÇÃO DE SISTEMAS 
DE POTÊNCIA
revisão mar06
1 - Introdução
A maioria dos sistemas elétricos de potência é em corrente alternada. As instalações 
em corrente contínua são raras e tem aplicações específicas tais como transmitir grandes 
blocos de energia a longa distancia. As informações sobre de sistemas de corrente contínua 
normalmente são objeto de literaturas bastante especializada.
As aplicações com corrente alternada, de grande potência, são principalmente 
trifásicas. Apenas algumas aplicações específicas utilizam mais de três fases. A utilização de 
redes com uma ou duas fases são destinados a suprimentos de instalações de pequenas 
potências e baixas tensões, tais como instalações residenciais ou industriais. A distribuição de 
energia elétrica rural é também um exemplo de instalações com uma ou duas fases.
As instalações trifásicas são construídas de tal forma que cada uma das três fases 
tenham comportamentos idênticos. Assim as instalações trifásicas podem ser representadas no 
formato monofásico, apenas raramente se torna necessário a representação completa de um 
diagrama de circuitos com três fases.
Em sistemas de potência utiliza-se largamente a representação das grandezas elétricas 
em pu (por unidade). A sua utilização atual se deve mais a razões históricas e tradição do que 
propriamente a sua utilidade. A origem de sua aplicação se deveu a necessidade de simular 
sistemas elétricos em laboratórios, objetivando adequar as grandezas do sistema aos 
componentes existentes nos laboratórios. Como por exemplo a representação de uma fonte de 
tensão de 13,8 kV de um sistema elétrico por uma fonte de 100 V existente no laboratório.
2 - Equivalentes monofásicos
A figura 2.0 mostra o diagrama monofilar de um sistema isolado, de pequeno porte, 
contendo uma usina geradora e a correspondente transmissão e carga.
Fig. 2.0
1
≈
A figura 2.1 mostra o circuito das três fases correspondente ao diagrama monofilar da 
figura 2.0.
Fig. 2.1
Normalmente não existe necessidade de representar as três fases do circuito, mesmo 
existindo anomalias que impliquem em desigualdade entre as fases. A representação dos 
sistemas elétricos é feita preferencialmente através de diagramas monofilares.
Os sistemas trifásicos equilibrados podem ser representados por equivalentes 
monofásicos. A formulação matemática de equivalentes monofásicos é muito mais simples 
que a trifásica. A figura 2.2 mostra o diagrama de circuito monofásico equivalente ao sistema 
da figura 2.1.
Figura 2.2
A representação matemática de equivalentes monofásicos pode ser demonstrada a 
partir da queda de tensão em um trecho qualquer do sistema. No caso de linhas de 
transmissão, a queda de tensão em um trecho é dada por:
[ ] [ ] [ ]izv =∆ 2.0
Supondo que a linha de transmissão seja equilibrada, então:
















=








∆
∆
∆
c
b
a
fmm
mfm
mmf
c
b
a
i
i
i
zzz
zzz
zzz
v
v
v
2.1
No caso de sistemas equilibrados, as correntes são iguais em módulo e defasadas de 
120°, assim a primeira linha da equação matricial pode formulada como:
 120240 ∠+∠+=∆ amamafa izizizv 2.2
2
z
g zt ztzl
z
c zc
v
g
carga
A equação 2.2 pode ser simplificada como:
amfammfa izzizzzv )()120240( −=∠+∠+=∆
 2.3
Denominando mf zz − como az , obtém-se:
aaa izv =∆ 2.4
A equação 2.4 mostra que um trecho de linha de transmissão trifásica equilibrada pode 
ser calculado por equivalentes monofásicos. O mesmo caminho pode ser empregado para 
outros componentes do sistema, de onde se conclui que sistemas trifásicos equilibrados 
podem ser representados pelos correspondentes equivalentes monofásicos.
3 - Representação em pu
A representação em pu pode ser entendida como uma mudança na dimensão dos 
sistemas. Definida uma tensão de base BV , a tensões em pu são BVVpuV /)( = . As outras 
grandezas elétricas em pu são definidas de maneira similar.
