Buscar

Introducao_e_Conteudo_Ceramicos_V02

Esta é uma pré-visualização de arquivo. Entre para ver o arquivo original

O que será visto
Cerâmicos
Os materiais cerâmicos são combinações de elementos metálicos e não metálicos, frequentemente óxidos, nitretos e carbetos. 
Nesta classificação, existe um grande número de materiais, como: argilas, cimentos e vidros.
O que será visto
Cerâmicos
Apresentam ligações tipo iônicas ou covalentes, sendo isolantes elétricos e térmicos. 
Os cerâmicos são em geral resistentes e muito frágeis. São resistentes à elevadas temperaturas e muito resistentes a ambientes corrosivos.
Materiais Cerâmicos
Introdução
Cubo de sílica de isolamento térmico. O interior do cubo está a 1250ºC e pode ser manuseado sem protecção.
Usada no isolamento térmico do Space Shuttle
Introdução
História
2 milhões de anos atrás o Homo Erectus tem contato com
os primeiros materiais cerâmicos;
Lascas de quartzo e obsidiana (vidro vulcânico) utilizadas como armas.
Ponta de lança feita de quartzo
Introdução
História
Cerâmicas ao longo da história: Egito e China (5000 anos); Japão (8000 anos).
Introdução
Atualidade
Supercondutores
Vidros
Cerâmicas
Introdução
Definição
Cerâmica (Keramikos) = matéria-prima queimada.
 
As propriedades só são atingidas após um tratamento térmico de alta temperatura – conhecido como ignição.
Introdução
Definição
São materiais inorgânicos. A característica comum a estes materiais é serem constituídos de elementos metálicos e elementos não metálicos, ligados por ligações iônicas e/ou covalentes;
Apresentam composições químicas muito variadas, desde compostos simples a misturas de várias fases complexas ligadas entre si;
As propriedades variam muito devido a diferenças de ligação química;
Os materiais cerâmicos são geralmente duros e frágeis, com pouca tenacidade e pouca ductilidade;
Introdução
Definição
São geralmente isolantes térmicos e elétricos (devido à ausência de elétrons de condução) 
embora existam materiais cerâmicos semicondutores, condutores e até mesmo supercondutores (estes dois últimos, em faixas específicas de temperatura);
Apresentam alto ponto de fusão e são comumente 
quimicamente estáveis sob condições ambientais severas 
 (devido à estabilidade das suas fortes ligações químicas).
Introdução
Exceções
Isolantes Térmicos: diamante (alta condutividade térmica – VERIFICAR);
Isolantes Elétricos: semicondutores e supercondutores.
Bismuth strontium calcium copper oxide
Introdução
Atenção
O grafite e o diamante são tratados muitas vezes como cerâmicas!
 
Apesar de compostos unicamente de carbono, ambos os materiais são formas de carbono inorgânicas, não sendo produzidas por nenhum tipo de organismo vivo.
Introdução
Classificação quanto a aplicação
Materiais Cerâmicos Tradicionais: cerâmicas estruturais, louças, refratários (provenientes principalmente de matérias-primas argilosas e de outros tipos de silicatos);
Vidros e Vitro-Cerâmicas;
Abrasivos;
Cimentos;
Cerâmicas “Avançadas”: aplicações eletro-eletrônicas, térmicas, mecânicas, ópticas, químicas, bio-médicas.
Introdução
Classificação quanto a aplicação
Classificação dos Materiais Cerâmicos de acordo com a aplicação
Introdução
Cerâmicas Tradicionais e Avançadas
Telhas e tijolos (cerâmica vermelha) ainda são produzidos com matéria-prima não beneficiada. 
Ex.: tijolos, blocos, telhas, ladrilhos de barro, vasos, filtros, tubos, manilhas.
Introdução
Cerâmicas Tradicionais
Introdução
Cerâmicas Tradicionais
Cerâmica branca, produtos refratários e vidrados. 
São produzidos com matérias-primas beneficiadas por diversas etapas de moagem até um tamanho que permita a separação por meio de 
sedimentação, 
separação magnética 
e eliminação de fases indesejáveis. 
Ex.: louças, porcelanas, azulejos, louça sanitária, porcelana refratária, doméstica, elétrica ou artística.
Introdução
Cerâmicas Avançadas
Utilizam matérias-primas que sofrem uma série de processos químicos e mecânicos 
que permitem obter produtos de pureza elevada ( > 99,5%) e pequeno tamanho de partícula (< 1µm).
Óxidos, nitretos e carbetos podem ser obtidos.
A matéria-prima para as cerâmicas avançadas pode também ser sintética, 
ou seja, obtida por processos de síntese química (alumina com pureza> 99,99%).
Cerâmica eletrônica: circuitos integrados, instrumentos e sensores de laboratório, geradores de faísca.
Cerâmica estrutural: rotores para motor turbo, ferramentas de corte, mancais, pistões, bocais de extrusoras, bicos de queimadores.
Alta dureza à quente (1600oC);
Não reage quimicamente com o aço;
Longa vida da ferramenta;
Usado com alta velocidade de corte;
Não forma gume postiço.
Introdução
Cerâmicas Avançadas
Pó finíssimo de Al2O3 (partículas compreendidas entre 1 e 10 mícrons) mais ZrO2 (confere tenacidade a ferramenta de corte) é prensado, porém apresenta-se muito poroso. Para eliminar os poros, o material é sinterizado a uma tempertura de 1700oC ou mais. Durante a sinterização as peças experimentam uma contração progressiva, fechando os canais e diminuindo a porosidade.
Outras Aplicações
Material de polimento, isolante elétrico (BN, B4C).
Eixos, bicos pulverizadores, selos mecânicos, ferramentas de corte, implantes ósseos, meios de moagem ( Al2O3).
Matrizes de extrusão e fundição, tesouras, facas (ZrO2).
Moderador nuclear, revestimento de câmeras de combustão de foguetes, cadinhos para fusão de Ni e Pt, elemento protetor de resistências de aquecimento (BeO)
Introdução
Cerâmicas Avançadas
Introdução
Cerâmicas Tradicionais e Avançadas
Diferenças
Custo muito maior das avançadas; a matéria-prima das cerâmicas avançadas é muito mais pura (> 99,5%) e os grãos são muito menores (< 1µm).
Processos de fabricação são mais sofisticados: torneamento, prensagem de pós, injeção, prensagem isostática à quente, colagem sob pressão, tape casting, CVD, sol-gel.
Introdução
Tipos Matérias Primas
Naturais (brutas) – não sofrem nenhum tipo de beneficiamento (telhas e tijolos).
Refinadas (industrializadas) – são beneficiadas por diversas etapas de moagem até um tamanho que permita a separação por meio de sedimentação, separação magnética e eliminação de fases indesejáveis (cerâmica branca, produtos refratários e vidrados).
Industrializadas por processos químicos e mecânicos – Obtenção de pureza elevada (> 99,5%) e pequeno tamanho de partícula (< 1µm) (cerâmica avançada: óxidos, nitretos, carbetos etc).
Sintéticas – Pós resultantes com características controladas (uso em cerâmicas avançadas).
Introdução
Tipos Matérias Primas
Introdução
Tópicos a serem desenvolvidos
Estruturas Cerâmicas:
Estruturas Cristalinas;
Cerâmicas à Base de Silicato;
Imperfeições nas Cerâmicas.
Propriedades Mecânicas
Fratura Frágil das Cerâmicas;
Comportamento Tensão-Deformação;
Mecanismos da Deformação Plástica.
Introdução
Objetivos
ligações covalente/iônica (lembrar do caso do Fe3C)
↓
imobilidade de discordâncias
↓ 
ausência de zona plástica → materiais frágeis
↓
Defeitos presentes (poros, inclusões, grãos grandes, trincas superficiais) atuam como concentradores de tensão
↓ 
Grande variação nos valores de resistência mecânica encontrados nos catálogos dos fabricantes para produtos nominalmente iguais. 
Materiais Não Metálicos
TM334
Aula 02: Estrutura e Propriedades 			das Cerâmicas
Prof. Felipe Jedyn
DEMEC – UFPR
Estruturas Cerâmicas
Cerâmicas Cristalinas:
O deslocamento de discordâncias é muito difícil – íons com mesma carga elétrica são colocados próximos uns dos outros – REPULSÃO;
No caso de cerâmicas onde a ligação covalente predomina o escorregamento também é difícil – LIGAÇÃO FORTE.
Cerâmicas Amorfas:
Não há uma estrutura cristalina regular – NÃO HÁ DISCORDÂNCIAS;
Materiais se deformam por ESCOAMENTO VISCOSO.
A resistência à deformação em um material não-cristalino é medida por intermédio de sua viscosidade.
Estruturas
Cerâmicas
 Estruturas Cristalinas
Em geral, a estrutura cristalina dos materiais cerâmicos é mais complexa que a dos metais. 
 São compostos pelo menos por dois elementos, em que cada tipo de átomo ocupa posições determinadas no reticulado cristalino.
Estruturas Cristalinas
Onde a ligação é predominantemente iônica – lembrando que ela pode variar de puramente iônica até totalmente covalente – 
As estruturas cristalinas são compostas por íons eletricamente carregados ao invés de átomos.
O nível de caráter iônico depende das eletronegatividades dos átomos. 
Percentual de Caráter Iônico das Ligações Interatômicas para Vários Materiais Cerâmicos.
 Ele é calculado da seguinte maneira:
Onde XA e XB são as eletronegatividades para os respectivos elementos
Ligação atômica predominantemente iônica  Estruturas cristalinas compostas por íons, ao invés de átomos.
