Buscar

materias eletricos

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 3, do total de 72 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 6, do total de 72 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 9, do total de 72 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Prévia do material em texto

5a Questão 
 
 
Considere que você tenha comprado um forno para tratamento térmico em metais e deseja instalá-lo. Sabendo que você não pode 
alterar o comprimento do fio a ser utilizado, considere a opção mais adequada ao contexto descrito anteriormente. 
 
 
 Deverá ser comprado o fio de maior área de seção reta, uma vez que este apresentará menor resistência a 
passagem de elétrons e, portanto, apresentará menor perda energia por Efeito Joule (geração de calor). 
 
Deverá ser comprado o fio de menor área de seção reta, uma vez que quanto menor esta área, menor a 
quantidade do material a ser utilizado e menor o custo da instalação, não importando a área da seção reta 
do fio utilizado. 
 O fio que apresentar menor seção reta é o mais indicado, uma vez que quanto menor o volume para o 
trânsito dos elétrons, mais ordenados estes estarão na formação da corrente elétrica e mais rapidamente 
transitarão em seu interior. 
 
Como a resistividade não varia com as dimensões do condutor, não importa a área da seção reta do fio a ser 
comprado e nem o seu volume. 
 
Deverá ser comprado o fio de menor área de seção reta, uma vez que este apresentará menor resistividade 
e, portanto, permitirá a fácil passagem de elétrons. 
 
 
 
 
 
 3a Questão 
 
 
A Agência Espacial Americana, NASA, responsável pela administração nacional da Aeronáutica e do Espaço, desenvolve pesquisas 
na área de Ciência dos Materiais. As condições severas do espaço sideral, como grandes amplitudes térmicas (diferença entre a 
temperatura máxima e mínina) e a exposição a radiação, exigem ligas metálicas de grande tenacidade, materiais cerâmicos com alta 
resistência a abrasão e polímeros de alta leveza e grande resistência mecânica. Para obter materiais com estas propriedades, muitas 
vezes são combinados elementos e substâncias com propriedades semicondutoras, condutoras e isolantes. 
Entre as opções a seguir, escolha aquela que contenha somente materiais semicondutores e isolantes. 
 
 
 
Silício, Ferro, água pura. 
 Arseneto de Gálio, madeira e borracha. 
 
Madeira, borracha e água pura. 
 
Silício, Germânio, Arseneto de Gálio e Fosfeto de Gálio. 
 
Cobre, Ouro, Prata e Níquel. 
 
 
 
 
1a Questão 
 
 
Como conhecedores da moderna teoria que rege os fenômenos elétricos, devemos diferenciar os conceitos de 
resistividade elétrica e resistência elétrica. Com relação aos conceitos anteriores, PODEMOS afirmar: 
 
 
 
Somente resistência elétrica varia com a temperatura. 
 A resistência elétrica quando varia com a temperatura o faz de forma linear. 
 
Somente resistividade elétrica varia com a temperatura. 
 Tanto a resistividade quanto a resistência elétricas variam com a temperatura do condutor. 
 
Tanto a resistividade quanto a resistência elétricas NÃO variam com a temperatura do condutor. 
 
 
 
 
 
 2a Questão 
 
 
Determine a resistência de um condutor de cobre com seção reta circular, 32 metros de comprimento e raio de 1,2 
mm. Considere a condutividade do cobre igual a 5,8 x 107 S/m. 
 
 
 
12,0 Ω 
 120 Ω 
 
3,4 Ω 
 0,12 Ω 
 
34 Ω 
 
 
 
 
 4a Questão 
 
 
Dado que duas linhas de transmissão de 200 km de uma mesma hidrelétrica, são construídas com cabos de 
alumínio e a outra com cabos de cobre recozido. Sem entrar em grandes discussões teóricas e considerando-se 
somente a resistividade do Alumínio (Al) e do Cobre (Cu), qual deverá ser a relação entre as seções retas dos dois 
tipos de cabos das linhas para que elas possuam a mesma capacidade de condução? Considere que: Al ► ρ = 
0,0292 Ohm.mm²/m e Cu ► ρ = 0,0172 Ohm.mm²/m 
 
 
 
A seção reta do cabo de alumínio poderá ser 58,9% menor que a seção reta do cabo de cobre. 
 
A seção reta do cabo de alumínio poderá ser 58,9% da seção reta do cabo de cobre. 
 A seção reta do cabo de cobre poderá ser 58,9% da seção reta do cabo de alumínio. 
 
A seção reta do cabo de cobre poderá ser 58,9% menor que a seção reta do cabo de alumínio. 
 
Os cabos de cobre e alumínio possuem a mesma capacidade de condução e portanto podem ser 
utilizados para esta aplicação. 
 
 
 
 
 
 5a Questão 
 
 
Com relação a facilidade do transporte de carga elétrica, os materiais são classificados em condutores, semicondutores ou isolantes, 
ou seja, todos possuem uma maior ou menor facilidade resistência a passagem de corrente elétrica. Esta propriedade é denominada 
resistência elétrica e é designada por R. 
Considerando um condutor cilíndrico com uma diferença de potencial aplicada em sua extremidade, pode-se enunciar que a 
resistência elétrica varia com o comprimento e com a área do objeto em questão. Considerando as idéias enunciadas anteriormente, 
assinale a opção que contém a expressão correta comumente utilizada no cálculo de parâmetros e variáveis elétricas de um material. 
 
 
 
P=U.i3 
 
V=R i.A/l 
 V=N.i.E.l 
 R=V/i 
 
F=m.a.l 
 
 
 
 
 
 6a Questão 
 
 
As resistências de aquecimento são fabricadas em fios ou fitas e empregadas em fornos para siderúrgicas, ferros 
de passar e de soldar, eletrodomésticos,estufas entre outras. Um resistor com coeficiente de variação de 
temperatura positivo de 4.10-3 ºC-1 apresenta o valor de 5KΩ a 25 C º. Qual sua resistência na temperatura de 75 
C º? 
 
 
 6KΩ 
 
25KΩ 
 1KΩ 
 
3KΩ 
 
4,25KΩ 
 
 
 
 
 
 2a Questão 
 
 
Deseja-se construir um resistor com resistência igual 12,5 mΩ. Para isso será utilizado um fio 
cilíndrico cuja resistividade é igual a 44 x 10-6 Ω.cm e comprimento igual a 1,5 metros. Determine 
o valor da área da seção reta deste fio. 
 
 
 
0,97 cm2 
 
0,65 cm2 
 
0,72 cm2 
 
0,53 cm2 
 
0,84 cm2 
 
 
 
 
 
 
 
 
 4a Questão 
 
 
Um aluno do curso de Engenharia, conhecedor das propriedades elétricas dos materiais, recebeu a tarefa de aumentar a resistência 
de uma bobina elétrica, que deve passar de 20 ohms para 30 ohms. Considerando-se que não haverá variação na área da seção 
reta do material e que o comprimento inicial do fio que compõe a bobina é de 5m, pode-se dizer que: 
 
 
 
O novo comprimento poderá estar entre 3,3m e 7,5m. 
 O novo comprimento deverá ser de 7,5m. 
 Não é possível alterar o valor da resistência através da variação do comprimento do fio. 
 
O novo comprimento deverá ser de 3,3m. 
 
O valor de resistência requerido só poderá ser obtido aumenta-se em 33,3% o diâmetro do fio que 
compõe a bobina. 
 
 
 
 
 
 
 
 
 
 
 6a Questão 
 
 
Deseja-se construir um resistor com resistência igual 125 mΩ. Para isso será utilizado um fio 
cilíndrico cuja resistividade é igual a 89,1 x 10-6Ω.cm e comprimento igual a 1,3 metros. Determine 
o valor da área da seção reta deste fio. 
 
 
 
3,09 cm2 
 
0,09 cm2 
 
2,09 cm2 
 
1,09 cm2 
 
4,09 cm2 
 
 
 
 
 
 7a Questão 
 
 
Nas instalações, é comum vermos operários com vestimentas especiais, são os Equipamentos de Proteção Individual (EPI), que 
devem ser utilizados em diversas ocasiões, cada qual com sua especificidade.. No EPI de quem mexe com eletricidade, é 
fundamental a utilização de luvas de borracha de boa qualidade para promover o isolamento das mãos do operador em relação a um 
possível meio eletricamente carregado, pois se sabe que correntes da ordem de 20mA já podem causar parada respiratória. Entre 
os materiais que podem ser classificados quanto ao seu comportamento elétrico semelhante ao da borracha, podemos citar: 
 
 
 
 Isopor, madeira e água destilada e deionizada. 
 Cobre, Ouro, Prata e Níquel. 
 