A mudança de dimensão de sistemas elétricos requer a definição de duas grandezas 
como bases. Uma vez definidas duas bases, as bases das outras grandezas podem ser 
derivadas pelas fórmulas que se aplicam ao sistema.
A potência de base é única para um determinado sistema. Por outro lado as base de 
tensão, corrente e impedância, acompanham a relação de transformação dos transformadores 
do sistema.
O mais usual é definir uma base de tensão VB e uma base de potência SB. Supondo 
sistemas monofásicos e que VB e SB sejam grandezas correspondentes, respectivamente tensão 
fase - neutro e potência monofásica, então:
BBB VSI /= e BBB SVZ /
2
= 3.0
Por outro lado, se forem definidas grandezas de base em termos trifásicos, tensão fase 
- fase e potência trifásica, as correspondentes correntes e impedância de base são:
)3/( BBB VSI = e BBB SVZ /
2
= 3.1
Verifica-se que os valores de corrente e tensão de base fornecidos pelas equações 3.0 e 
3.1 são idênticos.
3
Exemplo 3.0 - Determinar o diagrama de impedâncias do equivalente monofásico em ohms e 
em pu do sistema da figura, adotando como base 69 kV e 100 MVA na linha de transmissão. 
O gerador de 13,8 kV tem uma potência de 12 MVA e reatância transitória de 30%. Os dois 
transformadores são idênticos com uma relação de 13,8 kV / 69 kV, potência de 15 MVA e 
reatância de dispersão de 7%. A linha de transmissão tem 90 km de extensão, resistência 
ôhmica de 0,24 ohms/km, reatância indutiva de 0,50 ohms/km e reatância capacitiva de 300 
kohms×km. A carga do sistema é de 8,0 MW com um fator de potência de 0,92 em atraso 
com uma tensão de operação de 13,2 kV.
Fig. 3.0.0
Solução (A) (Diagrama de impedâncias em ohms) - A resistência ôhmica e a reatância 
indutiva da linha de transmissão são:
Ω=×Ω= 6,21)90()/24,0( kmkmR e Ω=×Ω= 0,45)90()/50,0( kmkmX L
A reatância capacitiva da linha de transmissão, considerando o circuito pi equivalente é:
Ω=×Ω= 6670)45/()300( kmkmkX C
A reatância sub - transitória do gerador de 30% eqüivale a 0,30 pu na base de 13,8 kV e 12 
MVA. Portanto a impedância de base do gerador é conhecida, o que permite o cálculo da 
reatância sub - transitória em ohms, assim:
Ω=×=×= 76,4]12/8,13[]30,0[][)]([)( 2' BG ZpuXohmsX
A reatância de dispersão do transformador é de 7 % o que eqüivale a 0,07 pu, na base de 15 
MVA e 69 kV ou 13,8 kV. No caso de transformadores a base de tensão corresponde ao lado 
em que a reatância em ohms é representada. Se a reatância for representada no lado de 13,8 
kV, o valor em ohms é:
Ω=×=×= 889,0]15/8,13[]07,0[][)]([)( 2BT ZpuXohmsX
Se a reatância do transformador for localizada no lado de 69 kV, o valor em ohms é:
Ω=×=×= 2,22]15/69[]07,0[][)]([)( 2BT ZpuXohmsX
A carga do sistema de 8 MW e fator de potência de 0,92 corresponde a uma potência aparente 
de MVAS 70,892,0/8 == .
Se o fator de potência da carga está em atraso significa que a potência ativa e reativa tem o 
mesmo sinal, portanto a parte reativa da carga é:
MVArarcsenQ 41,3)]92,0(cos[70,8 =×=
4
≈
A tensão de operação na carga é de 13,2 kV o que eqüivale em termos monofásicos a 
kVV 62,73/2,13 == . A figura 3.0.1 mostra o diagrama de impedâncias do eqüivalente 
monofásico.