Íons Metálicos: Cátions
Íons Não-metálicos: Ânions
 Duas características dos íons influenciam a estrutura do cristal:
A magnitude da carga elétrica (o cristal deve ser eletricamente neutro  cargas + = cargas -);
Os tamanhos relativos dos Cátions (rC) e dos Ânions (rA).
Estruturas Cristalinas
A magnitude da carga elétrica
Cristal Eletricamente Neutro
Fluoreto de Cálcio, por exemplo
Cada íon Cálcio possui uma carga elétrica +2 (Ca2+)
Cada íon Flúor possui uma única carga negativa (F-)
 Dessa forma deve existir duas vezes mais íons F- do que íons Ca2+. 
Pode-se ver isso pela fórmula química do Fluoreto de Cálcio, CaF2.
Os Tamanhos Relativos dos Cátions e dos Ânions.
Os Cátions são menores que os Ânions, por que?
rC/rA < 1 
 Cada Cátion quer ter o máximo de Ânions como vizinhos mais próximos e vice-versa.
Estruturas Cristalinas Cerâmicas Estáveis: Todos os ânions estão em contato com o Cátion.
Os Tamanhos Relativos dos Cátions e dos Ânions.
O que vai determinar o número de vizinhos que um cátion pode ter?
Ou seja, qual será o número de coordenação?
Ele sempre será o mesmo para cátions e para ânions?
Preciso saber os valores dos raios do Cátion e do Ânion. 
Os Tamanhos Relativos dos Cátions e dos Ânions.
Para um número de coordenação específico  há uma razão rc/ra crítica ou mínima para a qual o contato entre os íons é mantido  razões puramente geométricas. Assim podemos determinar o NC!!!
Estruturas Cristalinas do Tipo AX
Estrutura do Sal-gema
Estruturas do tipo AX: Números iguais de Cátions (A) e Ânions (X)
Estrutura do Sal-gema
Cloreto de Sódio (NaCl), ou sal-gema. 
Número de coordenação tanto para cátions quanto para ânions é 6, então, rC / rA está entre aproximadamente 0,414 e 0,732.
Configuração tipo CFC dos ânions com um cátion no centro do cubo e outro em cada uma das 12 arestas do cubo  cátions centrados nas faces.
Estruturas Cristalinas do Tipo AX
Estrutura do Sal-gema
Uma estrutura cristalina equivalente resulta de um arranjo onde os cátions estão centrados nas faces.
Assim, a estrutura pode ser considerada como sendo composta por duas redes CFC que se interpenetram (uma composta por cátions e outra por ânions).
NaCl, MgO, MnS, LiF, FeO. 
Estruturas Cristalinas do Tipo AX
Estrutura do Cloreto de Césio
Calcule a razão rC/rA para o Cloreto de Césio.
Determine o Número de Coordenação.
Indique uma possível estrutura. Como ela deve se parecer?
Estruturas Cristalinas do Tipo AX
Estrutura do Cloreto de Césio
Calcule a razão rC/rA para o Cloreto de Césio.
Determine o Número de Coordenação.
Indique uma possível estrutura. Como ela deve se parecer?
Estruturas Cristalinas do Tipo AX
Estrutura do Cloreto de Césio
CsCl. rC/rA = 0,9392
Número de coordenação para os dois tipos de íons é 8.
Ânions localizados em cada um dos vértices dos cubos, enquanto o centro do cubo contém um único cátion.
O intercâmbio de ânions com cátions e vice-versa produz a mesma estrutura cristalina.
Estruturas Cristalinas do Tipo AX
Estrutura do Cloreto de Césio
Em uma célula CCC qual é o número de coordenação?
IMPORTANTE: 
ESSA NÃO É UMA ESTRUTURA CRISTALINA CCC, POIS ESTÃO ENVOLVIDOS ÍONS DE DUAS ESPÉCIES DIFERENTES.
Estruturas Cristalinas do Tipo AX
Estrutura da Blenda de Zinco
Número de coordenação para todos os átomos é 4 (todos os átomos estão coordenados tetraedricamente).
Estrutura da Blenda de Zinco ou Esfalerita (termo mineralógico para o sulfeto de zinco – ZnS)
Todos os vértices e posições faciais da célula cúbica estão ocupados por átomo de S, enquanto os átomos de Zn preenchem posições tetraédricas interiores. Ocorre uma posição equivalente se as posições dos átomos de Zn e S forem invertidas. 
Dessa forma, cada átomo de Zn está ligado a quatro átomos de S, e vice-versa.
Estruturas Cristalinas do Tipo AX
Estrutura da Blenda de Zinco
Na maioria das vezes, a ligação atômica nos compostos que exibem essa estrutura cristalina é altamente covalente (ver tabela), estando incluídos entre esses compostos o ZnS, o ZnTe (semicondutor) e o SiC (Abrasivos --- Freio de veículos, colete a prova de bala – quando sinterizado).
Estruturas Cristalinas do Tipo AX
Estrutura da Blenda de Zinco
ZnTe
Estruturas Cristalinas do Tipo AmXp
Cargas dos Cátions e Ânions não são iguais, onde m e/ou p ≠ 1.
Exemplo: Composto AX2 (Fluorita – CaF2). 
rC / rA = 0,8  Número de coordenação = 8.
Íons de cálcio estão posicionados nos centros do cubos, com os íons de flúor nos vértices.
Para cada íon F- existe metade deste número de íons Ca2+, e por tanto, a estrutura seria semelhante a do CsCl, exceto que apenas metade das posições centrais no cubo estariam ocupadas por íons Ca2+. 
Estruturas Cristalinas do Tipo AmXp
Exemplos: UO2, PuO2, ThO2. Combustíveis Nucleares.
Dióxido de Urânio.
Uma célula unitária consiste em oito cubos.
Estruturas Cristalinas do Tipo AmXp
Exemplos: UO2, PuO2, ThO2. Combustíveis Nucleares.
Dióxido de Urânio.
Estruturas Cristalinas do Tipo AmXp
Exemplos: UO2, PuO2, ThO2. Combustíveis Nucleares.
Óxido de Plutônio.
Estruturas Cristalinas do Tipo AmXp
Exemplos: UO2, PuO2, ThO2. Combustíveis Nucleares.
Dióxido de Tório
Estruturas Cristalinas do Tipo 
AmBnXp
Possuem dois tipos de Cátions (A e B)
Titanato de Bário (BaTiO3), com os cátions Ba2+ e Ti4+.
Possui a estrutura cristalina da Perovskita (CaTiO3).
Acima de 120oC a estrutura cristalina é cúbica.
Perovskita é um mineral de óxido de cálcio titânio, composto de titanato de cálcio.
Estruturas Cristalinas do Tipo 
AmBnXp
Os íons Ba2+ estão localizados em todos os 8 vértices do cubo, enquanto um único íon Ti4+ encontra-se posicionado no centro do cubo, com os íons de O2- localizados no centro de cada uma das 6 faces.
Captador Piezoelétrico
Estruturas Cristalinas
Resumo
ANOTEM OS DETALHES PRA BLENDA DE ZINCO!!!
Com base na estrutura cristalina, calcule a densidade teórica para o cloreto de sódio. Como o valor encontrado para a densidade teórica se compara à densidade obtida através de medições experimentais?
Exemplo
Cerâmicas à Base de Silicato
Os silicatos são materiais compostos principalmente por silício e oxigênio, os dois elementos mais abundantes na crosta terrestre; consequentemente, a maior parte dos solos, rochas, argilas e areia se enquadram na classificação de silicatos.
Em vez de se caracterizar as estruturas cristalinas desses materiais em termos de células unitárias, é mais conveniente usar vários arranjos de um tetraedro composto por SiO44-. 
Cerâmicas à Base de Silicato
Cada átomo de silício está ligado a quatro átomos de oxigênio, os quais estão localizados nos vértices do tetraedro; 
o átomo de silício está posicionado no centro do tetraedro. 
Uma vez que essa é a unidade básica dos silicatos, ela é tratada normalmente como uma entidade carregada negativamente.
Cerâmicas à Base de Silicato
Frequentemente, os silicatos não são considerados como iônicos, pois as ligações interatômicas Si-O exibem
um caráter covalente significativo, o que torna essas ligações direcionais e relativamente fortes.
Independente da natureza da ligação Si-O, existe uma carga de -4 associada a cada tetraedro de SiO44-, uma vez que cada um dos quatro átomos de oxigênio exige um elétron extra para atingir uma estrutura eletrônica estável  Quais as valências de ambos?. 
Várias estruturas de silicatos surgem das diferentes maneiras de segundo as quais as unidades de SiO44- podem ser combinadas em arranjos unidimensionais, bidimensionais e tridimensionais.
Cerâmicas à Base de Silicato
Cerâmicas à Base de Silicato
Sílica
O Dióxido de Silício ou Sílica (SiO2) é o mais simples silicato.
 Forma arranjo tridimensional, onde os átomos de Oxigênio dos vértices são divididos com os tetraedros adjacentes.
O material é eletricamente neutro e apresenta estrutura eletrônica estável. 
Sob essas circunstâncias, a razão entre o número de átomos de silício e o número de átomos de O é 1:2, como indicado pela fórmula química. 
Cerâmicas à Base de Silicato
Sílica
Se esses tetraedros forem arranjados de maneira regular e ordenada, forma-se uma estrutura cristalina. 
Existem três formas cristalinas polimórficas principais para a Sílica: Cristobalita, Quartzo e Tridimita.
São estruturas complicadas e abertas (átomos não densamente compactados)  densidade baixa. 
 Força de ligação alta (Tfusão = 1710oC)
Cerâmicas à Base de Silicato
Vidros à Base de Sílica
A sílica também pode ser constituída na forma de um sólido não-cristalino ou vidro, com um elevado grau de aleatoriedade atômica, o que é uma característica dos líquidos; tal maneira é conhecida por sílica fundida ou sílica vítrea.
