Buscar

Cópia de _E-BOOK 02 - [CAE]

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 3, do total de 91 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 6, do total de 91 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 9, do total de 91 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Prévia do material em texto

Copyright © 2018 PROCAD Treinamentos - Todos os direitos reservados 
Desenvolvido por Vinícius Cardoso Santos 
www.grupoprocad.com.br | (31) 3617-0584 / (31) 9.9921-0413 
 
 
 
Copyright © 2018 GRUPO PROCAD - Todos os direitos reservados 
Desenvolvido por Vinícius Cardoso Santos | Instagram: @viniciuscardoso.eng 
www.viniciuscardosoeng.com.br | (31) 98782-8611 
APRESENTAÇÃO 
Este E-book foi desenvolvido com o objetivo de servir como material didático para aquele 
que deseja aprender a desenvolver projetos estruturais seguindo as principais premissas de 
Concepção e Análise Estrutural. 
O e-book “Concepção e Análise Estrutural” é um guia de estudo aplicado para aqueles que 
estão em busca de melhorar e aumentar seus conhecimentos sobre estruturas. 
Os textos e imagens apresentados são de inteira responsabilidade do idealizador deste 
material, fundamentados através de vários materiais bibliográficos, tais como: 
 
 FAQ AltoQi 
 Mais Engenharia 
 USP – EESC – Departamento de Engenharia de Estruturas 
 NBR 6118:2014 
 NBR 6123:1988 
 Entre outras bibliografias 
 
“O conhecimento só é válido quando aplicado e acima de tudo, compartilhado.” 
 
 
 
Espero que este material possa lhe auxiliar no seu dia-a-dia profissional e que você consiga 
através dele melhorar a qualidade dos seus projetos estruturais. 
Em caso de correções ou de sugestões que visem melhorar o conteúdo do mesmo, estou 
100% à disposição para ouvir. 
 
 
 
Atenciosamente, 
 
 
 
Vinícius Cardoso Santos 
Professor|Eng. Civil 
 
 "Há uma força motriz mais poderosa que o vapor, 
 a eletricidade e a energia atômica: A vontade." 
 - Albert Einstein 
 
 
Copyright © 2018 GRUPO PROCAD - Todos os direitos reservados 
Desenvolvido por Vinícius Cardoso Santos | Instagram: @viniciuscardoso.eng 
www.viniciuscardosoeng.com.br | (31) 98782-8611 
SUMÁRIO 
1. INTRODUÇÃO ............................................................................................................................. 4 
2. CONCEPÇÃO ESTRUTURAL ......................................................................................................... 4 
3. ANÁLISE ESTRUTURAL .............................................................................................................. 13 
4. INFLUÊNCIA DO TRAVAMENTO DAS VIGAS BALDRAME .................................................... 13 
5. REDISTRIBUIÇÃO DE ESFORÇOS ............................................................................................... 22 
6. DIFERENÇAS NO COMPORTAMENTO DA ESTRUTURA DE ACORDO COM A VINCULAÇÃO 
ADOTADA ................................................................................................................................. 23 
7. O QUE POSSO FAZER PARA REDUZIR O DESLOCAMENTO EM ESTRUTURAS? ......................... 29 
7.1 FLECHAS ELEVADAS EM VIGAS ............................................................................................... 29 
7.2. FLECHAS ELEVADAS EM LAJES ............................................................................................... 32 
8. ESTABILIDADE GLOBAL ............................................................................................................ 34 
9. EFEITO P-DELTA (P-Δ) .................................................................................................................. 51 
10. ENGASTAMENTO INVÁLIDO EM LAJES UNIDIRECIONAIS ................................................. 54 
11. COMO REDUZIR A ARMADURA DE PILARES? ................................................................... 56 
12. COMO SÃO DIMENSIONADOS PILARES COM MUDANÇA DE DIREÇÃO? .......................... 72 
13. MULTIPLICADOR DA RIGIDEZ AXIAL PARA PILARES .......................................................... 75 
14. VINCULAÇÃO DE PILARES EM VIGAS DE TRANSIÇÃO ....................................................... 77 
15. TORÇÃO DE COMPATIBILIDADE E DE EQUILÍBRIO ............................................................ 79 
16. PRESCRIÇÕES DE CÁLCULO E DETALHAMENTO DE VIGAS SEGUNDO 
 A NBR 6118:2014) ............................................................................................................. 82 
 
 
 
 
 
 
4 
Copyright © 2018 PROCAD Treinamentos - Todos os direitos reservados 
Desenvolvido por Vinícius Cardoso Santos 
www.grupoprocad.com.br | (31) 3617-0584 / (31) 9.9921-0413 
CONCEPÇÃO E ANÁLISE ESTRUTURAL 
1. INTRODUÇÃO 
Um projeto estrutural tem como objetivo a concepção de uma estrutura que atenda a todas 
as necessidades para as quais ela será construída, satisfazendo condições de segurança, de 
utilização, econômicas, estéticas, ambientais, construtivas e legais. O resultado final do 
projeto estrutural é a especificação de uma estrutura de forma completa, isto é, abrangendo 
todos os aspectos gerais, tais como locação, e todos os detalhes necessários para a sua 
construção. 
Portanto, o projeto estrutural parte da concepção geral da estrutura e termina com a 
documentação que possibilita a sua construção. São inúmeras e muito complexas as etapas 
de um projeto estrutural. Entre elas está a previsão do comportamento da estrutura de tal 
forma que ela possa atender satisfatoriamente às condições de segurança e de utilização 
para as quais foi concebida. 
A eficiência da solução de uma estrutura, tanto em termos de segurança, desempenho em 
serviço e economia, é completamente dependente de uma concepção estrutural bem feita, 
e adequada às necessidades de cada edificação. 
Apesar disso, o que muitas vezes se vê no mercado de construção é a entrega de projetos 
com muitos problemas de concepção estrutural, que acabam por tornar a estrutura pouco 
eficiente e, na maior parte dos casos, mais cara do que poderia ser. 
2. CONCEPÇÃO ESTRUTURAL 
A concepção estrutural, também chamada de lançamento da estrutura, consiste em escolher 
um sistema estrutural que constitua a parte resistente do edifício. 
Essa etapa, uma das mais importantes no projeto estrutural, implica em escolher os 
elementos a serem utilizados e definir suas posições, de modo a formar um sistema 
estrutural eficiente, capaz de absorver os esforços oriundos das ações atuantes e transmiti-
los ao solo de fundação. 
 
5 
Copyright © 2018 GRUPO PROCAD - Todos os direitos reservados 
Desenvolvido por Vinícius Cardoso Santos | Instagram: @viniciuscardoso.eng 
www.viniciuscardosoeng.com.br | (31) 98782-8611 
A solução estrutural adotada no projeto deve atender aos requisitos de qualidade 
estabelecidos nas normas técnicas, relativos à capacidade resistente, ao desempenho em 
serviço e à durabilidade da estrutura. 
2.1. DADOS INICIAIS 
A concepção estrutural deve levar em conta a finalidade da edificação e atender, tanto 
quanto possível, às condições impostas pela arquitetura. 
O projeto arquitetônico representa, de fato, a base para a elaboração do projeto estrutural. 
Este deve prever o posicionamento dos elementos de forma a respeitar a distribuição dos 
diferentes ambientes nos diversos pavimentos. Mas não se deve esquecer de que a 
estrutura deve também ser coerente com as características do solo no qual ela se apóia. 
O projeto estrutural deve ainda estar em harmonia com os demais projetos, tais como: de 
instalações elétricas, hidráulicas, telefonia, segurança, som, televisão, ar condicionado, rede 
(cabeamento estruturado) e outros, de modo a permitir a coexistência, com qualidade, detodos os sistemas. 
Os edifícios podem ser constituídos, por exemplo, pelos seguintes pavimentos: subsolo, 
térreo, tipo, cobertura e casa de máquinas, além dos reservatórios inferiores e superiores. 
Existindo pavimento-tipo, o que em geral ocorre em edifícios de vários andares, inicia-se 
pela estruturação desse pavimento. Caso não haja pavimentos repetidos, parte-se da 
estruturação dos andares superiores, seguindo na direção dos inferiores. 
A definição da forma estrutural parte da localização dos pilares e segue com o 
posicionamento das vigas e das lajes, nessa ordem, sempre levando em conta a 
compatibilização com o projeto arquitetônico. 
2.2. SISTEMAS ESTRUTURAIS 
Inúmeros são os tipos de sistemas estruturais que podem ser utilizados. Nos edifícios usuais 
empregam-se lajes maciças ou nervuradas, moldadas no local, pré-fabricadas ou ainda 
parcialmente pré-fabricadas. 
 
6 
Copyright © 2018 PROCAD Treinamentos - Todos os direitos reservados 
Desenvolvido por Vinícius Cardoso Santos 
www.grupoprocad.com.br | (31) 3617-0584 / (31) 9.9921-0413 
Em casos específicos de grandes vãos, por exemplo, pode ser aplicada protensão para 
melhorar o desempenho da estrutura, seja em termos de resistência, seja para controle de 
deformações ou de fissuração. 
Alternativamente, podem ser utilizadas lajes sem vigas, apoiadas diretamente sobre os 
pilares, com ou sem capitéis, casos em que são denominadas lajes-cogumelo, e lajes planas 
ou lisas, respectivamente. No alinhamento dos pilares, podem ser consideradas vigas 
embutidas, com altura considerada igual à espessura das lajes, sendo também denominadas 
vigas-faixa. 
A escolha do sistema estrutural depende de fatores técnicos e econômicos, dentre eles: 
capacidade do meio técnico para desenvolver o projeto e para executar a obra, e 
disponibilidade de materiais, mão-de-obra e equipamentos necessários para a execução. 
Nos casos de edifícios residenciais e comerciais, a escolha do tipo de estrutura é 
condicionada, essencialmente, por fatores econômicos, pois as condições técnicas para 
projeto e construção são de conhecimento da Engenharia de Estruturas e de Construção. 
Este trabalho tratará dos sistemas estruturais constituídos por lajes maciças de concreto 
armado, moldadas no local e apoiadas sobre vigas. Posteriormente, serão consideradas 
também as lajes nervuradas e as demais ora mencionadas. 
2.3. CAMINHO DAS AÇÕES 
O sistema estrutural de um edifício deve ser projetado de modo que seja capaz de resistir 
não só às ações verticais, mas também às ações horizontais que possam provocar efeitos 
significativos ao longo da vida útil da construção. 
As ações verticais são constituídas por: peso próprio dos elementos estruturais; pesos de 
revestimentos e de paredes divisórias, além de outras ações permanentes; ações variáveis 
decorrentes da utilização, cujos valores vão depender da finalidade do edifício, e outras 
ações específicas, como por exemplo, o peso de equipamentos. 
As ações horizontais, onde não há ocorrência de abalos sísmicos, constituem-se, 
basicamente, da ação do vento e do empuxo em subsolos. 
 