Fig. 3.0.1
Solução (B) Diagrama de impedâncias em pu - Sendo a base de tensão 69 kV na linha de 
transmissão, tem-se como base de tensão 13,8 kV no gerador e também na carga. Assim a 
impedância da linha em pu é:
pujjohmszZohmszpuz B )945,0454,0(61,47/)456,21(]100/69/[)]([/)]([)(
2 +=+===
Da mesma forma obtém-se que a reatância capacitiva da linha é 140 pu.
Sabendo que as bases do sistema no gerador são 13,8 kV e 100 MVA, a reatância do gerador 
em pu é:
puohmsXZohmsXpuXB 50,29044,1/76,4]100/8,13/[)]([/)]([)(
2
====
A reatância em pu do gerador pode também ser obtida diretamente a partir do valor em de 
0,30 pu na base dos valores nominais do gerador. Neste caso:
ger
B
sist
B
sist
B
sist
B
ger
B
ger
B
sist
B
ger
BG SSSVSVZZpuX /30,0]/)/[(]/)[(30,0/30,0)(
22 ×==×=
A equação acima resulta no mesmo valor que é 2,5 pu para a reatância do gerador. A reatância 
do transformador pode ser encontrada com uma equação semelhante, ou seja:
puZZpuX sistB
transf
BT 467,015/10007,0/07,0)( =×=×=
A carga em pu pode ser obtida simplesmente como:
pujjpuS )0341,008,0(100/)41,38()( +=+=
A correspondente tensão de operação na barra de carga é então:
pukVkVpuV 957,0)8,13/()2,13()( ==
5
j4,76Ω j0,889Ω j22,2Ω(21,6+j45)Ω
-j6670Ω -j6670Ω
7,97kV/39,8kV
0,889Ω
39,8kV/7,97kV
0,889Ω
(2,67+j1,14)MVA
V=7,62kV
As relações de transformação dos transformadores (13,8 kV)/(69 kV) se tornam em relações 
unitárias. A figura 3.0.2 mostra o diagrama de impedâncias em pu.
Fig. 3.0.2
Desde que as relações de transformação são unitárias, elas podem ser removidas do circuito. 
Assim o diagrama de impedâncias em pu se comporta como se não existissem 
transformadores no sistema, conforme mostra afigura 3.0.3.
Fig. 3.0.3
4 - Principais componentes dos sistemas elétricos
Os principais componentes dos sistemas são máquinas, linhas de transmissão, 
transformadores e cargas. A geração de energia elétrica, na maioria das vezes é feita através 
de geradores síncronos. A transmissão, em sua maior parte, é feita através de linhas trifásicas 
de corrente alternada. Os transformadores são utilizados para reduzir ou aumentar os níveis de 
tensão. A carga é o conjunto de consumidores constituído dos mais diversos tipos.
Máquinas síncronas.
As máquinas síncronas, tanto motores quanto geradores, tem a capacidade de controlar 
a tensão em seus terminais. O controle da tensão objetivando manter níveis adequados de 
tensão pode ser automático ou manual. O modelo mais simplificado de máquinas síncronas é 
o mostrado na figura 4.0, um gerador em série com uma impedância.
Fig. 4.0
Na figura 4.0, vg é a tensão nos terminais, vi a tensão interna e zg a impedância do 
gerador. O valor de zg normalmente é determinado através de testes aplicado nas máquinas. 
Os valores avaliados em projetos não são suficientemente precisos.
6
s = 0,08+j0,0341j2,50 j0,467 j0,4670,454+j0,945
-j140 -j140
1,0 / 1,0 1,0 / 1,0
V = 0,957
s = 0,08+j0,0341j2,50 j0,467 j0,4670,454+j0,945
-j140 -j140 V = 0,957
z
g
v
g
v
i
v
g(A) (B)
O controle da tensão nas máquinas síncronas atua na tensão dos terminais. A 
velocidade de resposta do controle é ajustada de tal forma para que ele não atue em situações 
de perturbações de curta duração, tais como curtos circuitos e estabilidade transitória. Assim 
durante eventos de curto circuito e estabilidade transitória o valor da tensão interna vi 
permanece constante, portanto o modelo de máquina síncrona nestas situações se comporta 
como mostra a figura 4.0 (A). Por outro lado em situações normais de operação, a atuação do 
controle é precisa, fazendo com que a tensão vg permaneça praticamente constante, portanto 
em situações normais de fluxo de potência o modelo das máquinas síncronas se comporta 
como mostra afigura 4.0 (B), ou seja, simplesmente uma fonte de tensão.