Silício, Germânio, Arseneto de Gálio e Cloreto de Sódio. 
 
Silício, Ferro, água pura salgada. 
 
Madeira, borracha, vidro e isopor. 
 
 
 
 
 
 8a Questão 
 
 
Em 1827, Georg Simon Ohm (1787-1854), professor da Universidade de Munique, publicou em artigo a relação que mais tarde levaria 
seu nome, a Lei de Ohm. Contudo, foi somente nas décadas seguintes que o estudo adquiriu relevância e gerou outros conceitos como 
a condutividadee a resistividade (MEYER HERBERT W., A History of Electricity and Magnetism . Connecticut, Norwalk, 1972, Chapter 
4). 
Entre as opções a seguir, determine a que melhor representa o conceito de resistividade: 
 
 
 
V=R.i 
 F=m.a 
 V=R i.A/l 
 
V=N.i.E 
 
P=U.i 
 
1a Questão 
 
 
Um resistor é construído utilizando-se um material cuja resistividade é igual a 89,1 x 10-6 Ω.cm na 
forma de um fio cilíndrico. Determine o valor do resistor para um comprimento de 0,5 metros e 
uma área da seção reta do fio igual a 0,4 mm2. 
 
 
 
0,99 ohms 
 
3,33 ohms 
 2,22 ohms 
 
4,44 ohms 
 1,11 ohms 
 
 
 
 
 3a Questão 
 
 
Após completar a disciplina Materiais Elétricos, você compreende os parâmetros que determinam a resistência 
elétrica de um material. Desta forma, desejando aumentar a resistência elétrica de uma bobina em 20% através da 
diminuição da seção reta do condutor que a compõe (mantendo-se o comprimento do fio), expresse a diminuição 
porcentual da nova seção reta em relação a seção reta original. 
 
 
 16,7% 
 
25% 
 15% 
 
12% 
 
18% 
 
 
 
 
 
 4a Questão 
 
 
Na temperatura de 25oC mediu-se o valor da resistência de um resistor e obteve-se 12,2 Ω. O 
material do qual é feito o resistor apresenta um coeficiente de temperatura igual a 0,0042 oC-1. 
Determine o valor da nova resistência na temperatura de 60oC. 
 
 
 13,99 ohms 
 
11,65 ohms 
 15,82 ohms 
 
4,36 ohms 
 
9,23 ohms 
 
 
 
 
 
 5a Questão 
 
 
Georg Simon Ohm (1787-1854) foi um pesquisador e professor de origem germânica. Integrante do corpo docente da Universidade 
de Munique, publicou em 1827 um artigo no qual divulgava o resultado de seu trabalho com condutores metálicos. Entre as 
informações relevantes, havia uma relação entre a diferença de potencial aplicada a um condutor e a corrente gerada que, décadas 
mais tarde, seria conhecida como Lei de Ohm. (MEYER HERBERT W., A History of Electricity and Magnetism . Connecticut, Norwalk, 
1972, Chapter 3) 
Entre as opções a seguir, determine a que melhor representa esta relação: 
 
 
 
V=N.i.E 
 P=U.i 
 
F=m.a 
 V=R.i 
 
V=R i.A/l 
 
 
 
 
 7a Questão 
 
 
Alunos do curso de Engenharia da UNESA realizaram um experimento básico representado na figura a seguir. 
 
 
 
Entre os pontos A e B estabeleceram diversas diferenças de potencial, V, no condutor ôhmico designado por R, obtendo os valores de 
corrente, i, expressos na tabela a seguir. 
 
i (Ampère) 2,60 2,10 2,00 6,30 
V (volt) 5,00 4,30 4,20 12,60 
 
Baseado nas informações anteriores, podemos concluir que a resistência do resistor ôhmico é melhor quantificada por. 
 
 
 
 
 
1,6 ohms 
 2,5 ohms 
 2,0 ohms 
 
0,75 ohms 
 
0,5 ohms 
1a Questão 
 
 
Um campo elétrico aplicado a um material condutor, motiva os elétrons a se movimentarem de forma ordenada, criando o que 
conhecemos como corrente elétrico. Contudo, este deslocamento não é ordenado e muito menos retilíneo, mas sim com os elétrons 
sofrendo espalhamento em imperfeições microscópicas e na própria rede cristalina do condutor. O conceito que melhordescreve 
este fenômeno é: 
 
 
 
Condutividade elétrica. 
 Mobilidade elétrica. 
 
Resistividade elétrica. 
 
Resistência elétrica. 
 
Supercondutividade elétrica. 
 
 
 
 
 
 2a Questão 
 
 
Deseja-se construir um resistor com resistência igual 125 mΩ. Para isso será utilizado um fio 
cilíndrico cuja resistividade é igual a 89,1 x 10-6Ω.cm e cuja área da seção reta é igual a 0,38 mm2. 
Determine o valor do comprimento deste fio. 
 
 
 
6,33cm 
 
7,33 cm 
 4,33 cm 
 5,33 cm 
 
8,33 cm 
 
 
 
 
 
 3a Questão 
 
 
Na Física, distingue-se entre propriedades extensivas e propriedades intensivas. As primeiras são uma função da geometria e da 
quantidade de massa do corpo, enquanto as outras, não. 
A resistividade e a condutividade elétricas são propriedades físicas intensivas da matéria, ou seja, não dependem da quantidade e 
da geometria do material em questão; porem, são afetadas por alguns fatores. Entre as opções a seguir, determine que fatores 
influenciam a resistividade e a condutividade elétrica de um condutor: 
 
 
 Temperatura, impureza e deformação mecânica. 
 Temperatura, comprimento do condutor e pressão. 
 
Temperatura, pressão e impurezas. 
 
Deformação mecânica, volume e pressão atmosférica. 
 
Volume, comprimento do condutor e impurezas. 
 
 
 
 
 
 4a Questão 
 
 
Deseja-se construir um resistor com resistência igual 1,25 mΩ. Para isso será utilizado um 
condutor de seção reta igual a 0,38 mm2 e comprimento igual a 10 mm. Determine o valor da 
resistividade do material a ser utilizado. 
 
 
 
7,81 x 10-6 Ω.cm 
 
3,21 x 10-6 Ω.cm 
 
6,45 x 10-6 Ω.cm 
 
3,95 x 10-6 Ω.cm 
 
4,75 x 10-6 Ω.cm 
 
 
 
 
 
 5a Questão 
 
 
Os metais apresentam em sua microestrutura uma periodicidade na disposição dos átomos que os classifica como materiais 
cristalinos. Contudo, esta organização a nível atômico tem suas falhas, o que influencia na velocidade de transporte dos eletros, ou 
seja, quanto maior o número de falhas na estrutura cristalina, maior a dificuldade de deslocamento dos elétrons. Para descrever a 
velocidade desenvolvida por estas partículas (elétrons livres), criou-se o conceito de velocidade de deslocamento (drift velocity, em 
Inglês), dada por vd=E.e, onde E é a intensidade do campo elétrico e e é a mobilidade elétrica do elétron. 
Sabendo-se que em um experimento, utilizou-se um campo elétrico igual a E=600V/m e condutor elétrico de alumínio cuja mobilidade 
elétrica é igual a e=0,0012m2/V.s, escolha a opção que melhor reflete o valor da velocidade de deslocamento dos elétrons. 
 
 
 
5 m/s 
 50 m/s 
 0,72 m/s. 
 
7,2 m/s 
 
500.000 m/s 
 
 
 
 
 
 6a Questão 
 
 
Um resistor é construído utilizando-se um material cuja resistividade é igual a 1,6 x 10-6 Ω.cm na forma de 
um fio cilíndrico. Determine o valor do resistor para um comprimento de 0,3 metros e uma área da seção 
reta do fio igual a 0,4 mm2. 
 