A estrutura tetraédrica é SiO44- é a unidade básica (como na sílica cristalina); além dessa estrutura existe uma desordem considerável.
(a) (b)
Esquemas bidimensionais da estrutura do dióxido de silício cristalino (a) e do dióxido de silício não-cristalino (b).
Cerâmicas à Base de Silicato
Vidros à Base de Sílica
Outros óxidos (p.e. B2O3 e GeO2) podem também formar estruturas vítreas; 
Esses materiais, como o SiO2, são conhecidos como formadores de rede.
Os vidros inorgânicos comuns que são usados para recipientes, janelas, e assim por diante, são vidros à base de sílica, aos quais foram adicionados outros óxidos, tais como CaO e Na2O. 
Esses óxidos não formam redes poliédricas (seus cátions são incorporados no interior e modificam a rede do SiO44-) e são conhecidos como modificadores de rede.
Cerâmicas à Base de Silicato
Vidros à Base de Sílica
Ainda outros óxidos, como o TiO2 e o Al2O3 que não são formadores de rede, substituem o silício e se tornam parte da rede, a estabilizando  óxidos intermediários. 
Qual o efeito deles???
A adição desses modificadores e óxidos intermediários diminui o ponto de fusão e a viscosidade de um vidro, tornando mais fácil a sua conformação a temperaturas mais baixas.
Cerâmicas à Base de Silicato
Vidros à Base de Sílica RESUMO
As estruturas atômicas de materiais podem não estar regularmente dispostas como em redes cristalinas  Estruturas amorfas ou vítreas.
Este tipo de estrutura, entretanto, não é completamente desordenada. 
Ela é formada por blocos constitutivos dispostos de maneira desordenada. 
Porém a estrutura destes blocos é regular. 
Assim, pode-se dizer que as estruturas vítreas possuem desordem de longo alcance e ordem de curto alcance.
Cerâmicas à Base de Silicato
Vidros à Base de Sílica RESUMO
Nem todos os materiais podem apresentar uma estrutura vítrea, 
porém todos os materiais que apresentam estrutura vítrea também apresentam estrutura cristalina. 
Pode-se dizer que a estrutura vítrea é uma fase metaestável e a estrutura cristalina é a fase estável.
Óxidos que podem apresentar estrutura vítrea são ditos formadores de rede. Exemplos de formadores de rede são: SiO2, GeO2, P2O5 e As2O5. 
Outros cátions podem substituir os cátions dos formadores de rede, porém eles mesmos não conseguem formar redes vítreas.
Cerâmicas à Base de Silicato
Vidros à Base de Sílica RESUMO
Em redes cristalinas, os blocos constitutivos formam arranjos regulares. 
Isto ocorre porque cada bloco está conectado a um número grande de blocos vizinhos, formando um arranjo tridimensional. 
Quando a conectividade de cada bloco constitutivo cai, torna-se possível que o arranjo de blocos não seja ordenado.  
Cerâmicas à Base de Silicato
Vidros à Base de Sílica RESUMO
A estrutura vítrea é então um arranjo tridimensional desordenado de baixa conectividade. 
Apenas alguns óxidos podem formar este tipo de arranjo. 
Existem óxidos que, quando introduzidos na estrutura vítrea, diminuem a conectividade da estrutura, quebrando ligações entre os blocos constitutivos. 
Estes óxidos são chamados de modificadores de rede e abaixam a viscosidade do vidro. Exemplos destes óxidos são: Na2O, K2O, CaO, BaO.
Cerâmicas à Base de Silicato
Os Silicatos
Para os vários minerais à base de silicato, um, dois ou três dos átomos de oxigênio nos vértices dos tetraedros de SiO44- são compartilhados por outros tetraedros para formar algumas estruturas consideravelmente mais complexas, tais como SiO44-, Si2O76-, Si3O96-, e assim por diante.
Também são possíveis estruturas de cadeia única (e).
Nessas estruturas, cátions carregados positivamente, como Ca2+, Mg2+ e Al3+ servem a dois propósitos:
Compensam as cargas negativas da unidade de SiO44- neutralidade de cargas.
Esses cátions ligam ionicamente entre si os tetraedros de SiO44-. 
Cerâmicas à Base de Silicato
Os Silicatos
Cinco estruturas de íon silicato formadas a partir de tetraedros de SiO4 4- .
Cerâmicas à Base de Silicato
Os Silicatos – Silicatos em Camadas
Representação esquemática da lâmina de silicato bidimensional, que possui uma unidade de fórmula repetida e equivalente a (Si2O5)2-.
Cerâmicas à Base de Silicato
Os Silicatos – Silicatos em Camadas
Um dos minerais argilosos mais comuns (com estrutura laminar de silicato com duas camadas), a caolinita, apresenta fórmula Al2Si2O5(OH)4 e a neutralidade elétrica da camada tetraédrica de sílica (Si2O5)2- é obtida por uma camada adjacente de Al2(OH)42+.
Um plano médio é formado por íons de O2- da camada de (Si2O5)2- e íons OH- que compõe parte da camada de Al2(OH)4.
Cerâmicas à Base de Silicato
Os Silicatos – Silicatos em Camadas
Uma única lâmina é mostrada abaixo
Enquanto a ligação dentro dessa lâmina com duas camadas é forte e intermediária entre covalente e iônica, 
as lâminas adjacentes estão apenas fracamente ligadas umas às outras através de forças de van der Waals fracas.
Carbono
O Carbono é um elemento que existem em diversas formas polimórficas e também no estado amorfo.
Esse grupo de materiais não se enquadra, na realidade, dentro de qualquer um dos esquemas de classificação tradicionais para metais, cerâmicas e polímeros. 
Porém são discutidos nessa seção, já que a grafita (forma polimórfica do C) é algumas vezes classificada como cerâmica.
Além disso, o diamante apresenta estrutura cristalina semelhante àquela da blenda de zinco.
Veremos a Grafita, o Diamante e os novos Fullerenos. 
Carbono
Diamante
O diamante é uma forma alotrópica metaestável do Carbono em temperatura e pressão ambiente.
A estrutura do Diamante é similar à blenda de zinco, em que o Carbono ocupa as posições do Zn e do S.
Cada átomo de Carbono está (totalmente) covalentemente ligado à outros quatro átomos de Carbono. A estrutura é referida como a estrutura cristalina cúbica do Diamante.
É o material de maior dureza que se conhece (7000HK).
Cond. Elétrica baixa.
Cond. Térmica anormalmente alta para um material não-metálico.
Carbono
O que diferencia o Diamante da Grafita???
Carbono – Grafita
Um outro polimorfo do carbono é a Grafita. 
É mais estável em temperatura e pressão atmosférica ambiente em relação ao Diamante.  Mais
comum.
A estrutura da grafita é composta por camadas de átomos de carbono em um arranjo hexagonal.
Carbono – Grafita
Neste arranjo, dentro das camadas, cada átomo de carbono estabelece ligações covalentes (fortes) a outros três átomos vizinhos de carbono coplanares.
O quarto elétron de valência participa de uma ligação fraca do tipo van der Waals entre as camadas.  A clivagem interplanar é fácil  excelentes propriedades lubrificantes da grafita. 
Cond. Elétrica relativamente alta em direções cristalográficas paralelas às lâminas hexagonais. 
Carbono – Grafita
Elevada resistência e boa estabilidade química a temperaturas elevadas e em atmosferas não-oxidantes.
Elevada condutividade térmica.
Baixo coeficiente de expansão térmica.
Alta resistência à choques térmicos.
Elevada adsorção de gases.
Boa usinabilidade.
Carbono
Fullerenos
É outra forma polimórfica descoberta em 1985. 
Consiste em um aglomerado esférico oco com 60 átomos de Carbono. 
Uma molécula é referida com o C60.
Cada molécula é composta por grupos de átomos de Carbono, que são ligados um ao outro, formando configurações geométricas tipo hexágono (6 átomos de C) e pentágono (5 átomos de C).
Carbono
Fullerenos
São 20 estruturas hexagonais e 12 estruturas Pentagonais. 
A estrutura é tal que dois pentágonos não podem estar lado a lado.
O material composto por moléculas de C60 é conhecido por buckminsterfullereno. 
É eletricamente isolante, mas com uma adição adequada de impurezas, ele pode ser tornado altamente condutor e semicondutor. 
“The first fullerene molecule to be discovered, and the family's namesake, buckminsterfullerene(C60), was prepared in 1985 by Richard Smalley, Robert Curl, James Heath, Sean O'Brien, and Harold Kroto at Rice University.” 
Imperfeições nas Cerâmicas
Defeitos Pontuais Atômicos
São possíveis lacunas e intersticiais (como nos metais); 
como eles contém íons de ao menos dois tipos diferentes, podem ocorrer defeitos para cada espécie de íon.
P.e. NaCl  lacunas e intersticiais para Na e Cl.
Muito improvável concentrações apreciáveis de intersticiais do ânion.  relativamente grande  deformações substanciais sobre os íons vizinhos para se ajustar numa posição intersticial (pequena).
Imperfeições nas Cerâmicas
Defeitos Pontuais Atômicos
Estrutura de Defeitos  usada para designar os tipos e concentrações dos defeitos atômicos das cerâmicas.  condições de eletroneutralidade (já que temos íons) devem ser mantidas (cargas + iguais -).  assim os defeitos nas cerâmicas não ocorrem sozinhos!
Defeito de Frenkel  par composto por uma lacuna de cátion e um cátion intersticial.
Cátion deixa sua posição normal e se move para um interstício.  Não existe alteração de carga (cátion mantém a mesma carga dentro do interstício).