Linhas de transmissão.
O modelo mais adequado para linhas de transmissão é o circuito pi conforme mostra a 
figura 4.1. A impedância série zp é composta pela resistência ôhmica e pela reatância indutiva 
dos condutores. A impedância em paralelo zp é composta pela resistência ôhmica do 
isolamento dos condutores e pela reatância capacitiva dos condutores. Ao contrário do que 
ocorrem com máquinas síncronas, os valores estimados em projetos de linhas de transmissão 
são bastante precisos, mesmo assim é um procedimento normal a medição prática dos 
parâmetros das linhas de transmissão.
Fig. 4.1
Quando estimado em projeto, o modelo de linhas de transmissão mostrado na figura 
4.1, no caso de linhas aéreas ele é preciso para distâncias da ordem de 200 km. Se a linha tem 
extensões superiores a 200 km, ou se deseja uma grande precisão nos resultados, utiliza-se 
diversos módulos pi em série, ou então utiliza-se equivalentes determinados através de 
equações diferenciais.
Transformadores.
Os parâmetros de transformadores são determinados através de ensaios pois os valores 
calculados em projetos não são suficientemente precisos. Os ensaios são feitos a vazio e sob 
curto circuito.
As impedâncias de transformadores de dois enrolamentos ocorrem em ambos lados, 
entretanto normalmente as impedâncias são referidas em um dos lados onde são 
representadas. A figura 4.2 mostra o circuito equivalente de um transformador de dois 
enrolamentos. 
Fig. 4.2
7
z
pzp
z
s
z
p
z
s
z
p
R
1
/R
2
A impedância série do eqüivalente de transformadores normalmente são valores muito 
menores que a impedância paralela. As resistências ôhmicas, tanto da impedância série quanto 
da paralela são muito menores que a reatância indutiva.
O efeito indutivo da impedância série de transformadores é denominado de reatância 
de dispersão e o efeito resistivo é provocado pela denominada "perdas no cobre". O efeito 
resistivo da impedância paralela é provocado pela denominada "perdas no ferro".
Em diversas aplicações despreza-se a representação da impedância paralela de, o que 
eqüivale a desprezar os efeitos da corrente de excitação. Neste caso o modelo é ainda mais 
simples, conforme mostra a figura 4.3.
Fig. 4.3
O ensaio de transformadores em vazio determina a corrente de excitação e 
consequentemente permite a avaliação aproximada da impedância paralela, enquanto que o 
ensaio sob curto circuito permite a avaliação aproximada da impedância série. Entretanto os 
resultados conjunto dos dois ensaios permitem a avaliação precisa das duas impedâncias.
A figura 4.4 mostra a configuração dos ensaios a vazio e em curto circuito. Os 
resultados dos ensaios, valores de tensão e correntes com o transformador a vazio e em curto 
circuito, permitem a avaliação dos parâmetros dos transformadores. Tendo em vista os 
ensaios, as impedâncias série e paralela recebem também os nomes de impedância de curto 
circuito e impedância a vazio.
Fig. 4.4
Carga.
O valor da potência dos consumidores é denominada como carga. A carga pode ser de 
um único consumidor ou de uma região. A maneira mais comum de representar cargas, tanto 
ativa quanto reativa, é através do modelo de potência constante ou em outras palavras 
)( 0vfS = . Outros modelos de cargas são corrente constante ou )( 1vfS = e impedância 
constante ou )( 2vfS = . Existem ainda outros modelos mais complexos tais como cargas 
modeladas por polinômios.
O modelo da carga pode ser obtido através de medições em regime normal ou durante 
distúrbios. Os distúrbios de tensão são aproveitados para obter dados sobre o comportamento 
dinâmico da carga em função da tensão. O comportamento estático pode ser determinado em 
casos de racionamento.