7 
Copyright © 2018 GRUPO PROCAD - Todos os direitos reservados 
Desenvolvido por Vinícius Cardoso Santos | Instagram: @viniciuscardoso.eng 
www.viniciuscardosoeng.com.br | (31) 98782-8611 
O percurso das ações verticais tem início nas lajes, que suportam, além de seus pesos 
próprios, outras ações permanentes e as ações variáveis de uso, incluindo, eventualmente, 
peso de paredes que se apoiem diretamente sobre elas. 
As lajes transmitem essas ações para as vigas, através das reações de apoio. 
As vigas suportam seus pesos próprios, as reações provenientes das lajes, peso de paredes e, 
ainda, ações de outros elementos que nelas se apoiem, como, por exemplo, as reações de 
apoio de outras vigas. Em geral as vigas trabalham à flexão e ao cisalhamento e transmitem 
as ações para os elementos verticais − pilares e paredes estruturais − através das respectivas 
reações. 
Os pilares e as paredes estruturais recebem as reações das vigas que neles se apoiam, as 
quais, juntamente com o peso próprio desses elementos verticais, são transferidas para os 
andares inferiores e, finalmente, para o solo, através dos respectivos elementos de 
fundação. 
As ações horizontais devem igualmente ser absorvidas pela estrutura e transmitidas para o 
solo de fundação. No caso do vento, o caminho dessas ações tem início nas paredes externas 
do edifício, onde atua o vento. Esta ação é resistida por elementos verticais de grande 
rigidez, tais como pórticos, paredes estruturais e núcleos, que formam a estrutura de 
contraventamento. Os pilares de menor rigidez pouco contribuem na resistência às ações 
laterais e, portanto, costumam ser ignorados na análise da estabilidade global da estrutura. 
As lajes exercem importante papel na distribuição dos esforços decorrentes do vento entre 
os elementos de contraventamento, pois possuem rigidez praticamente infinita no seu 
plano, promovendo, assim, o travamento do conjunto. 
Neste trabalho, não serão abordadas as ações horizontais, visto que trata apenas de edifícios 
de pequeno porte, em que os efeitos de tais ações são pouco significativos. 
2.4. POSIÇÃO DOS PILARES 
Recomenda-se iniciar a localização dos pilares pelos cantos e, a partir daí, pelas áreas que 
geralmente são comuns a todos os pavimentos (área de elevadores e de escadas) e onde se 
localizam, na cobertura, a casa de máquinas e o reservatório superior. Em seguida,
 
8 
Copyright © 2018 PROCAD Treinamentos - Todos os direitos reservados 
Desenvolvido por Vinícius Cardoso Santos 
www.grupoprocad.com.br | (31) 3617-0584 / (31) 9.9921-0413 
posicionam-se os pilares de extremidade e os internos, buscando embuti-los nas paredes ou 
procurando respeitar as imposições do projeto de arquitetura. 
Deve-se, sempre que possível, dispor os pilares alinhados, a fim de formar pórticos com as 
vigas que os unem. Os pórticos, assim formados, contribuem significativamente na 
estabilidade global do edifício. 
Usualmente os pilares são dispostos de forma que resultem distâncias entre seus eixos da 
ordem de 4 m a 6 m. Distâncias muito grandes entre pilares produzem vigas com dimensões 
incompatíveis e acarretam maiores custos à construção (maiores seções transversais dos 
pilares, maiores taxas de armadura, dificuldades nas montagens da armação e das formas 
etc.). Por outro lado, pilares muito próximos acarretam interferência nos elementos de 
fundação e aumento do consumo de materiais e de mão-de-obra, afetando 
desfavoravelmente os custos. 
Deve-se adotar 19cm (mínimo de 14cm desde que a força normal de calcula seja 
multiplicada pelo coeficiente Gama-N conforme NBR 6118:2014), pelo menos, para a menor 
dimensão do pilar e escolher a direção da maior dimensão de maneira a garantir adequada 
rigidez à estrutura, nas duas direções. 
Posicionados os pilares no pavimento-tipo, deve-se verificar suas interferências nos demais 
pavimentos que compõem a edificação. 
Assim, por exemplo, deve-se verificar se o arranjo dos pilares permite a realização de 
manobras dos carros nos andares de garagem ou se não afetam as áreas sociais, tais como 
recepção, sala de estar, salão de jogos e de festas etc. 
Na impossibilidade de compatibilizar a distribuição dos pilares entre os diversos pavimentos, 
pode haver a necessidade de um pavimento de transição. 
Nesta situação, a prumada do pilar é alterada, empregando-se uma viga de transição, que 
recebe a carga do pilar superior e a transfere para o pilar inferior, na sua nova posição. Nos 
edifícios de muitos andares, devem ser evitadas grandes transições, pois os esforços na viga 
podem resultar exagerados,provocando aumento significativo de custos. 
 
 
9 
Copyright © 2018 GRUPO PROCAD - Todos os direitos reservados 
Desenvolvido por Vinícius Cardoso Santos | Instagram: @viniciuscardoso.eng 
www.viniciuscardosoeng.com.br | (31) 98782-8611 
2.5. POSIÇÕES DE VIGAS E LAJES 
A estruturação segue com o posicionamento das vigas nos diversos pavimentos. Além 
daquelas que ligam os pilares, formando pórticos, outras vigas podem ser necessárias, seja 
para dividir um painel de laje com grandes dimensões, seja para suportar uma parede 
divisória e evitar que ela se apoie diretamente sobrea laje. 
É comum, por questões estéticas e com vistas às facilidades no acabamento e ao melhor 
aproveitamento dos espaços, adotar larguras de vigas em função da largura das alvenarias. 
As alturas das vigas ficam limitadas pela necessidade de prever espaços livres para aberturas 
de portas e de janelas. 
Como as vigas delimitam os painéis de laje, suas disposições devem levar em consideração o 
valor econômico do menor vão das lajes, que, para lajes maciças, é da ordem de 3,5 m a 5,0 
m. O posicionamento das lajes fica, então, praticamente definido pelo arranjo das vigas. 
2.6 DESENHOS PRELIMINARES DE FORMAS 
De posse do arranjo dos elementos estruturais, podem ser feitos os desenhos preliminares 
de formas de todos os pavimentos, inclusive cobertura e caixa d’água, com as dimensões 
baseadas no projeto arquitetônico. 
As larguras das vigas são adotadas para atender condições de arquitetura ou construtivas. 
Sempre que possível, devem estar embutidas na alvenaria e permitir a passagem de 
tubulações. O cobrimento mínimo das faces das vigas em relação às das paredes acabadas 
variam de 1,5cm a 2,5cm, em geral. Costuma-se adotar para as vigas no máximo três pares 
de dimensões diferentes para as seções transversais. O ideal é que todas elas tenham a 
mesma altura, para simplificar o cimbramento. 
Em edifícios residenciais, é conveniente que as alturas das vigas não ultrapassem 60cm, para 
não interferir nos vãos de portas e de janelas. 
A numeração dos elementos (lajes, vigas e pilares) deve ser feita da esquerda para a direita e 
de cima para baixo. 
 
 
10 
Copyright © 2018 PROCAD Treinamentos - Todos os direitos reservados 
Desenvolvido por Vinícius Cardoso Santos 
www.grupoprocad.com.br | (31) 3617-0584 / (31) 9.9921-0413 
Inicia-se com a numeração das lajes – L1, L2, L3 etc. –, sendo que seus números devem ser 
colocados próximos do centro delas. Em seguida são numeradas as vigas – V1, V2, V3 etc. 
Seus números devem ser colocados no meio do primeiro tramo. Finalmente, são colocados 
os números dos pilares – P1, P2, P3, etc. – posicionados embaixo deles, na forma estrutural. 
Devem ser colocadas as cotas parciais e totais em cada direção, posicionadas fora do 
contorno do desenho, para facilitar a visualização. 
Ao final obtém-se o anteprojeto de todos os pavimentos, inclusive cobertura e caixa d’água, 
e pode-se prosseguir com o pré-dimensionamento de lajes, vigas e pilares. 
2.7. PRINCIPAIS ERROS DE CONCEPÇÃO QUE TORNAM UMA ESTRUTURA CARA 
A seguir, você confere os principais erros de concepção que tornam uma estrutura mais cara 
do que deveria ser, e volta a sua atenção para solucionar esse problema de eficiência 
estrutural. 
1. Falta da definição de um sistema de contraventamento apropriado 
Todas as estruturas estão sujeitas a carregamentos verticais, mas também a carregamentos 
horizontais, devidos principalmente ao vento e ao desaprumo. Mesmo assim, muitos 
projetistas estruturais têm dificuldade em propor um sistema de contraventamento 
adequado para resistir a essas forças horizontais, seja porque não escolheram 
adequadamente o sistema em si, ou porque o sistema escolhido é pouco eficiente. 
A maior parte das estruturas pode ter sua estabilidade horizontal bem definida através de 
pórticos formados por vigas e pilares, sem necessidade de pilares parede. Para que essa 
solução seja eficaz, os pórticos definidos precisam ter rigidez adequada em cada uma das 
direções principais de atuação das forças horizontais. Encontrar essa medida certa é um dos 
principais problemas a ser resolvido desde o início da concepção estrutural. 
2. Dificuldade em identificar os principais desafios do projeto 
Como dificilmente temos dois projetos iguais, cada obra tem seus próprios desafios a serem 
vencidos durante a etapa de projeto. Como mesmo uma estrutura de pequeno porte tem 
milhões de soluções corretas, a busca pela melhor solução precisa ser governada pelos 
 