Defeito de Schottki  AX  par consistindo de lacuna de cátion e lacuna de ânion.
Remoção do cátion e do ânion do interior do cristal, seguido pela colocação de ambos os íons numa superfície externa. cátions e ânions possuem mesma carga e temos lacunas para ambos  Neutralidade.
Imperfeições nas Cerâmicas
Defeitos Pontuais Atômicos
Em ambos os defeitos apresentados acima, a razão entre o número de cátions e o de ânions não é alterada.  material estequiométrico (quando não tiver outro defeito presente)  existe razão exata entre cátions e ânions prevista na fórmula química (estequiometria).
Imperfeições nas Cerâmicas
Impurezas nas Cerâmicas
Como em metais, átomos de impureza podem formar soluções sólidas (substitucional e intersticial) em cerâmicas.
Em solução sólida intersticial, o raio iônico da impureza deve ser relativamente pequeno em comparação ao ânion.
Uma vez que existem ânions e cátions, uma impureza substitucional irá substituir um íon hospedeiro que seja mais semelhante a ela no aspecto elétrico: se o átomo da impureza forma normalmente um cátion em um material cerâmico, ele irá, mais provavelmente, substituir um cátion hospedeiro.
Exemplo: NaCl (Na+Cl-)  seriam substituídos por  Ca2+ e O2- respectivamente.
Imperfeições nas Cerâmicas
Impurezas nas Cerâmicas
Solubilidade sólida apreciável de impureza substitucional  tamanho e carga iônica da impureza devem ser muito próximos daqueles dos íons hospedeiros!
Íon de impureza com carga diferente do hospedeiro  cristal deve compensar para que a eletroneutralidade seja mantida.  pode ser realizado através da produção de novos defeitos da rede cristalina (lacunas e intersticiais).
Propriedades Mecânicas
das Cerâmicas
Os materiais cerâmicos tem sua aplicabilidade limitada em certos aspectos devido às suas propriedades mecânicas, que em muitos aspectos são inferiores àquelas apresentadas pelos metais.
A principal desvantagem é uma disposição à fratura catastrófica de uma maneira frágil, com muito pouca absorção de energia.
DEVEMOS ESPERAR DIFERENÇAS NO COMPORTAMENTO DA FRATURA PARA TENSÕES TRATIVAS E COMPRESSIVAS?
PORQUE?
Propriedades Mecânicas
Fratura Frágil das Cerâmicas
À temperatura ambiente, tanto cerâmicas cristalinas como as não-cristalinas quase sempre fraturam antes que qualquer deformação plástica possa ocorrer em resposta à aplicação de uma carga de tração.
Fratura Frágil  formação e propagação de trincas através da seção reta do material em uma direção perpendicular à carga aplicada.
 crescimento da trinca em cerâmicas cristalinas se dá através dos grãos (transgranular) e ao longo de planos cristalográficos (ou de clivagem) específicos, planos de elevada densidade atômica.
Propriedades Mecânicas
Fratura Frágil das Cerâmicas
As resistências à fratura medidas para os materiais cerâmicos são substancialmente inferiores àquelas estimadas pela teoria a partir das forças de ligação interatômicas.
				Porque?
Propriedades Mecânicas
Fratura Frágil das Cerâmicas
Isso pode ser explicado pela presença de defeitos muito pequenos e onipresentes no material, os quais servem como fatores de concentração de tensões, ou seja, pontos onde a magnitude de uma tensão de tração aplicada é amplificada.
Como estimamos essa tensão máxima???
Propriedades Mecânicas
Fratura Frágil das Cerâmicas
O grau de amplificação da tensão depende do comprimento da trinca e do raio de curvatura da extremidade da trinca, de acordo com a equação,
sendo maior no caso de defeitos longos e pontiagudos.
Esses concentradores de tensões podem ser diminutas trincas de superfície ou internas (microtrincas), poros internos e arestas de grãos, os quais são virtualmente impossíveis de serem eliminados ou controlados.
Fibras de vidro  umidade e contaminantes presentes na atmosfera podem introduzir trincas de superfícies em fibras recentemente estiradas.
Propriedades Mecânicas
Fratura Frágil das Cerâmicas
O grau de amplificação da tensão depende do comprimento da trinca e do raio de curvatura da extremidade da trinca, de acordo com a equação,
sendo maior no caso de defeitos longos e pontiagudos.
Esses concentradores de tensões podem ser diminutas trincas de superfície ou internas (microtrincas), poros internos e arestas de grãos, os quais são virtualmente impossíveis de serem eliminados ou controlados.
Fibras de vidro  umidade e contaminantes presentes na atmosfera podem introduzir trincas de superfícies em fibras recentemente estiradas.
Tensão máxima na extremidade da trinca σm
Magnitude da tensão de tração nominal aplicada σ0
Raio de curvatura da extremidade da trinca ρe
Comprimento de uma trinca superficial, ou C/2 de uma trinca interna a
Propriedades Mecânicas
Fratura Frágil das Cerâmicas
A medida de habilidade de um material cerâmico em resistir à fratura quando uma trinca está presente é especificada em termos da tenacidade à fratura.
A tenacidade à fratura em deformação plana, KIc, é definida pela expressão:
A propagação da trinca não irá ocorrer enquanto o lado direito da eq. for inferior à tenacidade à fratura em deformação plana do material.
Os valores da tenacidade
à fratura em deformação plana para os materiais cerâmicos são menores do aqueles apresentados pelos metais; tipicamente eles são menores do que 10 MPa/m².
Parâmetro ou função adimensional que depende tanto da amostra como das geometrias da trinca Y
Tensão aplicada σ
Comprimento de uma trinca superficial, ou C/2 de uma trinca interna a
Propriedades Mecânicas
Fratura Frágil das Cerâmicas
Fadiga estática ou fratura retardada (ocorrem sob algumas circunstâncias)  fratura ocorrendo pela propagação lenta das trincas, quando as tensões são de natureza estática e quando o lado direito da equação anterior é menor do que KIc. 
 Então ocorre fadiga (?)  fratura pode ocorrer na ausência de tensões cíclicas!
 Fratura especialmente sensível às condições do ambiente (especificamente umidade).
Propriedades Mecânicas
Fratura Frágil das Cerâmicas
Fadiga estática ou fratura retardada (ocorrem sob algumas circunstâncias)
Mecanismo  ocorre provavelmente um processo de corrosão sob tensão nas extremidades da trinca 
(tensão de tração + dissolução do material  afilamento e aumento do comprimento das trincas  cresce até a apresentar rápida propagação).
Especialmente suscetíveis  vidros à base de silicato, porcelana, cimento portland, etc.
Propriedades Mecânicas
Fratura Frágil das Cerâmicas
Tensões de compressão  não existe qualquer amplificação de tensões associada com qualquer defeito existente. 
Assim, as cerâmicas frágeis exibem resistências muito maiores em compressão do que em tração (da ordem de um fator de 10),
e elas são geralmente utilizadas quando as condições de carregamento são compressivas.
Propriedades Mecânicas
Fratura Frágil das Cerâmicas
Tensões de compressão  não existe qualquer amplificação de tensões associada com qualquer defeito existente. 
Como posso melhorar a resistência à fratura de uma cerâmica frágil?
Ainda, a resistência à fratura de uma cerâmica frágil pode ser melhorada substancialmente pela imposição de tensões residuais de compressão na superfície (revenimento térmico).
 Por isso veremos mais adiante a questão de tratamentos térmicos nos cerâmicos.
Propriedades Mecânicas
Comportamento Tensão-Deformação
RESITÊNCIA À FLEXÃO
Em cerâmicas frágeis  comportamento tensão-deformação NÃO é em geral é avaliado por ensaio de tração.
Difícil preparo de amostras que tenham a geometria exigida.
Difícil prender e segurar materiais frágeis sem fraturá-los.
As cerâmicas falham após uma deformação de apenas aprox. 0,1% 
isso exige que os corpos de prova estejam perfeitamente alinhados para evitar tensões de dobramento ou flexão, que não são facilmente calculadas.
Propriedades Mecânicas
Comportamento Tensão-Deformação
RESITÊNCIA À FLEXÃO
Portanto aplicamos, na maioria das vezes, ensaio de flexão transversal :
Mais adequado para tais casos 
corpo de prova na forma de uma barra (com seção reta circular ou retangular) é flexionado até sua fratura, utilizando uma técnica de carregamento em três ou quatro pontos (ASTM C1161).
Propriedades Mecânicas
Comportamento Tensão-Deformação
RESITÊNCIA À FLEXÃO
No ponto de carregamento, a superfície superior do corpo de prova é colocada em um estado de compressão, enquanto a superfície inferior encontra-se em tração. 
A tensão é calculada a partir da espessura do corpo de prova, do momento fletor e do momento de inércia (ver figura).
Propriedades Mecânicas
Comportamento Tensão-Deformação
RESITÊNCIA À FLEXÃO
A tensão de tração máxima (pelas expressões de tensão) existe na superfície inferior do corpo de prova, diretamente abaixo do ponto de aplicação da carga.
Propriedades Mecânicas
Comportamento Tensão-Deformação
RESITÊNCIA À FLEXÃO
Uma vez que os limites de resistência à tração dos materiais cerâmicos equivalem a prox. 1/10 das suas resistências à compressão, 
e uma vez que a fratura ocorre na face do CP que está sendo submetida a tração, o ensaio de flexão é um substituto razoável para o ensaio de tração.
Propriedades Mecânicas
Comportamento Tensão-Deformação
RESITÊNCIA À FLEXÃO
A tensão no momento da fratura no ensaio de flexão é conhecida por resistência à flexão, módulo de ruptura, resistência à fratura ou resistência à dobra  importante parâmetro mecânico para materiais frágeis. 
