Grátis
35 pág.

Pré-visualização | Página 6 de 17
stress regime in the overriding plate from dominantly compressional to extensional, and in the opening of a back-arc basin (Uyeda and Miyashiro, 1974). The subduction of active ridges may lead to for- mation of new ridges in the descending plate at great distances from the convergent margin. For instance, the rifting of Antarctica from Australia, which began almost 50 Ma, coincided with the subduction of a ridge system along the northern edge of the Australian-Antarctic plate. In the case of the Chile ridge, which is being subducted today, there are few effects until the ridge arrives at the trench axis. As the ridge approaches the Chile trench, the rift valley becomes filled with sediments and finally disappears beneath the toe of the trench (Cande et al., 1987). Also, the landward slope of the trench steepens and narrows in the collision zone. At the trench-ridge collision site, the accretionary prism is reduced in size by more than seventy-five per cent and part of the base- ment beneath the Andean arc appears to have been eroded away and subducted. Two factors seem important in decreasing the volume of the accretionary prism: 1 the topographic relief on the ridge may increase the rate of subduction erosion carrying material away from the bottom of the accretionary prism 2 subduction of oceanic ridges caused by transform faults may mechanically weaken the base of the accretionary prism, making it more susceptible to removal by subduction erosion. Heat flow increases dramatically in the collision zone and then decays after collision to typical arc values. Also, an ophiolite (fragment of oceanic cmst) was tectonically emplaced in the Andean fore-arc region during an earlier stage of the collision 3 Ma, supporting the idea, more fully discussed in Chapter 3, that ridge- trench collisions may be an important way in which ophiolites are emplaced. The intriguing question of what happens to the convective upcurrent beneath the Chile ridge as it is subducted remains poorly understood. The Wilson Cycle The opening and closing of an oceanic basin is known as a Wilson Cycle (Burke et al., 1976), named after J. Tuzo Wilson who first described it in 1966. He pro- posed that the opening and closing of a proto-Atlantic basin in the Paleozoic accounted for unexplained changes in rock types, fossils, orogenies, and paleoclimates in the Appalachian orogenic belt. A Wilson Cycle begins with the rupture of a continent along a rift system, such as the East African rift today, followed by the opening of an ocean basin with passive continental margins on both sides (Figure 1.12, a and b). The oldest rocks on passive continental margins are continental rift assem- blages. As the rift basin opens into a small ocean basin, as the Red Sea is today, cratonic sediments are depos- ited along both of the retreating passive margins (b), and abyssal sediments accumulate on the sea floor adjacent to these margins. Eventually, a large ocean basin such as the Atlantic may develop from continued opening. When the new oceanic lithosphere becomes negatively buoyant, subduction begins on one or both margins and the ocean basin begins to close (c and d). Complete closure of the basin results in a continent-continent collision, (e), such as occurred during the Permian when Baltica collided with Siberia forming the Ural Moun- tains. During the collision, arc rocks and oceanic crust are thrust over passive-margin assemblages. The geo- logic record indicates that the Wilson Cycle has occurred many times during the Phanerozoic. Because lithosphere is weakened along collisional zones, rifting may open new ocean basins near older sutures, as evidenced by Plate tectonics 13 Collisional Orogen \ \ Arc \ \ Passive Continental C m. \ Sea Level \ Margin a ^•''/^'^'-'-''-'fo/•- ^— V J m':i&;^ Lithosptiere ^ ^ / ^ ^ 5 ^ ^ o n t i n enta 1 Crust \ \ ^ _ ^ ^ Figure \.12 Idealized sequence of events in a Wilson Cycle (beginning at the bottom). the opening to the modem Atlantic basin approximately along the Ordovician lapetus suture. Stress distribution within plates Stress distributions in the lithosphere can be estimated from geological observations, first-motion studies of earthquakes, and direct measurement of in-situ stress (Zoback and Zoback, 1980). Stress provinces in the crust show similar stress orientations and earthquake magni- tudes and have linear dimensions ranging from hundreds to thousands of kilometres. Maximum compressive stresses for much of North America trend E-W to NE- SW (Figure 1.13). In cratonic regions in South America most stresses trend E-W to NW-SE. Western Europe is characterized by dominantly NW-SE compressive stresses, while much of Asia is more nearly N-S. Within the Australian plate, compressive stresses range from N-S in India to nearly E-W in Australia. Horizontal stresses are variable in Africa but suggest a NW-SE trend for maximum compressive stresses in West Africa and an E-W trend for the minimum compressive stresses in East Africa. Except at plate boundaries, oceanic litho- sphere is characterized by variable compressive stresses. The overall pattern of stresses in both the continental and oceanic lithosphere is consistent with the present distribution of plate motions as deduced from magnetic anomaly distributions on the sea floor. Examples of stress provinces in the United States are shown in Figure 1.13. Most of the central and eastern parts of the United States are characterized by compres- sive stresses, ranging from NW-SE along the Atlantic Coast to dominantly NE-SW in the mid-continent area. In contrast, much of the western United States is char- acterized by extensional and transcurrent stress patterns, although the Colorado Plateau, Pacific Northwest and the area around the San Andreas fault are dominated by compressive deformation. The abrupt transitions between stress provinces in the western United States imply lower crustal or uppermost mantle sources for the stresses. The correlation of stress distribution and heat-flow distribu- tion in this area indicates that widespread rifting in the Basin and Range province is linked to thermal processes in the mantle. On the other hand, the broad transitions between stress provinces in the central and eastern United States reflect deeper stresses at the base of the lithosphere, related perhaps to drag resistance of the North American plate and to compressive forces transmitted from the Mid-Atlantic ridge. Plate motions Cycloid plate motion The motion of a plate on a sphere can be described in terms of a pole of rotation passing through the centre of the sphere. Because all plates on the Earth are moving relative to each other, the angular difference between a given point on a plate to the pole of rotation of that plate generally changes with time. For this reason, the trajec- tory of a point on one plate as observed from another plate cannot be described by a small circle around a fixed pole of rotation. Instead, the shape of a relative motion path is that of a spherical cycloid (Cronin, 1991). The trajectory of a point on a moving plate relative to a point on another plate can be described if three vari- ables are known during the period of displacement be- ing considered: 1 the position of the pole of rotation 2 the direction of relative motion 3 the magnitude of the angular velocity. An example of cycloid motion for a hypothetical plate is given Figure 1.14. Plate 2 rotates around pole P2 with a given angular velocity. P2 appears to move with time relative to an observer on plate 1, tracing the path of a small circle. When the motion of plate 2 is combined with the relative motion of P2, a reference point M on