11 
Copyright © 2018 GRUPO PROCAD - Todos os direitos reservados 
Desenvolvido por Vinícius Cardoso Santos | Instagram: @viniciuscardoso.eng 
www.viniciuscardosoeng.com.br | (31) 98782-8611 
pontos mais críticos da estrutura. O problema é que muitos projetistas têm alguma 
dificuldade em perceber quais são esses pontos críticos, e acabam por direcionar seus 
esforços em questões menos importantes. Assim, é fundamental que o projetista identifique 
logo no início da etapa de concepção estrutural quais são os principais desafios de seu 
projeto e invista todo o esforço possível em tentar solucioná-los, antes de quaisquer outras 
prioridades. 
3. Má definição no posicionamento de pilares 
Esse é um dos principais pontos com impacto no desempenho econômico de uma estrutura. 
Uma estrutura com poucos pilares normalmente é muito mais cara, pois exige vãos maiores. 
Porém, estruturas com pilares demais também são caras, pois aumentam a mão de obra e o 
custo de fundações. Pilares sem continuidade (que geram vigas de transição) ou orientados 
na direção contrária são responsáveis por aumentos no custo da estrutura. Portanto, é 
fundamental fazer um estudo com algumas alternativas de solução em termos de 
quantidade, posição e orientação dos pilares da estrutura. 
4. Definição inapropriada do tipo de ligação entre os elementos 
A definição do tipo de ligação (rígida = engastada, flexível = rotulada, ou semirrígida) entre 
vigas e pilares, entre duas vigas ou ainda entre duas lajes tem grande influência no custo da 
estrutura, pois muda a distribuição dos esforços e deslocamentos dos elementos e, 
consequentemente, de suas armaduras. O tipo de ligação entre elementos precisa ser 
definido na medida certa para atender tanto aos carregamentos verticais quanto os 
horizontais. Soluções mal definidas certamente são caras. 
5. Falta de melhor definição do tipo de laje 
Há inúmeras soluções para as lajes de um mesmo pavimento. Pode-se variar o tipo de laje, 
sua espessura, seus vínculos, as dimensões e os materiais de enchimento em lajes pré-
fabricadas ou que tenham nervuras, e até mesmo a forma de analisar e detalhar uma laje. As 
variações são tantas que é relativamente simples criar um exemplo em que o custo total da 
laje varie em até 30%. Imagine isso multiplicado por vários pavimentos! 
 
12 
Copyright © 2018 PROCAD Treinamentos - Todos os direitos reservados 
Desenvolvido por Vinícius Cardoso Santos 
www.grupoprocad.com.br | (31) 3617-0584 / (31) 9.9921-0413 
É preciso, portanto, um pouco de tempo na escolha de uma solução adequada para as lajes 
em cada um dos projetos. 
6. Pouco refinamento na definição das seções transversais das vigas e dos pilares 
Na maior parte das vezes o projetista adota como dimensão final a primeira seção 
transversal de um elemento em que não ocorre erro de dimensionamento. Todavia, 
diferentes seções transversais levam a diferentes custos globais e há algumas soluções que 
são 5%, 10% ou até 20% mais baratas que outras, por uma questão de eficiência mecânica. A 
escolha da seção transversal ótima para cada projeto faz parte da concepção estrutural. 
7. Definição das fundações sem consideraras questões de custo 
A escolha do tipo de fundação para cada projeto depende de diversos aspectos, como a 
magnitude dos esforços, profundidade do impenetrável e do lençol freático, volume de 
escavação, estabilidade e deformabilidade do solo, além é claro da disponibilidade 
tecnológica de equipamentos e mão de obra especializada para cada tipo de fundação. De 
acordo com essas características, uma primeira e simples pergunta já desponta: é melhor 
(mais barato) ter mais pilares com menos carga ou mais pilares com maior carga? Como 
podemos responder essa pergunta e tantas outras se não dedicarmos algum tempo no 
estudo dessas variáveis? 
8. Dificuldade de interpretação dos resultados da análise estrutural 
Muitos usuários de programas de projeto ainda têm dificuldades em interpretar os 
resultados do modelo estrutural que foi proposto e, especialmente, de solucionar desvios de 
comportamento indesejados, os quais muitas vezes dependem de alteração no modelo ou 
na própria concepção estrutural. Aprender a encontrar a verdadeira causa desses desvios e 
corrigi-las exige treino e um pouco de habilidade, mas especialmente conhecimento básico 
de análise estrutural. Deficiências nessa etapa do projeto podem levar a estruturas com 
concepção equivocada e, certamente, mais caras. 
 
13 
Copyright © 2018 GRUPO PROCAD - Todos os direitos reservados 
Desenvolvido por Vinícius Cardoso Santos | Instagram: @viniciuscardoso.eng 
www.viniciuscardosoeng.com.br | (31) 98782-8611 
9. Soluções estruturais que não respeitam as condições de serviço 
Não adianta empreender todo um esforço nas etapas anteriores se não projetarmos 
estruturas que respeitem os requisitos de durabilidade, limites de deformação e aberturas 
de fissuras, pois se esses requisitos não forem cumpridos, o custo de manutenção da 
estrutura ao longo de toda a vida útil será enorme. É, portanto, parte da concepção 
estrutural definir uma solução que seja durável e de baixa manutenção. 
3. ANÁLISE ESTRUTURAL 
A análise estrutural é a fase do projeto estrutural em que é feita a idealização do 
comportamento da estrutura. Esse comportamento pode ser expresso por diversos 
parâmetros, como pelos campos de tensões, deformações e deslocamentos da estrutura. É a 
etapa na qual é realizada uma previsão do comportamento estrutural. 
De maneira geral, a análise estrutural tem como objetivo a determinação de esforços 
internos e externos (cargas e reações de apoio), e das tensões correspondentes, bem como a 
determinação dos deslocamentos e as correspondentes deformações da estrutura que está 
sendo projetada. 
Essa Análise deve ser realizada para os possíveis estágios de carregamentos e solicitações 
que devem ser previamente determinados. 
4. INFLUÊNCIA DO TRAVAMENTO DAS VIGAS DE BALDRAME EM ESTRUTURAS DE 
CONCRETO ARMADO 
Este artigo tem por finalidade realizar uma análise qualitativa sobre a relevância da 
utilização das vigas de baldrame para o travamento da estrutura em um pórtico plano, 
avaliando os efeitos na estabilidade, deslocamento horizontal dos pilares e esforços de 
momento fletor nas fundações. Ao final, ainda será apresentado um relatório do consumo 
de materiais para ambas as situações: pórticos planos com e sem o travamento por vigas de 
baldrame. 
Os pórticos da imagem abaixo diferem-se apenas no nível do solo, onde os pilares do pórtico 
à esquerda são travados horizontalmente por vigas de baldrame e o pórtico à direita 
apresenta os pilares de arranque sem travamento lateral. 
 
14 
Copyright © 2018 PROCAD Treinamentos - Todos os direitos reservados 
Desenvolvido por Vinícius Cardoso Santos 
www.grupoprocad.com.br | (31) 3617-0584 / (31) 9.9921-0413 
 
Os pilares possuem seção transversal de 20x60cm, constante em toda sua prumada, 
enquanto as vigas apresentam seção de 15x60cm com carregamento adicional de 
5000kgf/m. 
 
Nos tópicos abaixo, será estudada a influência do travamento por vigas de baldrame no 
comportamento da estrutura. 
Estabilidade de estrutura: 
Para classificar a estrutura como de nós fixos, onde a análise dos efeitos de segunda ordem 
pode ser dispensada; e nós móveis, onde os efeitos de segunda ordem são significativos e 
devem ser verificados, conforme o item 15.5.3 da NBR 6118:2014. Este tópico da norma 
 
15 
Copyright © 2018 GRUPO PROCAD - Todos os direitos reservados 
Desenvolvido por Vinícius Cardoso Santos | Instagram: @viniciuscardoso.eng 
www.viniciuscardosoeng.com.br | (31) 98782-8611 
descreve que uma estrutura pode ser considerada de nós fixos quando o coeficiente Gama-Z 
apresentar valor inferior ou igual a 1,10. 
 
Coeficiente Gama-Z – Fonte: NBR 6118:2014 
No pórtico estudado nesse artigo, ambos foram classificados como estruturas de nós fixos, 
apresentando valores inferiores ao limite de 1,10. A imagem abaixo exibe o relatório de 
estabilidade global da estrutura para ambos os pórticos, onde é possível visualizar uma baixa 
variação dos valores de Gama-Z entre as estruturas. 
 
Quando reduzimos a seção dos pilares para 20x40cm, a diferença entre os valores do Gama-
Z é mais expressiva, pois a estrutura torna-se mais deslocável, e os efeitos de segunda 
ordem ganham maior relevância nesses casos. 
 
16 
Copyright © 2018 PROCAD Treinamentos - Todos os direitos reservados 
Desenvolvido por Vinícius Cardoso Santos 
www.grupoprocad.com.br | (31) 3617-0584 / (31) 9.9921-0413 
 
 Com isso, é possível observar a influência que as vigas de baldrame possuem sobre a 
estabilidade da estrutura e sua classificação como nós fixos ou móveis, principalmente 
quando tratamos de pórticos com pilares de maior índice de esbeltez. 
Processo P-Delta e Deslocamento Horizontal dos pilares: 
Os softwares utilizam o processo denominado P-Delta para levar em conta os efeitos da não 
linearidade geométrica no cálculo da estrutura. A ideia básica deste processo é simular o 
efeito não linear, por meio de cargas horizontais fictícias aplicadas à edificação, para a 
verificação dos deslocamentos horizontais da estrutura. 
Na estrutura sem travamento, os valores dos deslocamentos horizontais no topo da 
edificação resultam em valores mais elevados, apresentando-se cerca de 43% maiores 
quando comparados com a estrutura travada por vigas de baldrame. 
 
 
17 
Copyright © 2018 PROCAD Treinamentos - Todos os direitos reservados 
Desenvolvido por Vinícius Cardoso Santos 
www.grupoprocad.com.br | (31) 3617-0584 / (31) 9.9921-0413 
 
Por meio do diagrama de deslocamentos do pórtico unifilar da estrutura, torna-se fácil 
apontar que no nível térreo encontra-se a origem desse aumento dos deslocamentos 
horizontais. 
 
18 
Copyright © 2018 PROCAD Treinamentos - Todos os direitos reservados 
Desenvolvido por Vinícius Cardoso Santos 
www.grupoprocad.com.br | (31) 3617-0584 / (31) 9.9921-0413 
 
Contudo, verifica-se que existe uma variação acentuada de deslocamento nos níveis 
inferiores, enquanto, a partir do 3° pavimento, os deslocamentos relativos dos pilares entre 
os pavimentos de ambas as estruturas são similares. 
 