 
 12 mili ohms 
 
11 mili ohms 
 13 mili ohms 
 
14 mili ohms 
 
10 mili ohms 
 
 
 
 
 
 7a Questão 
 
 
Devemos atentar para o fato de que resistividade elétrica e resistência elétrica são conceitos relacionados porém 
diferentes. O primeiro revela uma propriedade intensiva do material, não variando com a quantidade de massa e 
nem com a geometria do material em questão. Já a resistência elétrica de um material varia com a sua geometria 
e consequentemente com a quantidade do mesmo. Considerando o exposto, marque a opção CORRETA. 
 
 
 
À medida que um condutor tende para o estado de condutor perfeito, sua resistividade tende ao infinito. 
 
Nada podemos afirmar sobre a resistividade do isolante sem conhecer suas dimensões. 
 
Podemos estimar a resistência elétrica de um material conhecendo-se sua resistividade elétrica e a 
massa que o compõe. 
 À medida que um isolante tende para o estado de isolante perfeito, sua resistividade pode ser 
considerada infinita. 
 Quanto maior o comprimento de um fio isolante, maior é a sua resistividade. 
 
 
 
 
 
 8a Questão 
 
 
Em meados do século XX, materiais denominados de semicondutores foram desenvolvidos e fabricados em escala industrial, permitindo 
uma enorme evolução no âmbito da eletrônica de utensílios eletrodomésticos. 
A condutividade do semicondutor resultante da dopagem (incorporação de outro elemento em sua rede cristalina) é dada por =p.I e 
I.h, onde p é a concentração de buracos por metro cúbico, I e I é o módulo da carga do elétron, dado por 1,6.10-19C, e .h é mobilidade 
dos buracos. 
Baseado nas informações anteriores, calcule a condutividade do semicondutor de Silício resultante da dopagem com 5.1022/m3átomos 
de Boro, considerando h = 0,05m2/V.s 
 
 
 
 400 (ohm.m) 
-1 
 
 
4 (ohm.m) -1 
 50 (ohm.m) 
-1 
 
 
100 (ohm.m) -1 
 
 
200(ohm.m) -1 
1a Questão 
 
 
Considere as seguintes afirmações: 
I. Resistividade de um condutor é a resistência deste condutor na temperatura de 20ºC 
II. Os materiais considerados isolantes têm um valor de condutividade grande. 
III. A condutividade é o inverso da resistividade. 
IV. A unidade da resistividade no SI é o Ω/m. 
V. Resistividade é a resistência específica de um material. 
Das afirmações acima podemos dizer que são verdadeiras as: 
 
 
 Somente a afirmação III. 
 As afirmações I, II e IV. 
 As afirmações I, IV e V. 
 As afirmações III e IV. 
 As afirmações III e V. 
 
 
 
 
 
 2a Questão 
 
 
Materiais cristalinos são aqueles que apresentam em sua microestrutura uma ordenação atômica, podendo manifestar diversos 
padrões como o cúbico de corpo centrado (CCC) ou cúbico de face centrada (CFC). Quando um campo elétrico é estabelecido 
através de uma estrutura cristalina, os elétrons sofrem espalhamento, executando movimentos não retilíneos. Para descrever a 
velocidade desenvolvida por estas partículas no condutor, criou-se o conceito de velocidade de deslocamento, em Inglês, drift 
velocity, cuja melhor expressão é dada por: 
 
 
 
V=N.i.IpI.h 
 v=E.e 
 
v=s/t 
 
=W.A/l 
 
V=R.i 
 
 
 
 
 
 3a Questão 
 
 
A planta de Geração Energética Brasileira é formada, em sua grande maioria, por usinas 
hidrelétricas espalhadas pelos quatro sistemas monitorados pelo Operador Nacional do Sistema 
Elétrico (ONS). Devido a estas usinas estarem localizadas longe dos centros consumidores, a 
energia elétrica precisa ser transmitida através de linhas de transmissão. Você, como engenheiro 
do ONS, recebe a missão para calcular a resistência de uma linha de transmissão de 100 km de 
comprimento, composta por fios de cobre cuja secção transversal é igual a 500 mm2. Sabendo-se 
que a temperatura ambiente é igual a 20oC e que a resistividade do cobre nesta temperatura é igual 
a 1,7x10-8 Ω.m, qual alternativa abaixo indica o valor da resistência ôhmica da linha para uma 
temperatura de 80oC (Adotar na solução que o coeficiente de temperatura do cobre é igual a 3,9x10-
3 oC-1). 
 
 
 
3,4 Ω 
 
4,35 Ω 
 6,8 Ω 
 4,19 Ω 
 
3,89 Ω 
 
 
 
 
 4a Questão 
 
 
Deseja-se construir um resistor com resistência igual 12,5 mΩ. Para isso será utilizado um condutor de seção 
reta igual a 0,38 mm2 e comprimento igual a 0,33 metros. Determine o valor da resistividade do material a ser 
utilizado. 
 
 
 
1,44 x 10-6 Ω.cm 
 
1,88x 10-6 Ω.cm 
 
1,11 x 10-6 Ω.cm 
 
0,99 x 10-6 Ω.cm 
 
1,22x 10-6 Ω.cm 
 
 
 
 
 
 5a Questão 
 
 
Deseja-se construir um resistor com resistência igual 12,5 mΩ. Para isso será utilizado um fio 
cilíndrico cuja resistividade é igual a 2,6 x 10-6 Ω.cm e cuja área da seção reta é igual a 0,38 mm2. 
Determine o valor do comprimento deste fio. 
 
 
 
19,12 cm 
 
16,24 cm 
 18,27 cm 
 
15,26 cm 
 
20,15 cm 
 
 
 
 
 
 6a Questão 
 
 
Um pedaço de fio de alumínio tem resistência de 2  Se pedaço de fio de cobre tem a mesmas 
dimensões do fio de alumínio, qual será sua resistência? 
 alunínio = 2,825 x 10 -6 cm à 20 ºC 
 cobre = 1,723 x 10 -6 cm à 20 ºC 
 
 
 e) R = 2,83 Ω 
 a) R = 3,28 Ω 
 d) R = 0,122 Ω 
 c) R = 0,328 Ω 
 b) R = 1,22 Ω 
 
 
 
 
 
 7a Questão 
 
 
Deseja-se construir um resistor com resistência igual 125 mΩ. Para isso será utilizado um condutor de seção 
reta igual a 0,38 mm2 e comprimento igual a 1,3 metros. Determine o valor da resistividade do material a 
ser utilizado. 
 
 
 
6,13 x 10-6 Ω.cm 
 
3,65 x 10-6 Ω.cm 
 
7,12 x 10-6 Ω.cm 
 
4,12 x 10-6 Ω.cm 
 
5,21 x 10-6 Ω.cm 
 
 
 
 
 
 8a Questão 
 
 
Na fabricação de semicondutores, é comum a inserção de átomos com valência menor ou maior a dos átomos que constituem a matriz 
do semicondutor. Neste contexto, fabricam-se semicondutores de Silício do tipo-n são obtidos a partir da inserção de átomos de Fósforo, 
P, na rede cristalina do Silício; a este processo chamamos de dopagem. Como o Fósforo possui valência igual a 5, P+5, diz-se que esta 
inserção promove o surgimento de elétrons livres. Baseado nestas informações, marque a opção que apresenta um elemento 
que poderiasubstituir o Fósforo no processo de dopagem. 
 
 
 
Al+3 
 
 
 
B+3 
 
 As
+5 
 
 
Ba+2 
 
O-2 
 
1a Questão 
 
 
O Silício é o elemento chave na indústria voltada a microeletrônica. Em substratos de Silício são montados microcircuitos com uma 
infinidade de componentes, observáveis as vezes somente em microscópios eletrônicos. Entre as opções a seguir, determine a que 
melhor representa somente conceitos corretos. 
 
 
 
Na eletrônica presente em microprocessadores, são utilizados somente semicondutores intrínsecos, sendo vetada a 
presença de qualquer impureza no sistema. 
 Semicondutores intrínsecos são aqueles que não possuem impurezas; já os semicondutores extrínsecos são aqueles que 
apresentam impurezas. 
 
 
 
 Os semicondutores do tipo-p são aqueles obtidos através da inserção de impurezas de menor valência na matriz cristalina 
composta pelo elemento principal, como, por exemplo o Fósforo (P+5) na matriz de Silício (Si+4). 
 