8
z
t
T
1
/T
2
z
cc
z
v
z
v
i
cc
v
v
z
cc
z
v
z
v
i
v
v
cc
A carga normalmente tem comportamentos cíclicos. Como por exemplo o ciclo diário, 
o ciclo semanal e o sazonal. A figura 4.5 mostra o ciclo diário típico da carga ativa de uma 
região predominantemente residencial. 
Fig. 4.5
A carga reativa pode ter um comportamento um pouco diferente da carga ativa. O 
fator de potência das cargas é na maioria atrasado e varia de 0,80 a 0,95. As cargas industriais 
têm normalmente fator de potência mais baixodo que as cargas residenciais.
5 - Eqüivalente pi de transformadores
A representação de transformadores através de impedâncias e relações de 
transformação pode ser substituída por circuitos eqüivalentes. A remoção da relação de 
transformação pode ser também obtida pela representação em pu quando as tensões dos 
transformadores coincidem com as tensões de base. Entretanto esta coincidência pode não 
existir e nestes casos a única solução é através do circuito pi eqüivalente.
A figura 5.0 mostra uma representação típica de transformadores e também o 
correspondente circuito pi eqüivalente.
Fig. 5.0
9
MW
z
T
1
/T
2
i
1
i
2
v
1
v
2
v
3
a
b c
i
1
i
2
v
1
v
2
24h0h
Do circuito representando o transformador, denominando 21 /TTT = , obtém-se as 
seguintes relações:
Tii /21 = 5.0
Tvv ×= 31 5.1
21232 / izTvizvv ×−=×−= 5.2
Do circuito pi eqüivalente pode-se obter as seguintes relações:
aicavcviavv 222221 )/1()/( ++=++= 5.3
aibavbviavv 111112 )/1()/( −+=−−= 5.4
Comparando as equações 5.2 e 5.4 obtém-se:
Tza ×= 5.5
e também que:
)1/(2 TTzb −×= 5.6
A equação 5.2 pode ser reformulada como:
TizTvv 221 ×+= 5.7
Comparando-se as equações 5.7 e 5.3 pode-se concluir que:
)1/( −×= TTzc 5.8
Exemplo 5.0 - Determinar o diagrama de impedâncias do exemplo 3.0 utilizando equivalentes 
pi para os transformadores.
Solução - A figura 5.0.0 mostra o diagrama de impedâncias do transformador elevador.
Fig. 5.0.0
10
j0,889Ω
7,97kV / 39,8kV
M N
Comparando-se as figuras 5.0.0 com a figura 5.0 utilizada para deduzir as equações do 
circuito pi eqüivalente, percebe-se que a barra M eqüivale a barra 2 e a barra N eqüivale a 
barra 1. Portanto kVT 8,391 = e kVT 97,72 = , o que significa que
99,4/ 21 == TTT
44,4jTza =×=
55,5)1/(2 jTTzb −=−×=
11,1)1/( jTTzc =−×=
No caso do transformador abaixador, tem-se que 200,0=T , e consequentemente: 44,4ja = , 
11,1jb = e 55,5jc −= . A figura 5.0.1 mostra o diagrama de impedâncias em ohms utilizando 
o eqüivalente pi de transformadores.
Fig. 5.0.1
Exemplo 5.1 - Determinar o diagrama de impedâncias do sistema em pu da figura, 
empregando uma base de potência de 100 MVA e 13,2 kV no lado de baixa tensão dos 
transformadores. Considere que um dos transformadores esteja conectado no tap de 135 kV e 
o outro no tap nominal. Os transformadores são de 25 MVA, 138 kV/ 13,8 kV, e cada um tem 
reatância de dispersão de 6,5 %. A fonte supridora tem uma reatância eqüivalente de 17%, na 
tensão de 132 kV e 200 MVA. A carga é de 30 MVA com fator de potência de 0,98 em 
atraso.