Assim, é possível constatar que a inserção das vigas de travamento nos pilares de fundação 
tem grande influência na estabilidade e nos deslocamentos horizontais da estrutura. 
Momentos nos pilares, nas fundações e Quantitativo de materiais: 
Em um pilar travado lateralmente por vigas, o gráfico do momento apresenta uma 
descontinuidade no lance, onde os momentos podem, de maneira simplificada, ser obtido 
 
19 
Copyright © 2018 GRUPO PROCAD - Todos os direitos reservados 
Desenvolvido por Vinícius Cardoso Santos | Instagram: @viniciuscardoso.eng 
www.viniciuscardosoeng.com.br | (31) 98782-8611 
pelamultiplicação dos momentos de engastamento perfeito, relações expressas no item 
14.6.6.1 da NBR 6118:2014, demonstrados na imagem abaixo: 
 
No pórtico onde existe o travamento dos pilares por vigas de baldrame, a interação entre 
esses elementos altera o comportamento dos pilares, reduzindo o comprimento de esbeltez 
e os momentos fletores nos lances adjacentes. A imagem abaixo demonstra o 
comportamento do pórtico, apresentando os valores de momentos fletores nos lances 
inferior e superior ao nível do baldrame. 
 
20 
Copyright © 2018 PROCAD Treinamentos - Todos os direitos reservados 
Desenvolvido por Vinícius Cardoso Santos 
www.grupoprocad.com.br | (31) 3617-0584 / (31) 9.9921-0413 
Enquanto no pórtico sem travamento, o comportamento do gráfico do momento não sofre 
descontinuidade, resultando em valores de momentos fletores de topo e base mais 
elevados. 
 
Por conseguinte, a taxa de armadura calculada para os pilares que passam por esse nível é 
maior nos pilares sem travamento. A imagem abaixo exibe um comparativo entre as 
porcentagens de aço em relação a área dos pilares, onde o pórtico com travamento é 
apresentado a esquerda e o pórtico sem travamento à direita. 
 
Os critérios utilizados para o dimensionamento dos pilares deste exemplo possuem apenas 
fins didáticos, onde as taxas de armadura nos pilares podem ultrapassar as recomendações 
 
21 
Copyright © 2018 PROCAD Treinamentos - Todos os direitos reservados 
Desenvolvido por Vinícius Cardoso Santos 
www.grupoprocad.com.br | (31) 3617-0584 / (31) 9.9921-0413 
normativas. Por fim, é gerado o resumo de materiais da estrutura, onde é possível levantar 
as seguintes situações: 
 
 O peso total de aço resultou em um valor de 1975kg para a estrutura com travamento, 
enquanto na estrutura sem as vigas de baldrame, o consumo foi de 2406kg, um 
acréscimo de aproximadamente 22% de aço. 
 O volume total de concreto resultou em um valor de 16,8m³ para a estrutura com 
travamento, enquanto na estrutura sem as vigas de baldrame, o consumo foi de 
19,5m³, um acréscimo de aproximadamente 16% de concreto. 
 A área de formas, mesmo apresentando-se maior na estrutura com travamento 
(210m²) em comparação com a estrutura sem travamento (203m²), teve pouca 
variação (3,33%). 
Conclusões: Nos casos demonstrados neste exemplo, foi possível observar que o 
comportamento estrutural do pórtico com vigas de baldrame apresentou-se mais 
satisfatório no que se refere aos deslocamentos, estabilidade estrutural e economia de 
materiais quando comparado com o pórtico onde os pilares não tem tal travamento. A 
 
22 
Copyright © 2018 GRUPO PROCAD - Todos os direitos reservados 
Desenvolvido por Vinícius Cardoso Santos | Instagram: @viniciuscardoso.eng 
www.viniciuscardosoeng.com.br | (31) 98782-8611 
simples inserção de vigas de baldrame tornou a estrutura mais estável e reduziu de maneira 
significativa o consumo global de concreto e aço. 
É valido ressaltar que este tópico aborda apenas uma avaliação simples de uma situação 
específica. A concepção estrutural é resultado do trabalho dos projetistas envolvidos, e cabe 
a esses profissionais determinar a escolha do melhor modelo estrutural para o projeto. 
5. REDISTRIBUIÇÃO DE ESFORÇOS 
A maior quantidade de ferragem em pilares superiores é, em muitos casos, devido aos 
momentos que as vigas transmitem ao pilar. A deformação da viga em seus vãos provoca 
uma rotação no apoio, gerando estes momentos. 
É muito comum os usuários rotularem/articularem as extremidades das vigas para eliminar 
os esforços nos pilares ou vigas de apoio, mas este procedimento pode ser prejudicial para a 
estrutura, além de não estar de acordo com a norma. A existência desse comando nos 
softwares não significa que sempre possa ser usado sem a análise das possíveis 
consequências geradas. 
Rotular/Articular as vigas significa a redistribuição de 100% dos momentos de engastamento 
entre a viga e o pilar para o momento positivo da viga, ou seja, todo o momento negativo 
que existia no apoio será repassado para o positivo. Quando esta estrutura for executada, 
existirá uma ligação rígida entre os pilares e as vigas, com eventual momento negativo. 
Como não foi dimensionada armadura negativa para resistir a esse momento, poderá 
ocorrer fissuras indesejáveis neste apoio (vínculo). Após a fissuração, a estrutura se 
comportará como o modelo lançado no software, pois criará uma rótula no local em 
questão, mas não existe nenhum controle do tamanho que tomará esta fissura, podendo ser 
tão grande ao ponto de comprometer a seção de concreto no apoio, diminuindo a 
resistência ao cisalhamento. 
A NBR 6118:2014 estabelece os critérios para redistribuição de momentos, sendo que a 
mesma não pode chegar a 100%. Uma alternativa mais condizente com as recomendações 
da Norma é o lançamento de nós semi-rígidos/parcialmente engastados nos apoios das vigas 
simulando um engastamento parcial entre os elementos ao invés de nulo.
 
23 
Copyright © 2018 PROCAD Treinamentos - Todos os direitos reservados 
Desenvolvido por Vinícius Cardoso Santos 
www.grupoprocad.com.br | (31) 3617-0584 / (31) 9.9921-0413 
6. DIFERENÇAS NO COMPORTAMENTO DA ESTRUTURA DE ACORDO COM A VINCULAÇÃO 
ADOTADA 
Com este artigo pretende-se demonstrar, de uma maneira simples, o comportamento 
estrutural global quando se altera a vinculação para um mesmo modelo. Para isso, será 
adotada uma estrutura exemplo composta por dois pilares de fundação e uma viga 
interligando-os. Sobre esta viga foi aplicado um carregamento adicional de 1400 kgf/m. 
Neste capítulo serão abordados os esforços de dimensionamento, suas respectivas 
redistribuições, de acordo com o modelo, e os aspectos voltados à diferença resultante nos 
detalhamentos. 
 
Figura 1 - Modelo 3D. 
Análise 1: Estrutura com as duas ligações de extremidade da V1 engastadas. 
 
 
Figura 2 - Modelo com as extremidades da V1 engastadas. 
 
Analisando o “Pórtico Unifilar”, selecionando para serem apresentados os momentos 
fletores do modelo elástico, pode-se visualizar que existem momentos negativos da ordem 
de 3042.75 kgf.m sobre os apoios do P1 e P2, o que caracteriza o engastamento. 
 
24 
Copyright © 2018 GRUPO PROCAD - Todos os direitos reservados 
Desenvolvido por Vinícius Cardoso Santos | Instagram: @viniciuscardoso.eng 
www.viniciuscardosoeng.com.br | (31) 98782-8611 
 
Figura 3 - Pórtico unifilar para o modelo engastado 
 
Nesta análise também é importante avaliar o valor do momento positivo, pois a medida que 
alteramos a vinculação em um modelo estrutural, os esforços são redistribuídos para os 
elementos adjacentes. 
Solicitando o detalhamento da viga V1, observa-se que a armadura negativa se estende 
quase até o meio do vão da viga. 
 
 
Figura 4 - Detalhamento da viga V1 com as extremidades engastadas. 
 
 
 
 
 
 
25 
Copyright © 2018 PROCAD Treinamentos - Todos os direitos reservados 
Desenvolvido por Vinícius Cardoso Santos 
www.grupoprocad.com.br | (31) 3617-0584 / (31) 9.9921-0413 
Análise 2: Estrutura com as duas ligações de extremidade da V1 semi-rígidas. 
 
Sabe-se que em uma estrutura, após a sua execução, não se garante 100% da rigidez da 
ligação entre os elementos, sempre irá existir certa deformação e fissuração do elemento. 
Sendo assim, pode-se considerar uma redistribuição de esforços devido a este efeito. 
O valor desta redistribuição pode ser configurado no software de sua preferência através do 
menu de ferramentas de Nó semirrígido/Engastamento parcial. Para a aplicação destes 
sobre a estrutura, basta escolher as barras e respectivos nós onde deseja-se aplicar este tipode vinculação. 
 
 
Figura 5 - Modelo com as extremidades da V1 semi-rígidas. 
 
 
Analisando o “Pórtico Unifilar”, avaliando os momentos fletores para o pórtico, pode-se 
reparar numa redistribuição dos momentos. 
 
 
Figura 6 - Pórtico unifilar para o modelo semi-rígido 
 
 
 
 
26 
Copyright © 2018 GRUPO PROCAD - Todos os direitos reservados 
Desenvolvido por Vinícius Cardoso Santos | Instagram: @viniciuscardoso.eng 
www.viniciuscardosoeng.com.br | (31) 98782-8611 
Pode-se perceber que em relação ao modelo anterior, houve uma redução no momento 
negativo e um pequeno acréscimo no momento positivo da viga. Esta pequena redução do 
momento fletor na ligação da viga com o pilar pode não ser tão significativa para o 
dimensionamento da viga, mas para o dimensionamento do pilar, quanto menor for o 
momento fletor em que este encontra-se submetido, menor será a sua taxa de armadura, 
isso considerando um mesmo esforço de compressão. 
Solicitando o detalhamento da viga V1, observa-se que houve ainda uma pequena redução 
no comprimento total dos ferros negativos, o que resulta em uma relativa economia de aço. 
Repare que apesar do momento positivo ser maior, manteve-se a mesma armadura que a do 
modelo anterior. 
 