Para seção reta retangular e circular, à resistência à flexão, σrf é igual a, respectivamente:
Ff representa a carga no momento da Fratura
L é a distância entre os pontos de suporte
Outros Parâmetros Dados na Figura
Propriedades Mecânicas
Comportamento Tensão-Deformação
RESITÊNCIA À FLEXÃO
Valores característicos para resistência à flexão de vários cerâmicos são dados a seguir, no próximo slide.
 Considerações Importantes
Uma vez que durante a flexão, um CP está sujeito tanto a tensões compressivas como trativas, a magnitude de sua resistência à flexão é maior do que a por tração. 
Além disso, σrf dependerá do tamanho do corpo de prova. Com o aumento do volume do corpo de prova (sob tensão) existe um aumento na severidade do defeito e, consequentemente, uma diminuição na resistência á flexão.
Propriedades Mecânicas
Comportamento Tensão-Deformação
COMPORTAMENTO ELÁSTICO
Se formos comparar com os metais o 
comportamento elástico tensão-deformação para os cerâmicos quando se utilizam testes de flexão 
é semelhante aos resultados apresentados pelos ensaios de tração realizados com metais: 
existe uma relação linear entre a tensão e a deformação.
Propriedades Mecânicas
Comportamento Tensão-Deformação
COMPORTAMENTO ELÁSTICO
A figura compara o comportamento tensão-deformação até a fratura para o óxido de alumínio (alumina) e para o vidro. 
O coef. angular (inclinação) da curva na região elástica é o módulo de elasticidade; 
a faixa para ele nos materiais cerâmicos encontra-se entre aproximadamente 70 e 500 GPa, sendo ligeiramente maior do que para os metais.
A tabela anterior lista valores para vários materiais cerâmicos.
Propriedades Mecânicas
Comportamento Tensão-Deformação
COMPORTAMENTO ELÁSTICO
Comportamento típico tensão-deformação até a fratura para o óxido de alumínio e o vidro.
Propriedades Mecânicas
Mecanismos da Deformação Plástica
CERÂMICAS CRISTALINAS
Ocorre como nos metais, pela movimentação de discordâncias. 
Uma razão para a dureza e a fragilidade desses materiais é a dificuldade de escorregamento (ou movimento da discordância).
Quando a ligação é predominantemente iônica, existem muito poucos sistemas de escorregamento (planos e direções cristalográficas dentro daqueles planos) ao longo dos quais as discordâncias podem se mover.
Propriedades Mecânicas
Mecanismos da Deformação Plástica
CERÂMICAS CRISTALINAS
Por que isso acontece???
Isso é uma consequência da natureza eletricamente carregada dos íons .
Para o escorregamento em algumas direções, os íons de mesma carga são colocados próximos uns aos outros; 
devido à repulsão eletrostática, essa modalidade de escorregamento é muito restrita.
Metais  isso não ocorre pois todos os átomos são eletricamente neutros.
Propriedades Mecânicas
Mecanismos da Deformação Plástica
CERÂMICAS CRISTALINAS
Cerâmicas com ligação altamente covalente  o escorregamento também é difícil, eles são frágeis pelas seguintes razões:
As ligações covalentes são relativamente fortes;
Existe também um número limitado de sistemas de escorregamento;
As estruturas das discordâncias são complexas.
Propriedades Mecânicas
Mecanismos da Deformação Plástica
CERÂMICAS NÃO-CRISTALINAS
A deformação plástica NÃO ocorre pelo movimento das discordâncias, 
POIS NÃO EXISTE UMA ESTRUTURA ATÔMICA REGULAR!
Eles se deformam através de um escoamento viscoso, que é a maneira segundo a qual os líquidos se deformam; 
Propriedades Mecânicas
Mecanismos da Deformação Plástica
CERÂMICAS NÃO-CRISTALINAS
A taxa de deformação é proporcional à tensão aplicada. 
Em resposta à aplicação de uma tensão de cisalhamento, os átomos ou íons deslizam
uns sobre os outros através da quebra e da reconstrução de ligações interatômicas.
Contudo, não existe uma maneira ou direção predeterminada segundo a qual fenômeno ocorre, como é o caso para as discordâncias.
Propriedades Mecânicas
Mecanismos da Deformação Plástica
CERÂMICAS NÃO-CRISTALINAS
Representação do escorregamento viscoso (demonstrado em escala macroscópica) de um líquido ou vidro fluido em resposta à aplicação de uma força de cisalhamento.
Propriedades Mecânicas
Mecanismos da Deformação Plástica
As camadas adjacentes, deslocam-se paralelamente umas às outras com diferentes velocidades. 
Pode ser definido por meio da situação ideal conhecida como escoamento de Couette, onde uma camada de fluido é retido entre duas placas horizontais, uma fixa e outra se movimentando horizontalmente a uma velocidade constante.
Assume-se que as placas são muito grandes, de modo que não é preciso considerar que ocorre próximo dos seus bordos.
Propriedades Mecânicas
Mecanismos da Deformação Plástica
Se a velocidade da placa superior é suficientemente baixa, as partículas do fluido se movem em paralelo a ela, e a sua velocidade irá variar linearmente a partir de zero, na parte inferior para a parte superior. 
Cada camada de fluido se move mais rapidamente do que a camada imediatamente abaixo, e o atrito entre elas irá dar origem a uma força resistindo a esse movimento relativo. 
Em particular, o fluido vai aplicar sobre a placa superior uma força na direção oposta ao seu movimento, e uma força igual, mas em direção oposta à placa de fundo. 
Uma força externa é então necessária para manter a placa superior em movimento a uma velocidade constante.
Propriedades Mecânicas
Mecanismos da Deformação Plástica
CERÂMICAS NÃO-CRISTALINAS
A propriedade característica para um escoamento viscoso, a viscosidade, representa uma medida de resistência à deformação de um material não-cristalino.
Para o escoamento viscoso de um líquido que tem sua origem nas tensões de cisalhamento impostas por duas chapas planas e paralelas:
 Ver Figura Anterior
Viscosidade η representa a razão entre a:
τ tensão de cisalhamento aplicada, e 
dv alteração na velocidade em função da
dy distância em uma direção perpendicular e se afastando das chapas  Taxa de deformação.
Propriedades Mecânicas
Mecanismos da Deformação Plástica
CERÂMICAS NÃO-CRISTALINAS
Quanto maior a viscosidade, menor será a velocidade em que o fluido se movimenta.
Viscosidade é a propriedade associada a resistência que o fluido oferece a deformação por cisalhamento.
Propriedades Mecânicas
Mecanismos da Deformação Plástica
CERÂMICAS NÃO-CRISTALINAS
Líquidos  viscosidades relativamente baixas.
Vidros  viscosidades extremamente elevadas à temperatura ambiente.
 temperatura  magnitude da ligação  movimento de escorregamento ou escoamento dos átomos ou íons ficam facilitados.
 Viscosidade.
Propriedades Mecânicas
Influência da Porosidade
Em alguns casos, para a fabricação de materiais cerâmicos o material de origem se encontra na forma de pó;
Após a compactação ou conformação dessas partículas pulverizadas na forma desejada, existirão poros ou espaços vazios entre as partículas do pó.
Durante T. T. a maior parte da porosidade será eliminada, entretanto ele será incompleto em alguns casos resultando numa porosidade residual.
Porosidade terá influência negativa sobre as propriedades elásticas e a resistência.
Propriedades Mecânicas
Influência da Porosidade
Foi observado para alguns cerâmicos que o módulo de elasticidade E diminui em função da fração volumétrica da porosidade, P, de acordo com a expressão:
Onde E0 representa o módulo de elasticidade para o material sem porosidade. 
A influência da fração volumétrica da porosidade sobre o módulo de elasticidade para o óxido de alumínio é mostrada na figura, onde a curva está de acordo com a eq. anterior.
Fração volumétrica da porosidade
Propriedades Mecânicas
Influência da Porosidade
A porosidade exerce um efeito negativo por dois motivos: 
Os poros reduzem a área de seção reta através da qual uma carga é aplicada, e 
Eles também atuam como concentrados de tensões (no caso de um poro esférico isolado, uma tensão de tração que seja aplicada é amplificada por um fator de 2).
A influência da porosidade sobre a resistência é relativamente drástica; 
p.e., não é incomum que uma porosidade de 10% vol seja responsável por uma diminuição em 50% na resistência à flexão em relação ao material sem porosidade. 
Propriedades Mecânicas
Influência da Porosidade
O grau de influência do volume de poros está mostrado na figura, novamente para o óxido de alumínio. 
Experimentalmente tem sido mostrado que a resistência à flexão diminui exponencialmente em função da fração volumétrica de porosidade (P), de acordo com a relação:
Fração volumétrica da porosidade
σ0 e n representam constantes experimentais.
Materiais Não Metálicos
TM334
Aula 03: Aplicações e Processamento 		das Cerâmicas
Prof. Felipe Jedyn
DEMEC – UFPR
Aplicações e Processamento
das Cerâmicas
Características Metais x Cerâmicos  muito diferentes  aplicações totalmente diferentes  materiais cerâmicos, metálicos e poliméricos se completam nas suas utilizações.
Processamento (em comparação aos metais)
Fundição de cerâmicos  normalmente impraticável (Tfusão muito alta).
Deformação  impraticável (fragilidade).
Aplicações e Processamento
das Cerâmicas
Processamento dos Cerâmicos
Algumas peças cerâmicas são conformadas a partir de pós (ou aglomerados particulados) que devem ao final ser secados e levados a ignição (cozidos)
Vidros  formas conformadas a altas temperaturas a partir de uma massa fluida que se torna viscosa com o resfriamento.