A obtenção de um semicondutor intrínseco exige técnicas de purificação de difícil execução denominadas dopagem. 
 
 
Os semicondutores do tipo-n são aqueles obtidos através da inserção de impurezas de maior valência na matriz cristalina 
composta pelo elemento principal, como, por exemplo o Boro (B+3) na matriz de Silício (Si+4). 
 
 
 
 
 
 2a Questão 
 
 
A Física é a ciência que ¿olha o mundo¿ e tenta explicá-lo através do método científico, cuja linguagem principal é a Matemática. 
Entre as opções a seguir, marque aquela que melhor define um conceito físico utilizado no entendimento das propriedades elétricas 
dos materiais. 
 
 
 
Velocidade de deslocamento do elétron no processo de transporte de carga é a velocidade obtida a partir do 
deslocamento retilíneo do elétron. 
 
A concentração de impurezas determina se um semicondutor é extrínseco do tipo-p ou extrínseco do tipo-n. 
 
Considera-se que o elétron desloca-se na velocidade da luz em um processo de condução de carga. 
 Mobilidade elétrica é uma grandeza que representa a facilidade de transporte de cargas elétricas em um 
material. 
 
Condutividade elétrica expressa a facilidade de transporte de cargas elétricas em função da temperatura do 
material. 
 
 
 
 
 
 3a Questão 
 
 
Um resistor é construído utilizando-se um material cuja resistividade é igual a 44 x 10-6 Ω.cm na 
forma de um fio cilíndrico. Determine o valor do resistor para um comprimento de 0,3 metros e 
uma área da seção reta do fio igual a 0,38 mm2. 
 
 
 
384,2 mili ohms 
 347,4 mili ohms 
 
376,38 mili ohms 
 
354,6 mili ohms 
 399,9 mili ohms 
 
 
 
 5a Questão 
 
 
Considere as seguintes afirmações: 
I. Resistividade de um condutor é a resistência deste condutor na temperatura de 20ºC 
II. Os materiais considerados isolantes têm um valor de condutividade grande. 
III. A condutividade é o inverso da resistividade. 
IV. A unidade da resistividade no SI é o Ω/m. 
V. Resistividade é a resistência específica de um material. 
Das afirmações acima podemos dizer que são verdadeiras as: 
 
 
 As afirmações I, IV e V. 
 As afirmações III e IV. 
 As afirmações I, II e IV. 
 Somente a afirmação III. 
 As afirmações III e V. 
 
1a Questão 
 
 
Com o advento da tecnologia dos semicondutores, durante a década de 40, o transistor não só substituiu os tubos a vácuo, mas 
tornou possível a miniaturização dos componentes eletrônicos, originando um ramo inteiramente novo da Eletrônica denominado 
Microeletrônica. 
Com relação aos semicondutores, podemos afirmar: 
 
 
 Considera-se que o elétron desloca-se na velocidade de 20m/s aproximadamente em um processo decondução de carga no interior de um condutor tipo-p. 
 
Mobilidade elétrica é uma grandeza que representa a facilidade de transporte de cargas elétricas somente 
nas junções P-N. 
 
A condutividade elétrica de um semicondutor expressa a facilidade de transporte de cargas elétricas 
somente se o semicondutor for intrínseco, ou seja, puro. 
 
Na eletrônica presente em microprocessadores, são utilizados somente semicondutores extrínsecos. 
 A obtenção de um semicondutor extrínseco exige técnicas de inserção de ¿impurezas¿ de difícil execução 
denominadas dopagem. 
 
 
 
 
 
 2a Questão 
 
 
Em 1947, pesquisadores da "Bell Telephone Laboratories" obtiverem em laboratório um dispositivo amplificador a 
partir da imersão de uma placa de silício em uma solução alcalina. Um mês depois, introduziram na placa de silício, 
o germânio em quantidades pequenas, como impureza, melhorando ainda mais o desempenho do dispositivo. 
Estava iniciada a era dos semicondutores extrínsecos. A tecnologia criada nesta época originou materiais 
constituídos de uma matriz "pura" de um determinado elemento com pequeníssimas quantidades de impurezas de 
outro elemento, como, por exemplo, uma matriz de Si, que apresenta quatro elétrons em sua última camada, com 
átomos de P inseridos, os quais possuem valência 5. 
Com relação ao material descrito anteriormente, PODEMOS descrevê-lo como: 
 
 
 Semicondutor extrínseco tipo-n de silício 
 
Semicondutor extrínseco tipo-p de fósforo 
 Semicondutor intrínseco de silício 
 
Semicondutor extrínseco tipo-p de silício 
 
Semicondutor extrínseco tipo-n de fósforo 
 
 
 
 
 
 3a Questão 
 
 
A resistividade de um material varia com a temperatura e, para pequenas variações, podemos assumir que a mesma obedece a 
expressão =0+T, onde 0 e  ao constantes. Para variações maiores de temperatura, a expressão da resistividade pode assumir 
a forma =0+ T+T2 , onde 0 , b e são constantes. 
Baseado nas informações anteriores, indique a forma geométrica que melhor indica a variação da resistividade com a temperatura 
no último caso citado. 
 
 
 
Círculo. 
 Parábola. 
 
Hipérbole. 
 
Elipse. 
 Reta. 
 
 
 
 
 
 4a Questão 
 
 
A grande maioria dos metais são materiais cristalinos, ou seja, possuem seus átomos ¿dispostos¿ de forma 
periódica em uma rede tridimensional que se repete através de seu volume. Quando submetemos este tipo de 
material a um campo elétrico, os elétrons livres iniciam movimento orientado pela força elétrica que os compele. 
Baseado nestas informações, como denomina-se a velocidade desenvolvida essas partículas. 
 
 
 
Velocidade elétrica. 
 
Velocidade hiperstática. 
 Velocidade quântica. 
 velocidade de deslocamento. 
 
Velocidade de arraste. 
 
 
 
 
 
 5a Questão 
 
 
A "Bell Telephone Laboratories" passou a década de 1940 tentando criar dispositivos eletrônicos comutadores que 
fossem mais eficientes e baratos que as válvulas utilizadas. Finalmente, em 1947, dois de seus pesquisadores, 
Walter H. Brittain e John Bardeen tiveram sucesso na criação de um dispositivo amplificador a partir de uma placa 
de silício imersa em solução salina; iniciava-se a era dos semicondutores. A modelagem física referente a estes 
materiais se desenvolveu bastante nos anos seguintes, originando conceitos como condutividade intrínseca, cuja 
expressão podemos descrever como p | e | b n | e | e. 
Com relação aos termos presentes na expressão anterior, podemos identificá-los como nos itens a seguir, 
com EXCEÇÂO de. 
 
 
 
b - mobilidade do buraco. 
 
p - número de buracos por metro cúbico. 
 
e - mobilidade dos elétrons. 
 n - número de átomos por metro cúbico. 
 
| e |- módulo da carga dos elétrons. 
 
 
 
 
 
 6a Questão 
 
 
Materiais cristalinos possuem seus átomos ¿dispostos¿ de forma periódica em uma rede tridimensional que se repete através de seu 
volume. Esta estrutura, aliada aos defeitos microestruturais que porventura se originam no processo de fabricação, não permitem o 
deslocamento retilíneo dos elétrons livres quando submetidos a um campo elétrico. Para descrever a velocidade desenvolvida por 
estas partículas (elétrons livres), criou-se o conceito de velocidade de deslocamento (drift velocity, em Inglês), dada por vd=E.e, 
onde E é a intensidade do campo elétrico e eé a mobilidade elétrica do elétron. 
Uma conseqüência da interação entre os defeitos da rede cristalina e os elétrons é: 
 
 
 
Diminuição da resistência elétrica do material 
 
Aumento da resistividade elétrica do material. 
 Geração de calor. 
 Deformação mecânica do material. 
 
Aumento da aceleração eletrônica. 
 