Figura 7 - Detalhamento da viga V1 com as extremidades semi-rígidas. 
 
Análise 3: Estrutura com as duas ligações de extremidade da V1 articuladas. 
Rotular/articular uma ligação na estrutura implica em considerar o momento nulo nesta 
ligação, redistribuindo-o totalmente para os elementos adjacentes. 
 
27 
Copyright © 2018 PROCAD Treinamentos - Todos os direitos reservados 
Desenvolvido por Vinícius Cardoso Santos 
www.grupoprocad.com.br | (31) 3617-0584 / (31) 9.9921-0413 
Para a aplicação destes sobre a estrutura, basta acessar o menu “Vigas/Paredes – 
Engastamento no Extremo de Vigas – Articulado” e escolher as barras e respectivos nós onde 
deseja-se aplicar este tipo de vinculação. 
 
Figura 8 - Modelo com as extremidades da V1 articuladas. 
 
Analisando o “Pórtico Unifilar”, avaliando os momentos fletores para o pórtico pode-se 
reparar que o momento sobre os apoios é nulo. Sendo que este foi totalmente redistribuído 
para o momento positivo da viga. 
 
Figura 9 - Pórtico unifilar para o modelo rotulado 
 
Solicitando o detalhamento da viga V1, observa-se que houve uma significativa mudança nos 
resultados obtidos do dimensionamento. 
 
28 
Copyright © 2018 PROCAD Treinamentos - Todos os direitos reservados 
Desenvolvido por Vinícius Cardoso Santos 
www.grupoprocad.com.br | (31) 3617-0584 / (31) 9.9921-0413 
 
Figura 10 - Detalhamento da viga V1 com as extremidades rotuladas. 
 
Pode-se visualizar que a armadura negativa detalhada é a armadura mínima, preconizada 
pelo item 17.3.5.2 da NBR 6118:2014 e o restante da armadura superior é meramente 
construtiva. Como o acréscimo de momento positivo foi grande, devido à redistribuição do 
momento negativo, a bitola das barras positivas teve de ser aumentada para atender à área 
de aço calculada para o novo valor de momento fletor do vão. 
De uma maneira geral, foram apresentados 3 modelos com lançamentos iguais onde foram 
alteradas apenas as vinculações extremas das vigas com o objetivo de demonstrar o 
comportamento quanto ao dimensionamento e detalhamento dos elementos. Cabe a 
observação que à medida que se flexibiliza uma estrutura, aplicando nós 
semirrígidos/Parcialmente Engastado ou rótulas/articular, a estrutura tende a apresentar 
maiores deformações. Cabe ao engenheiro responsável avaliar o modelo lançado e aplicar 
as vinculações de acordo com as rigidezes desejadas para cada região. 
 
 
 
 
 
29 
Copyright © 2018 PROCAD Treinamentos - Todos os direitos reservados 
Desenvolvido por Vinícius Cardoso Santos 
www.grupoprocad.com.br | (31) 3617-0584 / (31) 9.9921-0413 
7. O QUE POSSO FAZER PARA REDUZIR O DESLOCAMENTO EM ESTRUTURAS? 
 
Ao analisar um projeto, uma das primeiras atitudes que deve-se tomar é verificar os 
deslocamentos que ocorrem na estrutura como um todo, ou seja, analisando o pórtico 
espacial da estrutura. Grandes deslocamentos indicam problemas na concepção da 
estrutura. 
Tendo-se verificado que a concepção estrutural está adequada pode-se adotar soluções de 
acordo com a situação de projeto. 
A seguir citam-se algumas situações de projeto e possíveis soluções que podem ser 
adotadas: 
7.1 Flechas elevadas em vigas 
Entre as soluções possíveis para reduzir flechas em vigas pode-se citar: 
 Reduzir o vão da viga 
A flecha obtida em uma viga é diretamente proporcional ao seu vão. Quanto maior o vão de 
uma viga maior será o seu deslocamento. Para reduzir o vão de uma viga é necessário 
adicionar mais pilares para apoio da viga. 
 
Figura 1 – Deslocamento máximo em viga com vão L 
 
 
Figura 2 – Deslocamento máximo em viga com vão L/2 
 
 
30 
Copyright © 2018 PROCAD Treinamentos - Todos os direitos reservados 
Desenvolvido por Vinícius Cardoso Santos 
www.grupoprocad.com.br | (31) 3617-0584 / (31) 9.9921-0413 
 Aumentar as dimensões da seção transversal da viga 
Os deslocamentos obtidos em uma viga são inversamente proporcionais à sua rigidez, que 
por sua vez é dependente das dimensões da seção transversal dela. Quanto menores forem 
as dimensões da seção transversal de uma viga maiores devem ser os seus deslocamentos. A 
inércia bruta de uma viga com seção retangular é determinada de acordo com a equação 
abaixo: 
 
Logo, de acordo com a fórmula acima, vê-se que é mais eficiente aumentar a altura de uma 
viga de modo a aumentar a sua inércia e reduzir assim os seus deslocamentos. 
 
 Adotar um concreto com maior módulo de elasticidade 
 
Além da inércia, a rigidez de uma viga é diretamente proporcional ao módulo de elasticidade 
do concreto utilizado nela. Ao utilizar um concreto com maior módulo de elasticidade os 
deslocamentos na viga devem reduzir. O módulo de elasticidade depende diretamente do 
agregado utilizado no concreto, logo, um concreto com agregado do tipo basalto tem 
módulo de elasticidade maior que um com agregado do tipo arenito. Mais informações 
podem ser obtidas lendo o item 8.2.8 da NBR 6118:2014: 
 
Figura 3 – Item 8.2.8 da NBR6118:2014 
 
31 
Copyright © 2018 PROCAD Treinamentos - Todos os direitos reservados 
Desenvolvido por Vinícius Cardoso Santos 
www.grupoprocad.com.br | (31) 3617-0584 / (31) 9.9921-0413 
Logo, é importante avaliar com qual tipo de agregado será executado o concreto em obra 
para assim não utilizar um módulo de elasticidade incompatível com a realidade de 
execução. 
Uma possível opção para utilizar um concreto com maior módulo de elasticidade seria 
adotar um maior fck (resistência característica do concreto). Essa opção deve ser avaliada 
com cuidado pois pode elevar consideravelmente o custo final da estrutura. 
 
 Aumentar o tempo de escoramento da viga 
O tempo de escoramento de uma viga influencia diretamente na sua fluência. Quanto maior 
for o tempo de início do carregamento (tempo de escoramento) menor deve ser o 
coeficiente de fluência e consequentemente menor é o deslocamento diferido da viga. Esse 
tipo de solução tem influência na redução da flecha diferida da viga. 
 
Figura 4 – Deslocamento de viga sob carregamento distribuído – Fonte: Alva (2010) 
 
Esse tipo de solução deve ser adotado em conjunto com o executor da obra, para que assim 
seja avaliado se é viável ou não do ponto de vista construtivo manter o escoramento de 
determinada viga por um tempo maior que o usual adotado pelo executor. 
 Aumentar a área de aço da parte tracionada da viga 
Como é possível verna figura 4, o deslocamento da viga sob carregamento distribuído 
provoca um grande esforço de tração na parte inferior da viga, sendo assim, uma forma de 
reduzir o deslocamento (flecha) da viga é aumentar a quantidade de armaduras/área de aço 
da parte tracionada. 
 
 
32 
Copyright © 2018 PROCAD Treinamentos - Todos os direitos reservados 
Desenvolvido por Vinícius Cardoso Santos 
www.grupoprocad.com.br | (31) 3617-0584 / (31) 9.9921-0413 
7.2 Flechas elevadas em lajes 
A primeira questão que deve-se ter em mente ao avaliar os deslocamentos em uma laje é 
que estes deslocamentos são influenciados diretamente pelos deslocamentos das vigas nas 
quais essa laje se apóia. Caso o deslocamento máximo da laje esteja próximo aos seus apoios 
(como no exemplo abaixo) deve-se focar em soluções para reduzir a flecha na viga de apoio 
da laje, desse modo o deslocamento máximo da laje deve reduzir. 
 
Figura 5 – Deslocamentos máximos das lajes próximos à viga V2 
 
 
Figura 6 – Deslocamentos máximos das lajes após aumentar a rigidez das vigas de apoio 
 
 
 
33 
Copyright © 2018 PROCAD Treinamentos - Todos os direitos reservados 
Desenvolvido por Vinícius Cardoso Santos 
www.grupoprocad.com.br | (31) 3617-0584 / (31) 9.9921-0413 
Não estando o deslocamento máximo da laje próximo aos seus apoios, entre as soluções 
possíveis para reduzir flechas em lajes, pode-se: 
 Reduzir o vão da laje 
Assim como visto para vigas, a flecha em lajes também é diretamente proporcional aos seus 
vãos. Quanto maiores forem os vãos de uma laje maior será o seu deslocamento. Para 
reduzir o vão de uma laje é necessário adicionar mais vigas no pavimento. 
 Aumentar a altura da seção transversal da laje e/ou modificar o tipo de laje utilizada 
O tipo de laje a ser adotado em um projeto deve ser avaliado de acordo com um conjunto de 
fatores, como: 
 Limitações impostas pelo projeto arquitetônico; 
 Tamanho dos vãos a vencer; 
 Disponibilidade de equipamentos, materiais e mão de obra. 
Normalmente, lajes com vãos superiores à 5m e/ou com cargas a serem suportadas elevadas 
exigem uma maior espessura para atender aos estados limites último e de serviço. Nessas 
situações lajes maciças podem ser antieconômicas, podendo-se nesse caso avaliar a 
possibilidade de adotar lajes com grande inércia, porém peso próprio relativamente 
pequeno, como por exemplo lajes nervuradas (que podem ser moldadas in loco ou pré-
moldadas). 
Aumentar a altura da seção transversal de uma laje também contribui para o aumento de 
sua inércia o que consequentemente faz com que o seu deslocamento máximo seja 
reduzido. 
 Adotar um concreto com maior módulo de elasticidade 
As mesmas considerações feitas com relação a vigas também podem ser aplicadas em lajes. 
 Aumentar o tempo de escoramento da laje 
As mesmas considerações feitas com relação a vigas também podem ser aplicadas em lajes. 
 