Fig. 5.1.0
Solução - A tensão de base no lado de baixa dos transformadores é de 13,2 kV, portanto a 
tensão de base no lado de alta é de 132 kV. As reatâncias em pu dos transformadores são:
284,0)100/2,13/()25/8,13(065,0/065,0)( 22 ==×= sistB
transf
BT ZZpuX
A reatância da fonte supridora é:
11
s = 2,67+j1,14j4,76 j4,44 j4,4421,6+j45
-j6670
-j6670
V = 7,62 kV
-j5,55
j1,11
j1,11
-j5,55
≈
085,0)100/132/()200/132(17,0/17,0)( 22 ==×= sistB
fonte
BF ZZpuX
As relações de transformação em pu dos transformadores são respectivamente:
045,1/023,1)2,13/8,13/()132/135()/8,13/()/132()(1 ===
baixa
B
alta
B VVpuT
045,1/045,1)2,13/8,13/()132/138()/8,13/()/138()(2 ===
baixa
B
alta
B VVpuT
A carga ativa em pu do sistema é:
294,0/98,030)( =×= sistBSpuP
O fator de potência em atraso implica que as potências ativa e reativa têm o mesmo sinal, 
então:
060,0100/))98,0(arccos(30)( =×= senpuQ
A figura 5.1.1 mostra o diagrama de impedâncias em pu. No circuito da figura, somente 
podem ser removidas as relações de transformação unitárias.
Fig. 5.1.1
A relação de transformação do transformador T2 é unitária e, portanto, pode ser removida sem 
alterar o comportamento do circuito, enquanto que a do T1 só pode ser removida ao 
representá-la como um circuito pi eqüivalente.
Comparando-se as figuras 5.1.1 com a figura 5.0 conclui-se que o lado de alta do 
transformador T1 corresponde com a barra 1 da figura 5.0 e que 979,0045,1/023,1 ==T , 
assim de acordo com as equações 5.6, 5.9 e 5.7 tem-se que:
278,0979,0284,0 jjTza =×=×=
0,13)979,01/(979,0284,0 2 jjb =−×=
2,13)1979,0/(979,0284,0 jjc −=−×=
12
j0,085
s = 0,294 + j0,060
j0,284
j0,2841,045/1,045
1,023/1,045
A figura 5.1.2 mostra o diagrama de impedâncias em pu na sua forma clássica. 
Fig. 5.1.2
6 - Bancos de transformadores
Denomina-se como banco de transformadores um conjunto de três unidades 
monofásicas constituindo um transformador trifásico. A utilização de banco de 
transformadores é viável em casos especiais ou nos casos de transformadores com potências 
muito elevadas.
As características dos bancos, tais como tensão, potência e impedâncias, são referidas 
às unidades monofásicas. Desta forma ao se avaliar os diagramas de impedância de sistemas 
com bancos de transformadores, o primeiro passo é a determinação das caraterísticas do 
transformador trifásico eqüivalente, conforme mostrado no exemplo a seguir.
Exemplo 6.0 - Determinar o diagrama de impedâncias em pu de um banco de 
transformadores constituído de unidades monofásicas. O lado de alta do transformador é 
ligado em delta e o lado de baixa em Y aterrado. Cada unidade monofásica é de 50 MVA, 
230kV/79,7kV e reatância de dispersão de 5,1%. Adotar uma base de 100 MVA e 138 kV no 
lado de baixa do transformador trifásico eqüivalente.
Solução - A potência do transformador trifásico eqüivalente é a soma das três unidades 
monofásicas, ou seja, 150 MVA.
O lado de alta do transformador trifásico está conectado em delta, portanto a tensão entre as 
fases neste mesmo lado corresponde a tensão da unidade monofásica que é de 230 kV, 
conforme mostra a figura 6.0.1. 
O lado de baixa do transformador está conectado em Y, portanto a tensão entre as fases é de 
1387,793 =× kV. Portanto a relação de transformação do transformador equivalente é de 
230 kV / 138 kV.
13
j0,278
j13,0
-j13,2
j0,284
j0,085
s = 0,294 + j0,060
Fig. 6.0.1
Portanto a reatância em pu do transformador trifásico é:
0340,0)100/138/()150/138(051,0/051,0 22 =×=×= sistB
transf
B ZZX
7 - Transformadores de três enrolamentos
Os transformadores de dois enrolamentos têm potências idênticas em ambos terminais. 
Enquanto que os transformadores de três enrolamentos podem ter potências distintas em cada 
um dos terminais. Os transformadores de três enrolamentos em subestações com mais de dois 
níveis de tensão.