Cimentos  são conformados pela colocação de uma pasta fluida no interior dos moldes, que endurece e assume uma pega permanente em virtude de reações químicas.
Aplicações e Processamento
das Cerâmicas
Aplicações e Processamento das Cerâmicas
Vidros
Grupo Familiar de Materiais Cerâmicos  recipientes, janelas, lentes e fibra de vidro.
Consistem em silicatos não cristalinos que também contém outros óxidos (CaO, Na2O, K2O, Al2O3) que influenciam suas propriedades.
Características principais  transparência ótica e a relativa facilidade com as quais eles podem ser fabricados.
Aplicações e Processamento das Cerâmicas
Propriedades dos Vidros
PROPRIEDADES DOS MATERIAIS VÍTREOS SENSÍVEIS A ALTERAÇÕES DE TEMPERATURA
Materiais vítreos (ou não-cristalinos) não se solidificam do mesmo modo que os materiais cristalinos: 
com o resfriamento, um vidro se torna continuamente mais e mais viscoso; 
não existe uma temperatura definida na qual o líquido se transforma em um sólido, como ocorre com os materiais cristalinos.
Aplicações e Processamento das Cerâmicas
Propriedades dos Vidros
PROPRIEDADES DOS MATERIAIS VÍTREOS SENSÍVEIS A ALTERAÇÕES DE TEMPARURA
Diferença entre Cristalinos x Não-cristalinos: Dependência do volume específico em relação a temperatura.
Cristalinos: diminuição descontínua no volume quando se atinge Tf.
Aplicações e Processamento das Cerâmicas
Propriedades dos Vidros
PROPRIEDADES DOS MATERIAIS VÍTREOS SENSÍVEIS A ALTERAÇÕES DE TEMPARURA
Materiais vítreos: volume diminui continuamente em função de uma redução na temperatura. 
Ocorre uma pequena diminuição na inclinação da curva no que é conhecido por temperatura de transição vítrea, Tv, ou temperatura fictícia. 
Abaixo dessa temperatura o material é considerado como sendo um vidro; acima dessa temperatura, o material é primeiro um líquido super-resfriado, e finalmente um líquido.
Aplicações e Processamento das Cerâmicas
Propriedades dos Vidros
Contraste do comportamento volume específico-temperatura apresentado por materiais cristalinos e não-cristalinos. 
Os materiais cristalinos se solidificam na temperatura de fusão Tf . 
Uma característica
do estado não-cristalino é a temperatura de transição vítrea, Tv. 
Aplicações e Processamento das Cerâmicas
Conformação do Vidro
O vidro é produzido pelo aquecimento das matérias-primas até uma temperatura elevada, acima da qual ocorre a fusão.
A maioria dos vidros comerciais é do tipo sílica-soda-cal.
Para a maioria das aplicações, especialmente quando a transparência ótica é um fator importante, torna-se essencial que o vidro produzido seja homogêneo e esteja isento de poros.
Aplicações e Processamento das Cerâmicas
Conformação do Vidro
A homogeneidade é atingida através da fusão e da mistura completa dos ingredientes brutos.
A porosidade resulta de pequenas bolhas de gás que são produzidas; 
essas devem ser absorvidas pelo material fundido 
ou de outra maneira eliminadas, o que exige um ajuste apropriado da viscosidade do material fundido.
Aplicações e Processamento das Cerâmicas
Conformação do Vidro
Quatro diferentes métodos de conformação são usados para fabricar produtos à base de vidro (prensagem, insuflação, estiramento e conformação das fibras):
Prensagem: é usada na fabricação de peças com paredes relativamente espessas, tais como pratos e louças. 
A peça de vidro é conformada pela aplicação de pressão em um molde de ferro fundido revestido com grafita, que possui a forma desejada; 
o molde é normalmente aquecido para assegurar uma superfície uniforme.
Aplicações e Processamento das Cerâmicas
Conformação do Vidro
Quatro diferentes métodos de conformação são usados para fabricar produtos à base de vidro (prensagem, insuflação, estiramento e conformação das fibras):
Insuflação: Embora em alguns casos seja feita manualmente (especialmente no caso de objetos de arte), o processo foi completamente automatizado. 
Usado para a produção de jarras, garrafas e lâmpadas de vidro. 
 
 As várias etapas envolvidas são mostradas na figura a seguir: 
Aplicações e Processamento das Cerâmicas
Conformação do Vidro
A partir de um tarugo de vidro, um parison, ou forma temporária, é moldado por prensagem mecânica em um molde. 
Aplicações e Processamento das Cerâmicas
Conformação do Vidro
Essa peça é inserida dentro de um molde de acabamento ou de insuflação, e então é forçada a se conformar com os contornos do molde pela pressão que é criada por uma injeção de ar.
Aplicações e Processamento das Cerâmicas
Conformação do Vidro
Quatro diferentes métodos de conformação são usados para fabricar produtos à base de vidro (prensagem, insuflação, estiramento e conformação das fibras):
Estiramento: é usado para conformar longas peças de vidro, como lâminas, barras, tubos e fibras, as quais possuem uma seção reta constante.
Um processo segundo o qual são formadas lâminas de vidro está ilustrado na figura; elas podem ser fabricadas por laminação a quente.
Aplicações e Processamento das Cerâmicas
Conformação do Vidro
Estiramento
O grau de planificação e o acabamento da superfície podem ser melhorados de maneira significativa:
Uma maneira é pela flutuação em um banho de estanho fundido a uma temperatura elevada; 
A peça é resfriada lentamente e depois tratada termicamente por recozimento.
Aplicações e Processamento das Cerâmicas
Conformação do Vidro
Quatro diferentes métodos de conformação são usados para fabricar produtos à base de vidro (prensagem, insuflação, estiramento e conformação das fibras):
Conformação das fibras: Fibras de vidro contínuas são conformadas segundo uma operação de estiramento que é um tanto sofisticada. 
O vidro fundido é colocado em uma câmara de aquecimento de platina. 
As fibras são conformadas pelo estiramento do vidro derretido através de muitos orifícios pequenos na base da câmara. 
A viscosidade do vidro, que é crítica, é controlada pelas temperaturas da câmara e dos orifícios.
Aplicações e Processamento das Cerâmicas
Tratamento Térmico dos Vidros
RECOZIMENTO
Quando o material cerâmico é resfriado desde T elevada 
ocorre diferença na taxa de resfriamento e na contração térmica entre as regiões da superfície e do interior da peça
o que resulta em tensões internas (tensões térmicas) 
as quais podem enfraquecer o material, e levá-lo a fratura (em casos extremos)  choque térmico.
Aplicações e Processamento das Cerâmicas
Tratamento Térmico dos Vidros
RECOZIMENTO
Para evitar que isso ocorra:
Resfriamento da peça a uma taxa suficientemente lenta de forma a evitar tensões térmicas.
Tensões já introduzidas:
Consegue-se eliminação ou redução delas através do tratamento térmico de recozimento.
Peça de vidro é aquecida até o ponto de recozimento e então lentamente resfriada até a temperatura ambiente.
Aplicações e Processamento das Cerâmicas
Tratamento Térmico dos Vidros
TÊMPERA DO VIDRO
Indução intencional de tensões residuais de superfície de natureza compressiva de forma a melhorar a resistência de uma peça de vidro.
A peça de vidro é aquecida até uma temperatura acima da região de transição vítrea, porém abaixo do ponto de amolecimento.
 Ela é então resfriada até a temperatura ambiente em meio a um jato de ar ou, em alguns casos, em meio a um banho de óleo.
As tensões residuais surgem de diferenças nas taxas de resfriamento para as regiões de superfície e interior da peça.
No início a superfície resfria mais rapidamente e torna-se rígida, quando resfria a uma T abaixo do ponto de deformação.
Interior se resfriou mais lentamente encontra-se a uma T mais elevada (> ponto de deformação) e portanto ainda em condição plástica. 
Com a continuação do resfriamento, o interior tenta se contrair em maior grau do que o agora rígido exterior irá permitir. 
Aplicações e Processamento das Cerâmicas
Tratamento Térmico dos Vidros
O interior tende então contrair o exterior ou impor tensões radiais voltadas para dentro.
Como consequência, com o resfriamento completo até a T ambiente, a peça mantém tensões compressivas sobre a superfície, com tensões de tração nas regiões interiores (figura).
Falha de materiais cerâmicos  quase sempre resulta de uma trinca iniciada na superfície pela aplicação de uma tensão de tração.
Aplicações e Processamento das Cerâmicas
Tratamento Térmico dos Vidros
Para causar a fratura de uma peça de vidro temperado, a magnitude de uma tensão de tração aplicada externamente deve ser grande o suficiente para:
em primeiro lugar, superar a tensão residual de superfície de natureza compressiva e, 
além disso, para tencionar a superfície em tração o suficiente para dar início a uma trinca, a qual poderá então se propagar.
Aplicações e Processamento das Cerâmicas
Tratamento Térmico dos Vidros
Distribuição das tensões residuais à T ambiente ao longo da seção reta de uma lâmina de vidro temperado.
A maioria dos vidros inorgânicos pode ser transformada de um estado não-cristalino para um estado cristalino mediante um tratamento térmico apropriado a alta temperatura.
DEVITRIFICAÇÃO  O seu produto consiste em um material policristalino com grãos finos  VITROCERÂMICA.
Um agente de nucleação (frequentemente o dióxido de titânio) deve ser adicionado para induzir o processo de cristalização ou devitrificação.
Aplicações e Processamento das Cerâmicas
Vitrocerâmicos
Uma das matérias-primas cerâmicas mais amplamente utilizadas é a argila.