34 
Copyright © 2018 PROCAD Treinamentos - Todos os direitos reservados 
Desenvolvido por Vinícius Cardoso Santos 
www.grupoprocad.com.br | (31) 3617-0584 / (31) 9.9921-0413 
Através deste tópico, foi possível citar algumas opções de solução que podem ser adotadas 
em projeto visando melhorar o comportamento de uma estrutura em serviço. A melhor 
solução deve sempre levar em conta um conjunto de fatores, como questões relacionadas 
ao projeto arquitetônico, processo construtivo e preferências do executor da edificação, 
tamanho dos vãos a vencer e aspectos econômicos. 
 
8. ESTABILIDADE GLOBAL 
As estruturas de concreto devem ser projetadas, construídas e utilizadas de modo que, sob 
as condições ambientais previstas e respeitadas as condições de manutenção preventiva 
especificadas no projeto, conservem sua segurança, estabilidade, aptidão em serviço e 
aparência aceitável, durante um período pré-fixado de tempo. Além disto, devem apresentar 
adequado consumo de materiais e otimização dos recursos. Uma importante etapa dos 
procedimentos para atender a esses requisitos é a verificação da estabilidade global da 
estrutura e a consideração dos efeitos de 2ª ordem na estrutura. 
“Como definição, os esforços calculados a partir da geometria inicial da estrutura, sem 
deformação, são chamados efeitos de 1ª ordem. Aqueles advindos da deformação da 
estrutura são chamados de efeitos de 2ª ordem.” 
Segundo a NBR 6118:2014, item 15.4.1 os efeitos de 2ª ordem podem ser subdivididos em 3 
grupos, Efeitos Globais, Locais e Localizados. 
Sob a ação das cargas verticais e horizontais, os nós da estrutura deslocam-se 
horizontalmente. Os esforços de 2ª ordem, decorrentes desses deslocamentos, são 
chamados efeitos globais de 2ª ordem. 
 
 
 
35 
Copyright © 2018 PROCAD Treinamentos - Todos os direitos reservados 
Desenvolvido por Vinícius Cardoso Santos 
www.grupoprocad.com.br | (31) 3617-0584 / (31) 9.9921-0413 
 
Figura 1 - Exemplo de estrutura sujeita a instabilidade global (Fonte: Roberto Chust Carvalho/Jasson R. Figueiredo Filho – 
Estabilidade Global das estruturas) 
 
De acordo com o item 15.4.2 da NBR6118:2007 uma estrutura pode ser classificada quanto à 
sua estabilidade global como: 
- Estrutura de nós fixos: Os deslocamentos horizontais dos nós são pequenos e, por 
decorrência, os efeitos globais de 2º ordem são desprezíveis (inferiores à 10% dos 
respectivos esforços de 1º ordem). 
Gama-Z = 1,10 
- Estrutura de nós móveis: Os deslocamentos horizontais não são pequenos. Logo, os efeitos 
globais de 2º ordem são importantes (superiores a 10% dos respectivos esforços de 1º 
ordem). 
Gama-Z > 1,10 
8.1. COMO É CALCULADO O COEFICIENTE GAMA-Z? 
O coeficiente γz (Gama-Z) tem por principal objetivo classificar a estrutura quanto à 
deslocabilidade dos nós, a fim de destacar o quão significativo são os esforços de 2ª ordem 
globais para efeitos de cálculo. 
 
36 
Copyright © 2018 GRUPO PROCAD - Todos os direitos reservados 
Desenvolvido por Vinícius Cardoso Santos | Instagram: @viniciuscardoso.eng 
www.viniciuscardosoeng.com.br | (31) 98782-8611 
A seguir, será mostrado um exemplo numérico do cálculo do coeficiente γz, no qual será 
utilizado um pórtico plano conforme figura abaixo. Para o pórtico foram obtidos os seguintes 
deslocamentos horizontais com uma combinação de carregamentos 1.3G1 + 1.4G2 + 0.98Q + 
1.4V1: 
 
O item 15.7.3 da NBR6118:2014 permite, para a análise dos esforços globais de 2ª ordem, 
em estruturas reticuladas com no mínimo quatro andares, considerar a não-linearidade 
física de maneira aproximada, tomando-se como rigidez dos elementos estruturais os 
valores seguintes: 
 
 
Sabendo os valores das forças de vento majoradas e considerando a altura de todos os 
pavimentos do pórtico igual a 3 metros pode-se obter o momento de tombamento, que é a 
soma do produto das cargas horizontais pela sua altura de aplicação: 
 
37 
Copyright © 2018 PROCAD Treinamentos - Todos os direitos reservados 
Desenvolvido por Vinícius Cardoso Santos 
www.grupoprocad.com.br | (31) 3617-0584 / (31) 9.9921-0413 
 
A força vertical por pavimento neste exemplo é 30.0tf (3.750tf/m * 8m). Com a força vertical 
por pavimento é possível obter a soma dos produtos das cargas verticais pelos seus 
deslocamentos horizontais: 
 
 Por fim, o coeficiente γz é calculado por: 
 
No exemplo, o valor de γz ficou abaixo do limite máximo para a dispensa da verificação mais 
precisa dos efeitos de 2ª ordem (γz < 1.10). 
O coeficiente γz (Gama-Z) tem por principal objetivo classificar a estrutura quanto à 
deslocabilidade dos nós, a fim de destacar o quão significativo são os esforços de 2ª ordem 
globais para efeitos de cálculo. Para outras formas deverificar a estabilidade global da 
edificação. 
O coeficiente γz é determinado a partir dos resultados de uma análise linear de 1ª ordem, 
para cada caso de carregamento considerado na estrutura. Seu valor é calculado e 
comparado com os valores limite a partir dos quais a estrutura deve ser considerada como 
de nós móveis. Além disso, o coeficiente γz é obtido por meio de uma análise elástica, 
considerando a não linearidade física dos elementos estruturais por meio dos seus valores 
de rigidez, através da configuração dos valores de rigidez destes. 
O valor de Gama-Z é definido por: 
 
38 
Copyright © 2018 GRUPO PROCAD - Todos os direitos reservados 
Desenvolvido por Vinícius Cardoso Santos | Instagram: @viniciuscardoso.eng 
www.viniciuscardosoeng.com.br | (31) 98782-8611 
 
onde: 
 ΔMtot,d é a soma dos produtos de todas as forças verticais atuantes na estrutura, com 
seus valores de cálculo, pelos deslocamentos horizontais de seus respectivos pontos de 
aplicação, obtidos da análise de 1ª ordem. 
 M1tot,d é o momento de tombamento, ou seja, a soma dos momentos de todas as forças 
horizontais, com seus valores de cálculo, em relação à base da estrutura; 
A verificação do γz, segundo o item 15.5.3 da NBR 6118:2014, é válida para estruturas 
reticuladas de no mínimo quatro andares. Assim, serão calculados valores de γz nos eixos X e 
Y para cada combinação de cálculo definida. Destes, os máximos valores encontrados serão 
adotados como valores críticos, determinando o valor final do γz. Para um exemplo numérico 
de como é calculado esse coeficiente. 
Uma vez que o valor de γz representa o próprio efeito de 2ª ordem, deve-se satisfazer à 
condição γz ≤ 1.1 para considerar a estrutura como indeslocável (nós fixos). 
8.2. COMO AVALIAR A ESTABILIDADE GLOBAL DA ESTRUTURA? 
A estabilidade global da estrutura pode ser avaliada de maneiras diversas, a depender do 
tipo de informação que o usuário deseja obter. Esta avaliação é importante pois permite que 
o usuário tome medidas direcionadas para melhorar a performance da estrutura neste 
quesito. O item 15.4.2 da NBR 6118:2014 permite classificar as estruturas da seguinte 
maneira: 
 Estruturas de nós fixos - γz ≤ 1.1: os efeitos globais de 2ª ordem são desprezíveis e podem 
ser desconsiderados (inferiores a 10% dos respectivos esforços de 1ª ordem). Nessas 
estruturas, permite-se considerar apenas os efeitos locais de 2ª ordem; 
 Estruturas de nós móveis - γz >1.1: os efeitos globais de 2ª ordem são importantes 
(superiores a 10% dos respectivos esforços de 1ª ordem). Nessas estruturas, deve-se 
obrigatoriamente considerar tanto os esforços de 2ª ordem globais como os locais.
 
39 
Copyright © 2018 PROCAD Treinamentos - Todos os direitos reservados 
Desenvolvido por Vinícius Cardoso Santos 
www.grupoprocad.com.br | (31) 3617-0584 / (31) 9.9921-0413 
Coeficiente γz 
Assim, a NBR 6118:2014 apresenta dois critérios para que se classifique a estrutura quanto a 
deslocabilidade de seus nós: o Parâmetro α (item 15.5.2) e o coeficiente γz, que é 
apresentado no item 15.5.3. O parâmetro α, em teoria, somente poderia ser adotado em 
estruturas reticuladas simétricas. Como é comum que estruturas sejam assimétricas (tanto 
geometricamente como na questão relacionada à vinculação entre elementos ou 
carregamentos aplicados na estrutura), na maioria dos casos este parâmetro não é 
adequado para analisar os efeitos de segunda ordem global em estruturas. No que diz 
respeito ao coeficiente γz, seu uso é indicado para edificação de mais de quatro pavimentos. 
Coeficiente P-Δ 
Tendo determinado o valor do γz da estrutura, esta pode ser considerada como de nós 
móveis. Conforme FRANCO (1985), no caso de uma estrutura de nós móveis, é necessária 
uma análise de todo o conjunto, que leve em conta tanto a não-linearidade geométrica 
quanto física. Não se pode, em princípio, considerar cada pilar isoladamente, como no caso 
das estruturas de nós fixos; no entanto, é possível, para estruturas regulares e dentro de 
certos limites, a adoção de métodos aproximados (como o Processo P-Delta) que permitam 
esse tipo de consideração. 
Análise visual 
É importante destacar que, além desses indicadores, há ainda outras maneiras para 
averiguar a performance do edifício nesse quesito. Estas, apesar de indiretas, podem 
fornecer uma visualização gráfica mais apurada, auxiliando o projetista a identificar pontos 
críticos e determinar alterações voltadas a esses pontos. Para efetuar a análise global da 
estrutura de um edifício, pode-se avaliar os seguintes parâmetros. 
 Verificação visual da deformação da estrutura: a deformada da estrutura pode ser 
visualizada através do Pórtico Unifilar 3D, acessível em "Estrutura - Pórtico", no item 
"Elástico-Deslocamentos". Essa ferramenta possibilita visualizar comportamento geral da 
estrutura e identificar os elementos que estejam com maiores deslocamentos. No caso 
abaixo, por exemplo, pode ser necessário enrijecer a região da torre da caixa d'água. 
 