 
 
 
 
 7a Questão 
 
 
Semicondutores modernos são constituídos de substratos de Silício nos quais são inseridos elementos com valências diferentes do 
próprio Silício, criando-se as variações conhecidas como semicondutores do tipo-p e semicondutores do tipo-n. A expressão σ = N 
ІeІ µe + P ІeІ µh fornece a condutividade em função da carga do elétron (1,6 x 10 -19 C), onde N e P são as densidades de cargas 
negativas e positivas por volume (Número de cargas/m3) e de µe e µh , que são as mobilidades elétricas dos elétrons e dos buracos 
(m2/V m), respectivamente. Considerando- se um semicondutor extrínseco de Silício, no qual a concentração de portadores de cargas 
positivas é muito maior que a concentração de portadores de cargas negativas, podemos simplificar a expressão anterior para: 
 
 
 
σ = 2 P ІeІ µh 
 
σ = N ІeІ (µe + µh). 
 σ = P ІeІ µh. 
 
A expressão σ = N ІeІ µe + P ІeІ µh é imutável e nunca deve ser aproximada para uma forma mais simplificada sob pena 
de alterar-se gravemente a precisão da condutividade. 
 
σ = N ІeІ µh. 
 
 
 
 
 
 8a Questão 
 
 
A microeletrônica surgiu nas décadas de 40 e 50, com as técnicas de fabricação de semicondutores de altíssima pureza e dopados com 
elementos como o Fósforo e o Boro. Atualmente, percebe-se que o processo de miniaturização de componentes eletrônicos tem seus 
limites; partes dos semicondutores estão se tornando tão finas que estão perdendo as características previstas em projeto, ou seja, 
aquilo que deveria apresentar maior resistência elétrica, não está se comportando desta forma. A atual expectativa é que a incipiente 
nanotecnologia venha a suprir às necessidades de maior miniaturização. 
Com relação aos semicondutores, é correto afirmar que: 
 
 
 
Através do Efeito Hall determina-se que a mobilidade do elétron em um semicondutor submetido a 
uma diferença de potencial é próxima a velocidade da luz. 
 O Efeito Hall é utilizado para se determinar o portador de carga majoritário e a sua mobilidade em um 
semicondutor extrínseco. 
 
A condutividade elétrica de um semicondutor expressa a facilidade de transporte de cargas elétricas 
somente se o semicondutor for do tipo-p, ou seja, puro. 
 
Na eletrônica presente em microprocessadores, são utilizados somente semicondutores intrínsecos de 
Silício 
 
Semicondutores intrínsecos são aqueles que possuem impurezas. 
 
1a Questão 
 
 
Uma das maneiras de inserir Fósforo e o Boro na rede cristalina do Silício de alta pureza é através da evaporação dos elementos de 
interesse em adequadas câmaras de vácuo, técnica de fabricação utilizada primeiramente em 1955. (MEYER HERBERT W., A 
History of Electricity and Magnetism , Burnby Library, Connecticut, Norwalk, 1972, Chapter 17). 
 
Com relação aos semicondutores é correto afirmar que: 
 
 
 Semicondutores intrínsecos são aqueles que não possuem impurezas. 
 
Mobilidade elétrica é uma grandeza que representa a facilidade de transporte de cargas elétricas em um 
material. 
 
A obtenção de um semicondutor intrínseco exige técnicas de purificação de difícil execução denominadas 
dopagem. 
 
A condutividade elétrica de um semicondutor expressa a facilidade de transporte de cargas elétricas 
somente se o semicondutor for do tipo-p, ou seja, puro.Na eletrônica presente em microprocessadores, são utilizados somente semicondutores intrínsecos, sendo 
vetada a presença de qualquer impureza no sistema. 
 
 
 
 
 
 2a Questão 
 
 
Do ponto de vista tecnológico, a fabricação de transistores a partir de semicondutores dopados, foi estrategicamente decisivo para 
a evolução da eletrônica moderna. Os primeiros transistores apresentavam desempenho insatisfatório devido a impurezas como o 
Ouro e o Cobre, devido às precárias técnicas de refinamento da década de 1950. Foi somente em 1954, que um pesquisador da Bell 
Laboratories, William G. Pfann, engenheiro metalúrgico, desenvolveu um método adequado para a requerida purificação destes 
materiais (MEYER HERBERT W., A History of Electricity and Magnetism , Burnby Library, Connecticut, Norwalk, 1972, Chapter 17). 
Com relação aos semicondutores, é possível afirmar que: 
 
 
 
Os semicondutores intrínsecos possuem impurezas que acrescentam portadores de carga negativas ou 
portadores de carga positivas. 
 
A temperatura não altera as propriedades elétricas dos semicondutores. 
 A resistividade do semicondutor aumenta com a concentração de impurezas. 
 
Qualquer impureza oriunda de elementos de boa qualidade servem para dopar semicondutores. 
 
A concentração de impurezas determina se um semicondutor é extrínseco do tipo-n ou extrínseco do 
tipo-p. 
 
 
 
 
 
 3a Questão 
 
 
Existem diversas formas de energia que percorrem a rede cristalina de um condutor metálico. Em um condutor que 
possui sua temperatura elevada, por exemplo, seus átomos apresentam alta energia térmica, o que aumenta 
amplitude de vibração dos mesmos. Quando estabelecemos um campo elétrico através do mesmo, os elétrons 
livres colidem com a estrutura atômica provocando ainda mais o aumento da amplitude vibracional. Como todos os 
átomos estão conectados através de ligações atômicas, o aumento da amplitude de vibração se transfere de um 
átomo para o outro, provocando o surgimento de uma onda de alta freqüência e energia quantizada denominada 
de fônon. (CALLISTER, WILLIAM D. Jr. Materials Science and Engineering: An Introduction, John Wiley & Sons, 
USA, 1997, Chapter 20). Com relação ao exposto, podemos afirmar que: 
 
 
 
Em um isolante a energia cinética dos elétrons tende ao infinito. 
 
Em um material condutor a energia cinética dos elétrons tende a zero. 
 Provavelmente a energia cinética dos elétrons será maior em material condutor campo elétrico de mesma 
intensidade ao aumentarmos a temperatura. 
 
Provavelmente a energia cinética dos elétrons será igual em material condutor e isolante quando 
submetidos a mesma diferença de potencial. 
 
Provavelmente a energia cinética dos elétrons será maior em material isolante sob campo elétrico de 
mesma intensidade ao aumentarmos a temperatura. 
 
 
 
 
 
 4a Questão 
 
 
Semicondutores de Silício do tipo-p são obtidos a partir da inserção de átomos de Alumínio, Al, na rede cristalina do Silício; a este 
processo chamamos de dopagem. Como o Alumínio possui valência igual a 3, Al+3, diz-se que esta inserção promove o surgimento 
de buracos. Baseado nestas informações, escolha a opção que apresenta um elemento que poderia substituir o Alumínio no processo 
de dopagem. 
 
 
 
As+5 
 
Na+ 
 B
+3 
 
Ba+2 
 
O-2 
 
 
 
 
 
 5a Questão 
 
 
Em semicondutores, devemos considerar que sempre que ¿criamos¿ uma carga negativa, automaticamente "criamos" uma carga 
positiva (lei da conservação das cargas), que está associada ao conceito físico de vazio (volume deixado pela saída do elétron), 
"buraco" ou, em inglês, hole. 
A condutividade elétrica nos semicondutores intrínsecos é dependente da movimentação dos portadores de carga negativos 
(elétrons) e positivos (buracos) da seguinte forma: σ = N ІeІ µe + P ІeІ µh, onde σ é a condutividade elétrica do material (ohm.m)-1; 
onde N e P são as densidades de cargas negativas e positivas por volume (Número de cargas/m3), respectivamente І e І é o módulo 
da carga do elétron (1,6 x 10 -19 C), µe e µh são as mobilidades elétricas dos elétrons e dos buracos (m2/V m), respectivamente. 
Considerando o exposto, pode-se afirmar que: 
 
 
 
Nos condutores extrínsecos do tipo-p, onde P é muito maior que N, pode-se aproximar a expressão por σ = N ІeІ µh. 
 
 
Nos condutores intrínsecos, raramente tem-se N=P e, portanto, deve-se manter a expressão σ = N ІeІ µe + P ІeІ µh. 
 A expressão σ = N ІeІ µe + P ІeІ µh é imutável e nunca deve ser aproximada para uma forma mais simplificada sob pena 
de alterar-se gravemente a precisão da condutividade. 
 Nos condutores intrínsecos, tem-se N=P e, portanto, pode-se escrever que σ = N ІeІ (µe + µh). 
 