Ingrediente barato, encontrado naturalmente e em grande abundância, é usado frequentemente na forma como é extraído, sem qualquer melhoria na sua qualidade.
Podem ser conformados facilmente. Quando misturados nas proporções corretas, a argila e a água formam uma massa plástica que é muito suscetível a modelagem.
Aplicações e Processamento das Cerâmicas
Produtos à base de Argila
A peça modelada é então secada para remover parte da umidade, e após a isso, ela é cozida a uma temperatura elevada para melhorar a sua resistência mecânica.
A maioria dos produtos a base de argila se enquadra dentro de duas classificações abrangentes: 
os produtos estruturais à
base de argila (tijolos de construção, azulejos, tubulações de esgoto – integridade estrutural importante). 
louças brancas (se tornam brancos após um cozimento a uma temperatura elevada – porcelanas, louças de barro, louças para mesa, louça vitrificada, louças sanitárias). 
Aplicações e Processamento das Cerâmicas
Produtos à base de Argila
Além da argila, muitos desses produtos contêm também ingredientes não-plásticos que influenciam 
tanto as alterações que ocorrem durante os processos de secagem e cozimento, 
como as características da peça acabada.
Aplicações e Processamento das Cerâmicas
Produtos à base de Argila
Os minerais argilosos desempenham DOIS papéis muito importantes nos corpos cerâmicos:
Quando a água é adicionada, eles se tornam muito plásticos, uma condição conhecida por hidroplasticidade. Essa propriedade é muito importante durante as operações de conformação.
A argila se funde ou se derrete ao longo de uma faixa de temperaturas; 
dessa forma uma peça cerâmica densa e resistente pode ser produzida no cozimento sem que ocorra sua fusão completa, de maneira tal que a sua forma desejada seja mantida. 
Essa faixa de temperatura de fusão, obviamente, depende da composição da argila.
Aplicações e Processamento das Cerâmicas
As Características das Argila
As argilas são aluminossilicatos, sendo compostas por alumina (Al2O3) e sílica (SiO2), as quais contêm água quimicamente ligada.
Impurezas presentes mais comuns: compostos (geralmente óxidos) à base de bário, cálcio, sódio, potássio e ferro, e também alguns materiais orgânicos.
Aplicações e Processamento das Cerâmicas
As Características das Argila
Possuem uma ampla faixa de características físicas, composições químicas e estruturas.
As estruturas cristalinas são relativamente complicadas, e prevalece uma estrutura em camadas.
Aplicações e Processamento das Cerâmicas
As Características das Argila
Aplicações e Processamento das Cerâmicas
As Características das Argila
Os minerais argilosos mais comuns (de interesse) possuem estrutura da caolinita. 
Na argila caolinita, quando a água é adicionada, as moléculas de água se posicionam entre essas lâminas em camadas e formam uma película fina ao redor das partículas de argila. 
As partículas ficam, dessa forma, livres para se moverem umas sobre as outras, o que é responsável pela plasticidade resultante da mistura água-argila.
Além da argila, muitos desses produtos (em particular as louças brancas) também contêm alguns ingredientes não-plásticos; 
os mineras não-argilosos incluem o sílex, ou quartzo finamente moído, e um fundente, tal como o feldspato. 
O quartzo é usado principalmente como material de enchimento, ou carga. 
Barato e quimicamente não-reativo. 
Pouca alteração durante o Trat. Térmico a alta T (possui elevada Tfusão); 
quando fundido, no entanto, pode formar vidro.
Aplicações e Processamento das Cerâmicas
Composições dos Produtos a base Argila
O fundente, quando misturado com a argila, forma um vidro com ponto de fusão relativamente baixo.
As proporções de argila, quartzo e fundente influenciam as alterações durante a secagem e o cozimento, e também as características da peça acabada.
Porcelana típica pode conter 50% de argila, 25% de quartzo e 25% de feldspato (fundente).
Aplicações e Processamento das Cerâmicas
Composições dos Produtos a base Argila
Matérias-primas extraídas :
devem passar por operação de moagem ou trituração (reduzir tamanho das partículas) 
seguido por um peneiramento ou classificação por granulometria que produz um produto pulverizado que possui uma faixa desejada de tamanho de partículas.
Para sistemas multicomponentes, os materiais pulverizados devem ser completamente misturados com água e, talvez, outros ingredientes para dar as características de escoamento que são compatíveis com a técnica de conformação a ser empregada. 
Aplicações e Processamento das Cerâmicas
Técnicas de Fabricação da Argila
A peça conformada deve ter resistência mecânica suficiente para permanecer intacta durante as operações de transporte, secagem e cozimento.
Duas técnicas usuais de modelagem são utilizadas para a conformação de composições à base de argila: 
Conformação hidroplástica, e;
Fundição por suspensão.
Aplicações e Processamento das Cerâmicas
Técnicas de Fabricação da Argila
CONFORMAÇÃO HIDROPLÁSTICA
Minerais à base de argila, misturados com água se tornam altamente plásticos e flexíveis e podem ser moldados sem ocorrerem trincas;
Entretanto possuem limite de escoamento extremamente baixos. 
A consistência (razão água-argila) da massa hidroplástica deve dar um limite de escoamento suficiente para permitir que a peça conformada mantenha sua forma durante manuseio e secagem.
Aplicações e Processamento das Cerâmicas
Técnicas de Fabricação da Argila
CONFORMAÇÃO HIDROPLÁSTICA
Técnica de conformação hidroplástica mais comum:
extrusão: massa cerâmica plástica rígida é forçada (geralmente por meio de rosca sem fim acionada por motor – ar removido por câmara de vácuo para melhorar densidade da peça) através de um orifício de uma matriz que possui a geometria da seção reta desejada (semelhante extrusão de metais).
Fabrico: Tijolos, tubos, blocos cerâmicos e azulejos.
Aplicações e Processamento das Cerâmicas
Técnicas de Fabricação da Argila
CONFORMAÇÃO HIDROPLÁSTICA
Extrusão
Aplicações e Processamento das Cerâmicas
Técnicas de Fabricação da Argila
CONFORMAÇÃO HIDROPLÁSTICA
Telhas: Extrusão + Compressão Prensa para telhas
Aplicações e Processamento das Cerâmicas
Técnicas de Fabricação da Argila
CONFORMAÇÃO HIDROPLÁSTICA
Pratos: Extrusão + Corte + Torneamento
 Tubos obtidos por extrusão Corte + Torneamento
Aplicações e Processamento das Cerâmicas
Técnicas de Fabricação da Argila
FUNDIÇÃO POR SUSPENSÃO
Suspensão: suspensão de argila e/ou outros minerais não-plásticos em água.
Quando derramada dentro de um molde poroso (feito em geral de gesso-de-paris), a água da suspensão é absorvida no interior do molde, deixando para trás uma sólida camada sobre a parede do molde cuja espessura irá depender do tempo.
Aplicações e Processamento das Cerâmicas
Técnicas de Fabricação da Argila
FUNDIÇÃO POR SUSPENSÃO
O processo pode ser continuado até que a totalidade da cavidade do molde se torne sólida (fundição sólida) (a).
Ou ele pode ser interrompido quando a camada sólida atingir a espessura desejada, pela inversão do molde e o derramamento da suspensão em excesso (fundição com dreno) (b).
Na medida que a peça seca e se contrai em volume ela se separa do molde, que pode ser desmontado e a peça removida.
Aplicações e Processamento das Cerâmicas
Técnicas de Fabricação da Argila
FUNDIÇÃO POR SUSPENSÃO
Aplicações e Processamento das Cerâmicas
Técnicas de Fabricação da Argila
FUNDIÇÃO POR SUSPENSÃO  Fabricação de Louças
Aplicações e Processamento das Cerâmicas
Técnicas de Fabricação da Argila
A peça cerâmica conformada hidroplasticamente ou através de fundição por suspensão:
Retém uma porosidade significativa e também possui uma resistência insuficiente para maioria das aplicações práticas.
Pode conter ainda algum líquido o qual pode ser removido por secagem. 
A densidade e resistência são melhoradas como resultado de um Tratamento Térmico a alta Temperatura ou de um procedimento de Cozimento 
Material seco mas não cozido  Cru.
Aplicações e Processamento das Cerâmicas
Secagem e Cozimento
Secagem e Cozimento são críticas:
podem gerar defeitos que tornam a peça imprestável.
De onde vem os defeitos???
Defeitos (empenamento, distorções e trincas) resultam de tensões que são estabelecidas por uma contração de volume não-uniforme.
Veremos então a contração de volume que ocorre no processo de SECAGEM!
Aplicações e Processamento das Cerâmicas
Secagem e Cozimento
Na medida que um corpo cerâmico à base de argila seca, ocorre
contração de volume.
No início da secagem as partículas de argila estão virtualmente envolvidas e separadas uma das outras por uma fina película de água.
Com a secagem a separação diminui provocando uma contração de volume. 
Torna-se crítico controlar essa remoção de água durante a secagem.
Aplicações e Processamento das Cerâmicas
Secagem
Aplicações e Processamento das Cerâmicas
Secagem
Remoção de água. (a) Corpo molhado, (b) corpo parcialmente seco e (c) corpo seco
A secagem das regiões internas ocorre pela difusão de moléculas de água para a superfície, onde ocorre a evaporação.
Se a taxa de evaporação > taxa de difusão a superfície irá secar (e contrair em volume) mais rapidamente que o interior 
poderão se formar defeitos mencionados anteriormente.
O que FAZER???
Taxa de evaporação da superfície deve ser diminuída para, no máximo, a taxa de difusão da água. Ela pode ser controlada pela temperatura, umidade e taxa de escoamento do ar.
Aplicações e Processamento das Cerâmicas
Secagem
O que mais influi na contração de volume???