40 
Copyright © 2018 PROCAD Treinamentos - Todos os direitos reservados 
Desenvolvido por Vinícius Cardoso Santos 
www.grupoprocad.com.br | (31) 3617-0584 / (31) 9.9921-0413 
 
 Verificação dos deslocamentos dos pilares do topo da estrutura: os deslocamentos dos 
pilares no topo da estrutura podem ser acessados da janela de dimensionamento dos 
pilares do último pavimento, no menu Pilares - Deslocamentos. Com essa ferramenta, 
será possível obter informações para a escolha da melhor posição para se atribuir maior 
rigidez à estrutura, caso necessário. 
 
 
Neste item do E-book será feita uma análise da estabilidade global do edifício-exemplo 
abaixo e apresentado os procedimentos para enrijecer a estrutura e atender aos requisitos 
quanto à estabilidade global: 
 
41 
Copyright © 2018 PROCAD Treinamentos - Todos os direitos reservados 
Desenvolvido por Vinícius Cardoso Santos 
www.grupoprocad.com.br | (31) 3617-0584 / (31) 9.9921-0413 
 
Figura 2 – Pórtico 3D da estrutura 
 
A estrutura indicada acima é composta por um pavimento “Térreo” e cinco pavimentos 
“Tipo”, sendo a planta baixa de todos estes pavimentos a indicada na figura abaixo: 
 
Figura 3 – Planta baixa de todos os pavimentos do projeto 
 
42 
Copyright © 2018 PROCAD Treinamentos - Todos os direitos reservados 
Desenvolvido por Vinícius Cardoso Santos 
www.grupoprocad.com.br | (31) 3617-0584 / (31) 9.9921-0413 
“Como indicado através da figura acima, inicialmente definiu-se a maioria das ligações entre 
as vigas e pilares da estrutura como rotulada, sendo que se adotou seção de 14x40 para 
todas as vigas do projeto e 16x40 para todos os pilares.” 
Ao processar a estrutura do edifício exemplo, através do botão “Processar estrutura”, nota-
se que a mesma possui valores elevados de coeficiente Gama-Z nas direções X (2.43) e Y 
(1.36), como indicado abaixo: 
Coeficiente Gama-Z: 
Direção X = 2.43 (Limite 1.10) 
Direção Y = 1.36 (Limite 1.10) 
“De acordo com o item 15.7.3 da NBR6118:2007 o processo de análise dos efeitos de 2ª 
ordem de uma estrutura só é válido para coeficiente Gama-Z menor ou igual à 1.30, caso o 
valor do coeficiente Gama-Z ultrapasse 1.30 recomenda-se que seja revisto o sistema de 
contraventamento da estrutura de forma a tornar a mesma menos deslocável.” 
A seguir indicam-se neste item possíveis procedimentos através dos quais pode-se melhorar 
o comportamento de uma estrutura com relação aos efeitos globais de 2ª ordem. 
 
1) Modificar o vínculo de ligação entre vigas e pilares na estrutura 
Como indicado na Figura 3, a maioria das ligações entre vigas e pilares na estrutura foram 
definidas como rotuladas, o quenão é recomendável (foi empregado no modelo inicial 
apenas para exemplificar e evidenciar a situação). 
Uma forma de melhorar o comportamento da estrutura e resolver os problemas com 
instabilidade é enrijecer a ligação entre vigas e pilares. Isto pode ser feito através da 
consideração de nós semi-rígidos ou engastes nas ligações entre estes elementos. A título de 
exemplo, definiu-se a ligação entre todas as vigas e pilares do edifício-exemplo como 
“Engastada”. 
Após modificar a vinculação da ligação entre todas as vigas e pilares da estrutura para 
engastada a mesma foi reprocessada, e foram obtidos os resultados indicados abaixo: 
 
43 
Copyright © 2018 PROCAD Treinamentos - Todos os direitos reservados 
Desenvolvido por Vinícius Cardoso Santos 
www.grupoprocad.com.br | (31) 3617-0584 / (31) 9.9921-0413 
Coeficiente Gama-Z: 
Direção X = 1.41 (Limite 1.10) 
Direção Y = 1.17 (Limite 1.10) 
[Após modificar a vinculação entre vigas e pilares] 
 
Como indicado anteriormente, o coeficiente Gama-Z na Direção X passou a ter valor de 1.41, 
ou seja, continua com um valor superior à 1.30 (o que não é recomendável), enquanto que o 
coeficiente Gama-Z na Direção Y diminuiu de 1.36 para 1.17. 
 
2) Modificar o posicionamento dos pilares 
Analisando o lançamento da estrutura pode-se observar que a mesma é formada por 3 
pórticos na Direção Y e 5 pórticos na Direção X: 
 
 
Figura 4 – Pórticos na Direção X e Pórticos na Direção Y do edifício-exemplo 
 
 
44 
Copyright © 2018 PROCAD Treinamentos - Todos os direitos reservados 
Desenvolvido por Vinícius Cardoso Santos 
www.grupoprocad.com.br | (31) 3617-0584 / (31) 9.9921-0413 
Observa-se através da figura acima que a maioria dos pilares lançados na estrutura está no 
sentido do eixo Y (com exceção ao pilar P8 – ver Figura 3), dessa forma a rigidez do edifício 
na direção X é comprometida, pois há apenas um pilar posicionado nesta direção. Para 
demonstrar a possibilidade de melhoria na estabilidade através da alteração da orientação 
dos pilares, os indicados abaixo foram rotacionados para a direção X visando melhorar a 
rigidez do edifício aos efeitos globais de 2ª ordem nesta direção: 
 
 
Figura 5 – Pilares rotacionados para a direção X 
 
Após processar a estrutura indicada na Figura 5 obtêm-se os seguintes valores do coeficiente 
Gama-Z: 
 
45 
Copyright © 2018 PROCAD Treinamentos - Todos os direitos reservados 
Desenvolvido por Vinícius Cardoso Santos 
www.grupoprocad.com.br | (31) 3617-0584 / (31) 9.9921-0413 
- Direção X = 1.32 
- Direção Y = 1.29 
Pode-se ver que o coeficiente Gama-Z na Direção X diminuiu devido ao fato de que alguns 
pilares foram reposicionados para a direção X da estrutura aumentando a rigidez do edifício 
nesta direção. Porém, ao reposicionar os pilares indicados na Figura 5 para a direção X, a 
rigidez do edifício na direção Y diminui, fazendo com que o coeficiente Gama-Z nesta direção 
aumente. Logo, deve-se analisar com cautela estas modificações de modo a não 
comprometer a estabilidade para nenhuma das direções da edificação. 
 
3) Lançamento de novos elementos (vigas ou pilares) de forma a enrijecer os Pórticos que 
formam a estrutura 
“Esta é uma opção viável quando a arquitetura permite o lançamento de um novo elemento 
em determinado ponto da estrutura.” 
Analisando o lançamento do pavimento “Tipo” da estrutura nota-se que há dois pontos da 
mesma onde há ligação direta entre vigas (ligação viga-viga). Estes encontros entre vigas em 
alguns casos podem ter deslocamentos consideráveis, devido a isso são locais com menor 
rigidez na estrutura e que podem influenciar na análise global da mesma. 
 
Figura 6 – Pontos de ligação viga-viga 
 
46 
Copyright © 2018 PROCAD Treinamentos - Todos os direitos reservados 
Desenvolvido por Vinícius Cardoso Santos 
www.grupoprocad.com.br | (31) 3617-0584 / (31) 9.9921-0413 
Através da deformação da viga V2 da Figura 6 pode-se verificar que o ponto 1 indicado na 
figura acima possui um deslocamento considerável (da ordem de 3.3 cm): 
 
Figura 7 – Deslocamentos da viga V2 
 
À título de exemplo foram lançados pilares nas posições 1 e 2 (P16 e P17) indicados na figura 
abaixo: 
 
Figura 8 – Lançamento da estrutura modificado 
 
Após modificar o lançamento da estrutura (de acordo com a Figura 8) o deslocamento 
máximo da viga V2 diminuiu para 0.4 cm, como indicado na figura abaixo: 
 
47 
Copyright © 2018 PROCAD Treinamentos - Todos os direitos reservados 
Desenvolvido por Vinícius Cardoso Santos 
www.grupoprocad.com.br | (31) 3617-0584 / (31) 9.9921-0413 
 
Figura 9 – Deslocamentos da viga V2 após o lançamento de um novo pilar na posição 1 
 
Após processar novamente a estrutura obtêm-se os seguintes valores do coeficiente gama-Z: 
- Direção X = 1.17 
- Direção Y = 1.20 
 
4) Aumentar a seção dos elementos (vigas ou pilares) 
Aumentando a seção das vigas e/ou pilares que compõe a estrutura aumenta-se, 
consequentemente, o momento de inércia destes elementos, o que favorece um aumento 
de rigidez da estrutura como um todo. À título de exemplo aumentou-se a seção de todos os 
pilares que compõe a estrutura para 16x50 e processou-se novamente a estrutura tendo-se 
obtido os seguintes valores do coeficiente Gama-Z: 
- Direção X = 1.15 
- Direção Y = 1.17 
Aumentando-se também a seção de todas as vigas para 14x50 e processando novamente a 
estrutura, obtêm-se os seguintes valores do coeficiente Gama-Z: 
- Direção X = 1.09 
- Direção Y = 1.12 
“Sabendo-se que o coeficiente Gama-Z máximo nesta estrutura é de 1.12 a mesma é 
classificada com relação à sua estabilidade global como estrutura de nós móveis. Caso 
deseje-se analisar a estrutura com este valor de coeficiente Gama-Z deve-se, de acordo com 
o item 15.4.2 da NBR 6118:2014, levar em consideração os efeitos de 2ª ordem globais. 
 