Da mesma forma que nos transformadores de dois enrolamentos, a determinação das 
impedâncias de dispersão se faz através de ensaios com um dos terminais em curto circuito. 
Os terminais dos transformadores de três enrolamentos são denominados de primário, 
secundário e terciário e os respectivos ensaios permitem a determinação das seguintes 
impedâncias de dispersão:
zps = impedância medida no primário com o secundário em curto circuito e o
 terciário em aberto
zpt = impedância medida no primário com o terciário em curto circuito e o
 secundário em aberto
zst = impedância medida no secundário com o terciário em curto circuito e o
 primário em aberto
Fig. 7.1.1
14
230 kV 138 kV
p s
t
z
p
z
t
z
s
O modelo do circuito monofásico eqüivalente em pu de transformadores de três 
enrolamentos deve conter pelo menos três nós correspondentes a cada um dos terminais. 
Assim, o modelo eqüivalente pode ser um circuito Y ou ∆. A figura 7.1.1 mostra o circuito Y 
eqüivalente, que é o que permite uma formulação mais simples.
Ao simularo ensaio da medição da impedância psz no circuito Y eqüivalente da 
figura 7.1.1 obtém-se que:
spps zzz += 7.0
De maneira similar obtém-se as duas seguintes equações:
tppt zzz += 7.1
tsst zzz += 7.2
Das equações 7.0, 7.1 e 7.2 pode-se determinar as impedâncias do circuito Y 
eqüivalente do transformador de três enrolamentos, portanto:
2/)( stptpsp zzzz −+= 7.3
2/)( ptstpss zzzz −+= 7.4
2/)( psstptt zzzz −+= 7.5
Exemplo 7.0 - Determinar as impedâncias de um transformador de 3 enrolamentos cujos 
dados são %94,8=ptX , com primário em 69 KV, terciário em 13,8 kV e potência de 10,0 
MVA; %53,5=psX , com primário em 69 kV, secundário em 34,5 kV e potência de 10,0 
MVA; %43,3=stX , com secundário em 34,5 kV, terciário em 13,8 kV e potência de 10,0 
MVA.
Solução - Os dados de impedâncias se referem a uma mesma potência de base igual a 10,0 
MVA. Adotando uma potência de base, para o diagrama em pu, de 100 MVA e uma tensão de 
base de 69 kV no primário tem-se que:
552,010/100)0343,00553,00894,0(5,0 =×−+×=pX pu
001,010/100)0894,00343,00553,0(5,0 =×−+×=sX pu
342,010/100)0553,00343,00894,0(5,0 =×−+×=tX pu
15
8 - Exercícios
Exercício 8.1 - Determinar o eqüivalente pi, conforme mostra a figura, de um transformador 
cuja relação de transformação ttt =21 / é um valor complexo. Sabe-se que nestes casos 
31 vtv ×= e que 1
*
2 iti ×= .
Exercício 8.2 - (Prova ASP 31mar00) Determinar os valores de a, b e c do circuito da figura 
abaixo. As grandezas a, b e c se referem ao circuito pi eqüivalente de um transformador com 
tap fora do nominal.
Exercício 8.3 - (Prova ASP 31mar00) Um transformador de 3 enrolamentos tem os seguintes 
dados: primário em Y, 6,6 kV e 15 MVA; secundário em Y, 33 kV e 10 MVA; terciário em ∆, 
2,2 kV e 5 MVA. As impedâncias são calculadas através de testes em curto circuito. Os 
valores medidos no lado primário foram 232,0jz ps = Ω e 290,0=ptz Ω. O valor medido no 
secundário foi 70,8jzst = Ω. Calcule as impedâncias do circuito estrela eqüivalente na base 
de 15 MVA, e 6,6 KV no primário.
Exercício 8.4 - (Prova ASP 27abr01). - Desenhar o diagrama trifásico representando as 
respectivas impedâncias ôhmicas do sistema da figura. A fonte geradora equivalente está 
conectada em estrela aterrada e não contem reatâncias mútuas. A impedância da linha de 
transmissão é dada pela matriz [zS].