Nos condutores extrínsecos do tipo-n, onde N é muito maior que P, pode-se aproximar a expressão por σ = P ІeІ µh. 
 
 
 
 
 
 6a Questão 
 
 
Em 1949, William O. Shockley, pesquisador da "Bell Telephone Laboratories", publicou no "Bell System Technnical 
Journal" um artigo estabelecendo a teoria referente ao comportamento de transistores, uma aplicação direta dos 
semicndutores. Estava claro que o aparecimento destes novos materiais havia desencadeado um imediato avanço 
na modelagem físico-matemática associada ao assunto, nos oferecendo expressões como a condutividade 
intrínseca, dada por p | e | b n | e | e.. 
Com relação a expressão anterior, só NÃO PODEMOSafirmar que: 
 
 
 Condutividade intrínseca depende do campo elétrico criado pelos elétrons. 
 
Condutividade intrínseca depende da mobilidade dos elétrons. 
 Condutividade intrínseca depende da mobilidade dos buracos. 
 
Condutividade intrínseca depende da concentração dos portadores de carga negativa. 
 
Condutividade intrínseca depende da concentração dos portadores de carga positiva. 
 
 
 
 
 
 7a Questão 
 
 
A resistividade de um material é uma propriedade física intensiva e, portanto, não depende da forma do material e nem da quantidade 
em que este se apresenta. Contudo, esta propriedade varia com a temperatura e, para pequenas variações, podemos assumir que 
a resistividade obedece a expressão =0+T, onde 0 e  ao constantes. 
Baseado nas informações anteriores, indique a forma geométrica que melhor indica a variação da resistividade com a temperatura. 
 
 
 
Parábola. 
 
Elipse. 
 Reta. 
 
Círculo. 
 
Hipérbole. 
 
 
 
 
 
 8a Questão 
 
 
Que átomos de impureza são utilizados na dopagem do silício para formar um semicondutor tipo n? 
 
 
 
Átomos com 2 elétrons na camada de valência. 
 
Átomos com 4 elétrons na camada de valência. 
 Átomos com 5 elétrons na camada de valência. 
 Átomos com 1 elétron na camada de valência. 
 
Átomos com 3 elétrons na camada de valência. 
 
1a Questão 
 
 
Como é chamada a grandeza constante que está presente na Lei de Ohm? 
 
 
 
Condutividade 
 
 Resistividade 
 
Resistência 
 
Condutância 
 
Indutância 
 
 
 
 
 
 2a Questão 
 
 
Polarização, como mostra a figura a seguir, é o alinhamento de momentos dipolares atômicos ou moleculares, 
permanentes ou induzidos, com um campo elétrico aplicado externamente. Das opções abaixo, indique aquela que 
não representa um tipo de polarização: 
 
(CALLISTER, WILLIAM D. Jr. Materials Science and Engineering - An Introduction, John Wiley & Sons, USA, 1997, Chapter 19). 
 
 
 
Eletrônica + iônica 
 
Iônica. 
 De orientação. 
 
Eletrônica. 
 Magnética. 
 
 
 
 
 
 3a Questão 
 
 
Além da forma vibracional que se propaga através da rede cristalina interligada, o calor pode também se manifestar através da vibração 
de elétrons. Isto ocorre, contudo, somente em relação aos elétrons livres e não relação aos eletros da banda de valência, uma vez que 
estes últimos encontram-se fortemente ligados aos átomos. Esta vibração dos elétrons (também é uma forma calor) contribui de maneira 
menos significativa para o aumento da capacidade térmica, mas pode alterar a corrente elétricaproduzida por uma diferença de 
potencial, tornando a condução mais difícil. 
Com relação a produção de calor, selecione a opção correta: 
 
 
 
A presença de impurezas em um material colabora para a diminuição da resistência a passagem de 
corrente elétrica e, portanto, colabora negativamente a produção de calor. 
 
A utilização de alumínio puro e sem impurezas na fabricação de um resistor aumenta a dissipação de calor, 
se comparado com um resistor de alumínio altamente encruado (deformado) 
 
A vibração da rede cristalina que compõe um material é essencial para a resistência a passagem de 
elétrons e a conseqüente produção de calor, principalmente a baixas temperaturas. 
 A presença de defeitos na rede atômica que compõe o material colabora para a produção de calor. 
 Deve-se adotar para compor o resistor de um chuveiro um material que não tenha sofrido qualquer tipo de 
deformação mecânica. 
1a Questão 
 
 
O tipo de carga predominante e a concentração das mesmas em um semicondutor (elétrons ou buracos) pode ser determinada 
através de um experimento chamado Efeito Hall. Deste experimento, obtém-se a constante de Hall, RH, que, por sua vez, está 
relacionada a n, quantidade de elétrons por m3 do semicondutor, por n=(RH I e I)-1, onde l e l =1,6.10 -19C. 
Considerando-se um corpo de prova feito de Alumínio, com RH=-3,16 . 10 -11, determine a quantidade aproximada de portadores de 
carga (em módulo) por m3. 
 
 
 2,0 10
29. 
 
1,5 . 1025 
 1,5 . 10
26 
 
20 . 1030 
 
20 . 1015 
 
 
 
 
 
 2a Questão 
 
 
O Germânio foi um dos elementos testados no início da microeletrônica para ser utilizado como semicondutor; porém, o mesmo 
possui algumas características diferentes com relação ao Silício; por exemplo, é muito comum em projetos de microcircuitos, utilizar 
como condutividade elétrica máxima para o Germânio o valor de 100 (ohm.m) -1. 
Considerando-se o exposto anteriormente e sabendo-se que a condutividade elétrica do semicondutor de Germânio em função da 
temperatura é dada por ln  = 14 - 4.000. T-1 aproximadamente, onde T é a temperatura de trabalho em Kelvin, marque a opção 
correta abaixo: 
 
 
 
O componente poderá trabalhar até a temperatura de 200oC, que corresponde a 473K. 
 
O componente não apresentará limitações quanto a temperatura de trabalho. 
 O componente só poderá trabalhar a temperatura ambiente de 25
oC, que corresponde a 298K na escala 
Kelvin. 
 
O componente possui temperatura limite de trabalho igual a 170oC, que corresponde a 443K na escala 
Kelvin. 
 O componente poderá trabalhar a temperatura de 150oC, que corresponde a temperatura de 423K na 
escala Kelvin. 
 
 
 
 
 
 3a Questão 
 
 
A condutividade de um semicondutor varia com diversos parâmetros, entre os quais podemos citar a concentração 
de portadores de carga, a mobilidade destes portadores, o estado de deformação plástica do material e a 
temperatura, entre outros parâmetros. Com relação a dependência da temperatura em particular, tem-se que a 
condutividade varia segundo a expressão  = Cn T-3/2 e (-Eg/2kT), na qual "C" é uma constante associada ao 
material, "T" é a tempera em Kelvin, "Eg" é a "energia de gap" e "k" é a constante de Boltzmann, igual a 8,62 x 
10-5 eV/K. 
Com base na expressão anterior, PODEMOS afirmar que: 
 
 
 
A expressão apresentada possui um ponto de máximo, indicando que até determinada temperatura a 
condutividade aumenta, diminuindo logo depois 
 A medida que a temperatura aumenta, a condutividade diminui. 
 A medida que a temperatura aumenta, a condutividade aumenta. 
 
A expressão apresentada possui um ponto de mínimo, indicando que até determinada temperatura a 
condutividade diminui, aumentando logo depois. 
 
O efeito da condutividade na temperatura é desprezível, de tal forma que podemos considerá-la 
constante a medida que a temperatura aumenta 
 
 
 
 
 
 4a Questão 
 
 
Existem na teoria diversos processos de fabricação de semicondutores, tanto do tipo p quanto do tipo n. Quando 
assumimos teoricamente a possibilidade de inserir átomos de Arsênio, cuja valência é 5, As+5, em uma matriz de 
Silício, cuja valência é 4, Si+4, promovemos o surgimento de "buracos" na estrutura cristalina. Baseado nestas 
informações, escolha a opção que apresenta um elemento que poderia substituir o Arsênio neste processo. 
 