48 
Copyright © 2018 PROCAD Treinamentos - Todos os direitos reservados 
Desenvolvido por Vinícius Cardoso Santos 
www.grupoprocad.com.br | (31) 3617-0584 / (31) 9.9921-0413 
5) Modificar o vínculo de apoio das fundações para “Engastado” 
O vínculo de apoio de uma fundação é definido como o tipo de ligação que há entre a 
fundação e o solo no qual a mesma está assentada. Definir o vínculo de apoio de uma 
fundação como “Engastado” significa restringir este elemento à rotação, ou seja, torná-lo 
mais rígido resultando em uma estrutura mais rígida, o que pode melhorar o 
comportamento da mesma frente à estabilidade global da edificação. 
O vínculo de apoio de uma fundação pode ser modificado através do item “Engastamento” 
na janela de edição dos pilares, como indicado na figura abaixo: 
 
 
Figura 10 – Janela de edição de pilares 
Modificando o vínculo de apoio de todas as fundações do projeto para “Engastado” 
processou-se novamente a estrutura, tendo-se obtido os seguintes valores do coeficiente 
Gama-Z: 
- Direção X = 1.07 
- Direção Y = 1.09 
Sabendo-se que o coeficiente Gama-Z máximo nesta estrutura é de 1.09 a mesma é 
classificada com relação à sua estabilidade global como estrutura de nós fixos. De acordo 
com o item 15.4.2 da NBR 6118:2014 os efeitos de segunda ordem global neste caso podem 
ser desprezados. 
 
49 
Copyright © 2018 GRUPO PROCAD - Todos os direitos reservados 
Desenvolvido por Vinícius Cardoso Santos | Instagram: @viniciuscardoso.eng 
www.viniciuscardosoeng.com.br | (31) 98782-8611 
Deve-se ressaltar que ao modificar o vínculo de apoio de uma fundação para “Engastado” a 
mesma passa a absorver maiores esforços, o que pode fazer com que seja necessária uma 
fundação com maior volume para absorver os esforços a que serásubmetida, deve-se avaliar 
com cuidado também se o solo no qual a fundação será assentada tem capacidade para 
absorver os esforços a que estará submetido, principalmente quanto à excentricidade de 
carga resultante da presença dos momentos fletores. 
O travamento que as vigas do baldrame proporcionam também é importante na análise da 
estabilidade global do edifício. Para demonstrar, ainda considerando o vínculo de apoio das 
fundações como “Engastado”, caso não houvessem vigas lançadas no pavimento “Térreo” 
(ver Figura 11) teríamos os seguintes valores do coeficiente Gama-Z: 
- Direção X = 1.08 
- Direção Y = 1.12 
 
 
Figura 11 – Lançamento do pavimento “Térreo” sem vigas 
 
50 
Copyright © 2018 PROCAD Treinamentos - Todos os direitos reservados 
Desenvolvido por Vinícius Cardoso Santos 
www.grupoprocad.com.br | (31) 3617-0584 / (31) 9.9921-0413 
Estabilidade global para estruturas não reticuladas (lajes planas) 
De acordo com o item 15.5.3 da NBR 6118:2014 o coeficiente Gama-Z é válido apenas para 
estruturas reticuladas (sistemas constituídos por barras ligadas entre si pelas suas 
extremidades). 
 
 
Figura 12 – Exemplos de estruturas reticuladas (Marcus Vinícius Silva Cavalcanti – Análise Matricial de Estruturas 
Reticuladas) 
 
Para o caso de estruturas não reticuladas, como lajes planas (lajes apoiadas diretamente 
sobre pilares), o parâmetro mais adequado para analisar este tipo de estrutura com relação 
à estabilidade global é o Processo P-Delta, nestes casos deve-se ignorar os valores obtidos 
para o coeficiente Gama-Z na estrutura nas direções X e Y e levar em consideração apenas os 
valores obtidos através do Processo P-Delta. 
 
51 
Copyright © 2018 PROCAD Treinamentos - Todos os direitos reservados 
Desenvolvido por Vinícius Cardoso Santos 
www.grupoprocad.com.br | (31) 3617-0584 / (31) 9.9921-0413 
 
Figura 13 – Exemplo de estrutura não reticulada - (Fonte: ATEX Brasil – SEDE COPAZA - SC) 
 
 
Considerações Finais 
Sabe-se que toda estrutura quando submetida à ações apresenta acréscimos de esforços 
devido aos efeitos de 2ª ordem global, cabe ao engenheiro avaliar cuidadosamente a 
importância destes acréscimos. Através deste item procurou-se indicar como avaliar os 
efeitos de 2ª ordem global de acordo com a sua importância (estrutura de nós 
fixos/estrutura de nós móveis) e possíveis formas de enrijecer uma estrutura de forma a 
melhorar o seu comportamento global, a falta de uma análise criteriosa da estabilidade 
global pode ser a causa de futuros problemas graves na estrutura, sendo desta forma 
fundamental para garantir a segurança e condições adequadas de uso da mesma. 
 
9. EFEITO P-DELTA (P-Δ) 
P-Delta é um efeito que ocorre em qualquer estrutura onde os elementos estão submetidos 
a forças axiais, ou seja, forças na direção longitudinal da peça. Pode-se dizer que é um 
processo que relaciona a carga axial (P) com o deslocamento horizontal (Δ). Nos edifícios 
com cargas laterais ou assimetrias geométricas, de rigidez ou massa, produzem-se 
deslocamentos laterais nos pavimentos. As cargas verticais geram momentos adicionais 
iguais à soma da carga vertical “P” multiplicada pelos deslocamentos laterais “Delta”. Razão 
pela qual o efeito é conhecido como “P-Delta”. Estes esforços adicionais são chamados de 
segunda ordem, pois são calculados na configuração deformada da estrutura. Numerosos 
 
52 
Copyright © 2018 GRUPO PROCAD - Todos os direitos reservados 
Desenvolvido por Vinícius Cardoso Santos | Instagram: @viniciuscardoso.eng 
www.viniciuscardosoeng.com.br | (31) 98782-8611 
estudos confirmam que, em estruturas de poucos pavimentos, a diferença entre os 
deslocamentos obtidos pelas análises de primeira ordem e pelos efeitos globais de segunda 
ordem são irrelevantes. Para estruturas com carregamentos convencionais o efeito P-Delta 
só é importante se a esbeltez é elevada. A figura abaixo permite entender melhor o efeito: 
 
 
 
9.1. COMO É CALCULADO O COEFICIENTE P-DELTA? 
O coeficiente P-Δ (P-Delta) é uma maneira de avaliar a influência dos esforços de segunda 
ordem em relação aos de primeira. Este coeficiente é utilizado sobretudo para estruturas de 
nós móveis, cujo coeficiente γz ultrapassou o valor de 1.10. Nestes casos, os efeitos de 
segunda ordem são relevantes para o cálculo da estrutura, devendo ser levados em 
consideração no dimensionamento dos elementos. 
Para melhor compreender o processo, podemos nos valer da figura abaixo. 
 
 
53 
Copyright © 2018 GRUPO PROCAD - Todos os direitos reservados 
Desenvolvido por Vinícius Cardoso Santos | Instagram: @viniciuscardoso.eng 
www.viniciuscardosoeng.com.br | (31) 98782-8611 
A ideia do processo P-Delta, consiste em: 
 Aplicar sobre a estrutura indeformada, as ações horizontais e verticais, verificando a 
posição deformada; 
 A deformação da estrutura faz com que as cargas axiais sejam aplicadas foram do eixo do 
pilar, o que gera um binário de forças de valor equivalente a: 
 
 Este momento é equilibrado portanto pelas cargas horizontais, de modo que estas sofrem 
um acréscimo δH: 
 
 Este novo carregamento, já com o acréscimo nas cargas horizontais, é inserido na 
estrutura indeformada, de modo que os deslocamentos são recalculados considerando 
este aumento. 
 Esse processo é repetido, até se obter uma convergência dos valores de deformação do 
edifício, obtendo-se assim, o carregamento final da estrutura levando em conta os 
esforços de 1ª ordem (do primeiro carregamento, quando da estrutura indeformada) e 
dos esforços de 2ª ordem (na verdade, 2ª, 3ª, 4ª... ordens, devidos aos deslocamentos da 
estrutura). 
Os esforços finais obtidos na posição deformada convergente, serão os utilizados para o 
dimensionamento dos elementos estruturais, incluindo os esforços de 2ª ordem. Cabe 
destacar ainda que, mesmo que os resultados após a aplicação do processo P-Delta estejam 
corretos, pelo próprio processo ser simplificado, é interessante evitar o uso de estruturas 
com diferenças de deslocamentos significativas. Da mesma maneira, por ser um processo 
iterativo, é possível que não convirja, indicando que a estrutura se encontra 
demasiadamente deslocável. Nestes casos, é interessante adotar medidas para enrijecê-la. 
 
54 
Copyright © 2018 GRUPO PROCAD - Todos os direitos reservados 
Desenvolvido por Vinícius Cardoso Santos | Instagram: @viniciuscardoso.eng 
www.viniciuscardosoeng.com.br | (31) 98782-8611 
Para analisar qual foi a diferença dos deslocamentos, pode-se acessar o relatório de Análise 
da Não linearidade Geométrica pelo Processo P-Delta. Abaixo reproduzimos a tabela 
gerada para a ação Acidental. 
 
10. ENGASTAMENTO INVÁLIDO EM LAJES UNIDIRECIONAIS 
Quando lidamos com lajes unidirecionais, devem ser tomados alguns cuidados no que diz 
respeito ao engastamento. Como estes são elementos que transferem esforços em apenas 
uma direção, a depender do alinhamento das nervuras em relação à viga da continuidade, 
pode não ser possível realizar o engaste. 
 
Tomando a figura acima como exemplo, perceba que tanto a laje L1, quanto a laje L2, 
apresentam suas nervuras paralelas à viga onde ocorre o engaste. Caso analisemos o corte 
da laje na região do engaste, teremos a seguinte configuração: 
 
55 
Copyright © 2018 GRUPO PROCAD - Todos os direitos reservados 
Desenvolvido por Vinícius Cardoso Santos | Instagram: @viniciuscardoso.eng 
www.viniciuscardosoeng.com.br | (31) 98782-8611 
 
Perceba que neste caso, haverá momentos negativos sobre o apoio da laje devido ao 
engaste ali realizado. Estes momentos causam uma tração na parte da capa do concreto, 
sendo que os blocos de enchimento

Outros materiais