Espessura do corpo também influencia a contração de volume  peça mais espessas, tenho contração de volume não-uniforme e formação de defeitos mais pronunciada.
Teor de água no corpo também é crítica. Quanto mais água, mais intensa a contração de volume.  teor deve ser mantido baixo.
Tamanho das partículas de argila também influencia: maior contração de volume com menor tamanho da partículas. POR QUE???
 
 tamanho de partículas deve ser aumentado, 
ou elementos não-plásticos com partículas grandes podem ser adicionados à argila. 			E APÓS A SECAGEM???
Aplicações e Processamento das Cerâmicas
Secagem
Após a secagem, um corpo é geralmente cozido a uma temperatura entre 900 e 1400oC.
Esta temperatura depende da composição e das propriedades desejadas para a peça acabada. 
Durante a operação de cozimento, 
a densidade é novamente aumentada (com uma consequente diminuição na porosidade),  COMO ACONTECE ESSA DIMINUIÇÃO DA POROSIDADE???
e a resistência mecânica é melhorada.
Aplicações e Processamento das Cerâmicas
Cozimento
Quando materiais à base de argila são aquecidos a temperaturas elevadas, ocorrem alguma reações consideravelmente complexas. Uma delas é a vitrificação. 
Vitrificação é a formação gradual de um vidro líquido que flui para dentro e preenche parte do volume dos poros. 
O grau de vitrificação depende da temperatura e do tempo de cozimento, bem como da composição do corpo.
Aplicações e Processamento das Cerâmicas
Cozimento
A temperatura na qual a fase líquida se forma é reduzida pela adição de agentes fundentes, como o feldspato.
Essa fase escoa ao redor das partículas não fundidas e preenchem os poros, pelas forças de tensão superficial (ação capilar)  se segue uma contração de volume. 
Com o resfriamento, essa fase fundida forma uma matriz vítrea que resulta em um corpo denso e resistente.
Aplicações e Processamento das Cerâmicas
Cozimento
Dessa forma, a microestrutura final consiste em uma fase vitrificada, quaisquer partículas de quartzo que não reagiram e alguma porosidade. 
O grau de vitrificação controla as propriedades à T ambiente da peça cerâmica; resistência, durabilidade e densidade são melhoradas à medida que a vitrificação aumenta.
A T de cozimento determina a extensão de acordo com a qual ocorre a vitrificação.
 T de cozimento  vitrificação.
Vitrificação completa deve ser evitada  corpo se torna muito mole e irá colapsar. 
Aplicações e Processamento das Cerâmicas
Cozimento
A figura mostra uma MEV de uma porcelana cozida onde esses elementos microestruturais podem ser vistos.
 
Aplicações e Processamento das Cerâmicas
Cozimento
Propriedades das cerâmicas refratárias incluem 
a capacidade de resistir a temperaturas elevadas sem fundir ou decompor, 
e a capacidade de permanecer não reativo e inerte quando são expostos a ambientes severos.
Podem ser usados como isolantes térmicos.
Aplicações e Processamento das Cerâmicas
Refratários
Aplicações típicas: tijolos refratários (mais comum), revestimentos de fornos para o refino de metais, a fabricação de vidro, tratamento térmico metalúrgico, e a geração de energia.
Desempenho depende da composição, com isso existem várias classificações – Callister: 
Argila refratária.
Sílica.
Básica.
Refratários especiais.
Aplicações e Processamento das Cerâmicas
Refratários
Ingredientes brutos: tanto partículas grandes (ou chamotes) como partículas finas (com cozimento, normalmente formam fase de ligação ou colagem – essa fase pode ser vítrea ou cristalina).
Temperatura de serviço: inferior a de cozimento.
Quanto menor a porosidade 
maior resistência, tanto para suportar carga quanto também ao ataque de materiais corrosivos. 
Menor resistência ao choques térmicos e isolamento térmico.
Porosidade ótima depende das condições de serviço. 
Aplicações e Processamento das Cerâmicas
Refratários
Prensagem do Pó
Processo rápido. 
Composições argilosas e não-argilosas (cerâmicas eletrônicas, magnéticas, alguns produtos à base de tijolos refratários) – Análogo cerâmico à metalurgia do pó. 
Massa pulverizada contendo pequena quantidade de água (ou outro elemento aglutinante) é compactada na forma desejada mediante pressão. 
O grau de compactação é maximizado e a fração de espaço vazio é minimizada pelo uso de partículas maiores e mais finas misturadas em proporções apropriadas.
Aplicações e Processamento das Cerâmicas
Outros Métodos de Processamento
Prensagem do Pó
Não existe qualquer deformação plástica das partículas durante o processo de compactação, como nos metais.
Uma das funções do elemento aglutinante é a de lubrificar as partículas pulverizadas, à medida que elas se movem umas contra as outras durante o processo de compactação.
Três procedimentos básicos de prensagem de pós:
Uniaxial;
Isostático (ou hidrostático) e;
Prensagem a quente.
Aplicações e Processamento das Cerâmicas
Outros Métodos de Processamento
Prensagem do Pó – Prensagem Uniaxial
Pó compactado em um molde metálico através de uma pressão que é aplicada ao longo de uma única direção.
A peça conformada assume a configuração do molde e do cursor da prensa através do qual a pressão que é aplicada.
Restrito a formas relativamente simples.
Contudo apresenta altas taxas de produção e o processo é barato.
Aplicações e Processamento das Cerâmicas
Outros Métodos de Processamento
Prensagem do Pó – Prensagem Uniaxial
Cavidade do molde é preenchida com pó.
O pó é compactado por meio de uma pressão aplicada sobre a parte superior do molde.
A peça compactada é ejetada pela ação de elevação do punção inferior.
A sapata de enchimento empurra a peça compactada para fora do molde, e a etapa de enchimento é repetida.
Aplicações e Processamento das Cerâmicas
Outros Métodos de Processamento
Prensagem do Pó – Prensagem Isostática
Material pulverizado está contido em um envelope de borracha.
A pressão é aplicada por um fluido, isostaticamente (possui a mesma magnitude de pressão em todas as direções).
São possíveis formas mais complicadas do que em uma situação de prensagem uniaxial.
Entretanto, na prensagem isostática, consome mais tempo e é de exucação mais cara.
Aplicações e Processamento das Cerâmicas
Outros Métodos de Processamento
Prensagem do Pó – Cozimento
Tanto para o procedimento uniaxial quanto para o isostático, é exigida uma operação de cozimento após a operação de prensagem.
No cozimento, a peça moldada apresenta uma contração em volume e experimenta uma redução em sua porosidade, juntamente com uma melhoria da sua integridade mecânica.
Essas alterações ocorrem mediante a coalescência das partículas de pó para formar uma massa mais densa, em um processo conhecido por sinterização. 
Aplicações e Processamento das Cerâmicas
Outros Métodos de Processamento
Sinterização no estado sólido
Após a prensagem muitas
partículas de pó se tocam entre si (a).
No estágio inicial da sinterização ocorre a formação de empescoçamento ao longo das regiões de contato entre partículas adjacentes e se forma um contorno de grão dentro de cada pescoço, 
e cada interstício entre as partículas se torna um poro (b);
Os poros se tornam menores e adquirem e adquirem formas mais esféricas (c).
Aplicações e Processamento das Cerâmicas
Outros Métodos de Processamento
Sinterização no estado sólido
As partículas se ligam entre si por difusão no estado sólido. 
O compacto poroso adquire maior densidade e resistência. 
As partículas coalescem sem fusão formando um “pescoço” e os poros vão ficando cada vez menores e os grãos maiores à medida que progride o processo de sinterização. 
Este processo é usado para cerâmicas avançadas que utilizam matéria-prima muito pura ( ex, um óxido; a temperatura usada em geral é de ¾ da temperatura de fusão do material).
Com maiores tempos de sinterização os poros vão ficando menores.
Aplicações e Processamento das Cerâmicas
Outros Métodos de Processamento
Sinterização no estado sólido
A força motriz para o processo de sinterização é a redução na área superficial total das partículas;
As energias de superfície são maiores em magnitude do que as energias dos contornos de grão.
A sinterização é conduzida a uma T abaixo da T de fusão, de modo tal que normalmente NÃO existe uma fase líquida presente.
O transporte de massa necessário para as alterações na figura ao lado é obtido através da difusão atômica.
Aplicações e Processamento das Cerâmicas
Outras Métodos de Processamento
Sinterização no estado sólido
Compactado de pós de óxido de alumínio que foi sinterizado a 1700oC e 6 min.
Aplicações e Processamento das Cerâmicas
Outras Métodos de Processamento
Prensagem a quente
Prensagem do pó e tratamento térmico são realizados simultaneamente.
O agregado pulverizado é compactado a uma temperatura elevada.
É usado para materiais que não formam uma fase líquida exceto quando submetidos a T muito elevadas e impraticáveis de serem aplicadas.
Utilizada quando são desejadas densidades elevadas sem que haja crescimento apreciável no contorno de grão.
Técnica de fabricação cara e possui limitações.
Onerosa em termos de tempo (molde e matriz devem ser aquecidos e resfriados a cada ciclo), molde caro e de vida útil curta.
Aplicações e Processamento das Cerâmicas
Outras Métodos de Processamento
TAPE CASTING (FUNDIÇÃO EM FITA)
É usado na produção de lençóis flexíveis de cerâmica que é vazada em um suporte (metal/papel/vidro/polímero) uniformemente através de espalhamento, que depois é seco e finalmente cozido.
Aplicações e Processamento das Cerâmicas
Outras Métodos de Processamento

Teste o Premium para desbloquear

Aproveite todos os benefícios por 3 dias sem pagar! 😉
Já tem cadastro?

Outros materiais