 
 
Na+ 
 
Be+2 
 
O-2 
 Ge+5 
 P+5 
 
 
 
 
 
 5a Questão 
 
 
Uma amostra de um determinado semicondutor a uma dada temperatura tem condutividade de 280 (Ω.m)^(-1). 
Sabendo que a concentração de buracos é de 2 x 10^20 m^(-3) e que a mobilidade de buracos e elétrons nesse 
material são respectivamente 0,09 m^2/V.S e 0,28 m^2/V.S, a concentração de elétrons é: 
 
 
 
715,78 x 10^19 m^-3 
 
140,25 x 10^19 m^-3 
 
412,88 x 10^19 m^-3 
 541,05 x 10^19 m^-3 
 618,57 x 10^19 m^-3 
 
 
 
 
 
 6a Questão 
 
 
Alguns componentes eletrônicos fazem uso de semicondutores extrínsecos e intrínsecos conjuntamente, sendo necessário que na 
temperatura de trabalho, o semicondutor intrínseco possua condutividade inferior a condutividade do extrínseco. No gráfico a seguir, 
no qual no eixo horizontal tem-se temperatura (oC e K) e no eixo vertical tem-se a condutividade elétrica (ohm.m) -1, podem-se 
observar curvas de evolução da condutividade de um semicondutor intrínseco de Silício, denominado no gráfico de intrinsic, e de 
dois semicondutores extrínsecos com concentrações de Boro de 0,0052% e 0,0013%. Baseado nestas informações, marque a opção 
correta. (CALLISTER, WILLIAM D. Jr. Materials Science and Engineering ¿ An Introduction, John Wiley & Sons, USA, 1997, Chapter 
19). 
Baseado no gráfico, podemos afirmar que: 
 
 
 
 
 
 
 A temperatura de 100
oC, o componente eletrônico montado com os condutores intrínseco e extrínseco 
provavelmente funcionará sem problemas referentes a condutividade. 
 
A partir das informações expostas no gráfico, percebe-se que em todas as temperaturas a condutividade 
elétrica do semicondutor intrínseco é superior a dos semicondutores extrínsecos. 
 
A temperatura de 100oC, o componente eletrônico terá que ser montado utilizando-se somente os 
condutores extrínsecos mostrados no gráfico. 
 Em nenhuma temperatura exposta no gráfico, haverá problemas de inversão de condutividade elétrica. 
 
A temperatura de 100oC, o componente eletrônico montado com os condutores intrínseco e extrínseco 
provavelmente apresentará problemas referentes a condutividade. 
 
 
 
 
 
 7a Questão 
 
 
Semicondutores, como a palavra sugere, podem apresentar comportamento condutor ou isolante, dependendo da 
temperatura de utilização, no caso de condutores intrínsecos. Entre os materiais mais utilizados com estas 
características, encontram-se o germânio, o silício e o arseneto de gálio. No intuito de entender o comportamento 
destes materiais, diversas teorias físicas foram criadas, introduzindo conceitos novos, como a mobilidade elétrica 
de elétrons, e, e de buracos, b. 
Com relação ao conceito de mobilidade elétrica, assinale a opção CORRETA: 
 
 
 
e < b 
 e > b 
 e =2 b 
 
e = b 
 
e =1/2 b 
 
 
 
 
 
 8a Questão 
 
 
Mediu-se um valor de resistência igual a 5,66 mΩ na temperatura de 70oC. Sabendo-se que o coeficiente de 
temperatura do material utilizado é igual a 0,0036 oC-1, determine o valor da resistência esperada na 
temperatura de 25oC. 
 
 
 
5,43 ohms 
 
5,41miliohms 
 4,87 ohms 
 
6,57 ohms 
 
7,46 ohms 
 
 
 
1a Questão 
 
 
A técnica mais utilizada para obtenção de semicondutores extrínsecos é a inserção de elementos ¿impureza¿ na rede cristalina do 
Silício, originando portadores de carga na forma de buracos, presentes nos condutores tipo-p, ou elétrons, presentes nos condutores 
tipo-n. 
 (CALLISTER, WILLIAM D. Jr. Materials Science and Engineering ¿ An Introduction, John Wiley & Sons, USA, 1997, Chapter 19). 
Considerando a figura a seguir, escolha aopção correta. 
 
 
 
 
 
 
A figura mostra a rede cristalina de um semicondutor extrínseco de Silício do tipo-n. 
 
A figura mostra a rede cristalina de um semicondutor intrínseco de Germânio. 
 A figura mostra a rede cristalina de um semicondutor intrínseco de Silício. 
 
A figura mostra a rede cristalina de um semicondutor intrínseco de Gálio. 
 A figura mostra a rede cristalina de um semicondutor extrínseco de Silício do tipo-p. 
 
 
 
 
 
 2a Questão 
 
 
Em 1951 o primeiro transistor, uma aplicação direta dos semicondutores, foi apresentado ao mundo comercial, 
porém somente em 1954 foi possível a produção em escala deste dispositivo eletrônico, após resolverem o 
problema de impurezas de ouro e cobre nas matrizes de silício e germânio, Com relação ao material motivador dos 
acontecimentos anteriormente descritos, os semicondutores, podemos afirmar que um grande número de 
modelagens físico-matemáticas foram desenvolvidas, entre as quais a que se refere a condutividade elétrica dos 
semicondutores extrínsecos tipo-p, na qual se expressa a predominância da concentração dos portadores de carga 
positiva, ou seja, dos buracos. 
Com relação a esta expressão, qual das opções a seguir oferece a MELHOR representação. 
 
 
 
ni | e | ( e+ b ) 
 
n | e | e 
 p | e | b 
 n | e | b p | e | e 
 
p | e | b n | e | e 
 
 
 
 
 
 3a Questão 
 
 
Qual é a principal característica dos materiais semicondutores? 
 
 
 
São somente condutores 
 
São somente isolantes 
 
São somente supercondutores. 
 
São condutores e isolantes. 
 
Não são condutores e isolantes. 
 
 
 5a Questão 
 
 
A concentração de elementos dopantes é um parâmetro essencial na fabricação de semicondutores extrínsecos. Identifique, entre as 
opções a seguir, aquela que identifica um fenômeno físico que pode fornecer esta informação. (CALLISTER, WILLIAM D. Jr. Materials 
Science and Engineering ¿ An Introduction, John Wiley & Sons, USA, 1997, Chapter 19). 
 
 
 
 
 
Efeito Fischer. 
 
Efeito Joule. 
 Lei de Ohm. 
 Efeito Hall. 
 
Efeito Tcherenkov. 
 
 
 
 
 
 6a Questão 
 
 
O século XX foi marcado por inúmeros avanços tecnológicos, entre os quais os advento dos semicondutores 
extrínsecos, essenciais na fabricação de microcomponentes eletrônicos. Uma das técnicas de produção desses 
semicondutores é a eletro inserção de átomos de valências diferentes de +4 na matriz do Silício. 
Considerando a exposição anterior, PODEMOS afirmar que. 
 
 
 
a inserção de átomos de Fósforo na matriz de Silício não origina um condutor extrínseco. 
 a inserção de átomos de Fósforo na matriz de Silício origina um condutor extrínseco tipo n. 
 
a inserção de átomos de Fósforo na matriz de Silício origina um condutor extrínseco com "buracos". 
 a inserção de átomos de Boro na matriz de Silício origina um condutor extrínseco tipo n. 
 
a inserção de átomos de Fósforo na matriz de Silício origina um condutor extrínseco tipo p. 
 
 
 
 
 
 7a Questão 
 
 
Dos componentes eletrônicos que sugiram entre 1940 e 1950, talvez o transistor seja o mais utilizado; consiste de um componente 
microeletrônico fabricado com semicondutores intrínsecos e extrínsecos e utilizado na amplificação de sinais, substituindo o seu 
precursor da era das válvulas, o triodo. Nos primeiros anos da década de 50, os transistores eram fabricados com Silício, Gálio e 
Germânio, sendo este último abandonado em decorrência do melhor desempenho atingido com os transistores de Silício. 
Considerando que a mobilidade elétrica dos portadores de carga e a condutividade elétrica de um semicondutor estão relacionadas 
por =n.l e l.e, calcule a condutividade de um semicondutor de Silício dopado com 1023 átomos por m3 de Fósforo, sabendo-se 
que l e l =1,6.10 -19C e .e = 0,14m2/V.s. 
 