[ ]








=
00,150,050,0
50,000,150,0
50,050,000,1
jjj
jjj
jjj
zs Ω/km
16
z
t
1
/t
2
i
1
i
2
v
1
v
2
v
3
a
b c
i
1
i
2
v
1
v
2
z a
b c
A : 1.0
Exercício - 8.5 - (Prova 21mai1996) - Determinar o diagrama de impedâncias e a 
correspondente matriz de admitancia. Use base de 13.8kV e 100MVA na barra de geração.
Exercício 8.6 - (prova de 21mai1996) - Determinar as impedâncias de cada um dos elementos 
do circuito da figura. A matriz [z] corresponde a matriz de impedâncias de barras obtida 
através da inversão da matriz de admitancia.
[ ]








=
7137,06774,06290,0
6774,07548,06591,0
6290,06591,06898,0
jjj
jjj
jjj
z
Exercício 8.7 - (Prova de 21mai1996) - Determinar o equivalente pi do circuito da figura, 
sabendo que )()/()cosh( lsenhzvlii crrs γγ += e )()()cosh( lsenhzilvv crrs γγ += , onde cz 
é a impedância característica da linha, γ a constante de propagação e l o comprimento da 
linha de transmissão. Determinar também a correspondente matriz de admitancia do circuito pi
.
17
~
138kV/230kV
100MVA
X = 7,0%
100km138kV
100MVA
X = 20%
∆ Υ
13,2kV
60MVA
X = 30%
~
135kV/13,2kV
50MVA
X = 6,0%
97,0km
X
L
 = 0,4Ω/km
X
C
 = 280kΩ*km
13,2kV/132kV
50 MVA
X = 5%
5,0 km
R = 1,05Ω/km
X
L
 = 0,4Ω/km
X
C
 = 280kΩ*km
2 MW
fp=0,85
atrasado
35 MVA
fp=0,98
adiantado
1 2 3
Exercício 8.8 - (prova 23abr2004) - Conhecendo a equação matricial, na forma [y][v] = 
[(s/v)*], reconstitua o sistema da figura. A tensão de base é 13,8 kV no gerador e a potência 
de base do sistema é ??.








−∠
=








−∠







−+−
+−−
−
 05,8482,0
0
0,28025,1951,2312,1983,2312,10
983,2312,1764,10312,1813,7
0813,7479,9 1
2
1 i
v
v
jj
jjj
jj
Exercício 8.9 - (prova 23abr2004) - Determinar a equação matricial na forma 
[ ] [ ] [ ]*)/( vsvy = do circuito da figura abaixo. Utilize como base, na barra 2, tensão de 220 
kV potência de 100 MVA. As linhas de transmissão tem kmR /1,0 Ω= , kmX L /5,0 Ω= e 
kmkXC /250 Ω= . Comentar também como seria resolvido o problema no caso em que o 
transformador entre as barras 4 e 3 tivesse relação de 345kV/220kV.
18
si ri
rvsv
si
sv rv
ri
~ ?? km
R = ?? Ω/km
X
L
 = 0,5 Ω/km
X
C
 = ?? kΩxkm13,8 kV / 138 kV50 MVA
X = ?? %
Carga
?? MW
fp = ??
1 2 3
13,8 kV
50 MVA
X = 30 %
220kV/330kV
X=6%
450MVA
0,6GVA
fp=0,95 (adiantado)
600MW
fp=0,96 (atrasado)
220 kV 200km
200km
230kV/345kV
X=5%
400MVA
1
2
4
3
~
~
345kV
200km
200km
Exercício 8.10 - (prova23abr2004) - Determinar a matriz de admitâncias do circuito da figura 
abaixo. Utilizar como base para pu 100MVA e 13,8kV na barra A.
fim
19
13,8kV
120MVA
X´=27,0%
~
A
13,8kV/230kV
120 MVA
X = 8%
R = 1% 140km
R = 0,081Ω/km
X
L 
=0,50Ω/km
X
C 
=280kΩ*km
~ 220 kV500MVA
X=10%
B C

Continue navegando