 
 
1.500 (ohm.m) -1 
 
2.000 (ohm.m) -1 
 
2.500 (ohm.m) -1 
 2.240 (ohm.m) 
-1 
 
11,43 (ohm.m) -1 
 
 
 
 
 
 8a Questão 
 
 
Semicondutores extrínsecos são obtidos através da inserção de elementos ¿impureza¿ na rede cristalina do Silício, originando 
portadores de carga na forma de buracos, presentes nos condutores tipo-p, ou elétrons, presentes nos condutores tipo-n. 
(CALLISTER, WILLIAM D. Jr. Materials Science and Engineering ¿ An Introduction, John Wiley & Sons, USA, 1997, Chapter 19). 
 
Considerando a figura a seguir, escolha a opção correta. 
 
 
 
 
 
 A figura mostra a rede cristalina de um semicondutor extrínseco de Silício do tipo-n. 
 
A figura mostra a rede cristalina de um semicondutor intrínseco de Germânio. 
 
A figura mostra a rede cristalina de um semicondutor intrínseco de Silício. 
 A figura mostra a rede cristalina de um semicondutor intrínseco de Gálio. 
 
A figura mostra a rede cristalina de um semicondutor extrínseco de Silício do tipo-p. 
 
 
 
1a Questão 
 
 
Pode-se dizer sem medo de cometer um erro crasso que a indústria da microeletrônica se originou entre as décadas de 40 e 50 do 
século XX, quando foram criados os semicondutores intrínsecos de Silício, Gálio e Germânio e suas variações extrínsecas obtidas a 
partir da dopagem com elementos como o Boro e o Fósforo. (CALLISTER, WILLIAM D. Jr. Materials Science and Engineering ¿ An 
Introduction, John Wiley & Sons, USA, 1997, Chapter 19). 
Considerando a figura a seguir, escolha a opção correta. 
 
 
 
 
 
 
 
A figura mostra a rede cristalina de um semicondutor intrínseco de Gálio 
 A figura mostra a rede cristalina de um semicondutor intrínseco de Silício. 
 A figura mostra a rede cristalina de um semicondutor intrínseco de Germânio. 
 
A figura mostra a rede cristalina de um semicondutor extrínseco de Silício do tipo-p. 
 
A figura mostra a rede cristalina de um semicondutor extrínseco de Silício do tipo-n. 
 
 
 
 
 
 2a Questão 
 
 
A quantidade de buracos e elétrons em um semicondutor é uma função da temperatura a que este é submetido. Baseado no gráfico a 
seguir, no qual no eixo horizontal tem-se temperatura (oC e K) e no eixo vertical tem-se a condutividade elétrica (ohm.m) -1, podem-se 
observar curvas de evolução da condutividade de um semicondutor intrínseco de Silício, denominado no gráfico de intrinsic, e de dois 
semicondutores extrínsecos com concentrações de Boro de 0,0052% e 0,0013% (CALLISTER, WILLIAM D. Jr. Materials Science and 
Engineering - An Introduction, John Wiley & Sons, USA, 1997, Chapter 19). 
 
 
 
 
 
 
Baseado no gráfico, podemos afirmar que: 
 
 
 
 
A 400oC aproximadamente, as condutividades elétricas dos semicondutores extrínsecos se igualam. 
 
A uma dada temperatura, quanto menor a concentração de Boro, maior será a condutividade do 
semicondutor. 
 A condutividade elétrica do semicondutor intrínseco diminui acentuadamente com o aumento da 
temperatura. 
 
As condutividades elétricas dos semicondutores extrínsecos e intrínsecos nunca se igualam. 
 A condutividade elétrica do semicondutor intrínseco aumenta acentuadamente com o aumento da temperatura. 
 
 
 
 
 
 
 3a Questão 
 
 
Assinale a alternativa correta: 
 
 
 
No diodo semicondutor de silício, a queda de tensão em seus terminais quando polarizado diretamente, isto 
é, com a polaridade positiva da fonte de tesão conectada no material tipo N e a polaridade negativa 
conectada ao material tipo P, é 1V. 
 
No diodo semicondutor de silício, a queda de tensão em seus terminais quando polarizado diretamente, isto 
é, com a polaridade positiva da fonte de tesão conectada no material tipo N e a polaridade negativa 
conectada ao material tipo P, é 0,3V. 
 
No diodo semicondutor de silício, a queda de tensão em seus terminais quando polarizado diretamente, isto 
é, com a polaridade positiva da fonte de tesão conectada no material tipo P e a polaridade negativa 
conectada ao material tipo N, é 0,3V. 
 No diodo semicondutor de silício, a queda de tensão em seus terminais quando polarizadodiretamente, isto 
é, com a polaridade positiva da fonte de tesão conectada no material tipo P e a polaridade negativa 
conectada ao material tipo N, é 0,7V. 
 No diodo semicondutor de silício, a queda de tensão em seus terminais quando polarizado diretamente, isto 
é, com a polaridade positiva da fonte de tesão conectada no material tipo N e a polaridade negativa 
conectada ao material tipo P, é 0,7V. 
1a Questão 
 
 
Um material dielétrico é aquele que apresenta (ou pode ser projetado de modo a apresentar) uma estrutura de 
dipolos a nível molecular ou atômico, que assume uma configuração orientada sob a ação de um campo elétrico. 
Estes materiais são comumente utilizados em capacitores para aumentar a capacidade de armazenamento de 
cargas, modificando a permissividade relativa fornecida por: r=/o. 
Com relação a permissividade relativa, PODEMOSafirmar: 
 
 
 
r é menor que 0,5. 
 
r está entre 2 e 5. 
 
r é igual a 1. 
 r é maior que 1. 
 
r é menor que 1. 
 
 
 
 
 
 2a Questão 
 
 
Atualmente há diversos exemplos quanto à natureza do elemento resistivo de um potenciômetro. Considerando os 
itens abaixo, assinale a opção com exemplo quanto à natureza do elemento resistivo INCORRETO: 
 
 
 No filme de metal o elemento resistivo é fabricado pela deposição de um filme de metal sobre um 
substrato cerâmico, sendo o filme de metal o mais barato dos processos. 
 
No CERMET o elemento resistivo é fabricado pela deposição de um filme composto de metal precioso e 
materiais cerâmicos. 
 
No fio enrolado há limitação quanto a resolução e desempenho de ruído. 
 
A composição de carbono produz um potenciômetro relativamente barato. 
 No filme de carbono o elemento resistivo é fabricado pela deposição de um filme de carbono sobre um 
substrato ou base. 
 
 
 
 
 
 3a Questão 
 
 
Um capacitor com dielétrico de ar possui um valor de 0,025 F. Quando este capacitor 
é mergulhado em óleo de transformador sua capacitância passa a ser de 0,08 F. Qual 
a constante dielétrica do óleo do transformador? 
 
 
 a) Єr = 0,32. 
 e) Єr = 3,1. 
 d) Єr = 3,2. 
 b) Єr = 8,85 x 10-12. 
 c) Єr = 0,31. 
 
 
 
 
 
 4a Questão 
 
 
Capacitores são dispositivos projetados para armazenar carga elétrica e que tem esta capacidade ampliada quando inserimos entre 
suas placas um material dielétrico, como mostrado na figura a seguir. Considerando-se que a capacitância, C, de um capacitor é a 
razão entre a sua carga, Q, e a diferença de potencial, V, ao qual o mesmo está submetido, ou seja, C=Q/V, assinale a 
opção correta que fornece a capacitância do capacitor mostrado na figura. 
(CALLISTER, WILLIAM D. Jr. Materials Science and Engineering ¿ An Introduction, John Wiley & Sons, USA, 1997, Chapter 19). 
 
 
 
 
 C=(Q0 + Q´) / V 
 
Q0 = C. V 
 0. 
 
C=Q´/V. 
 
C=Q0 / V 
 
 
 
 
 
 5a Questão 
 
 
Um capacitor é constituído por duas placas paralelas com 12 cm2 de área cada uma, espaçadas de 
0,1 mm por um material cuja constante dielétrica é igual a 5. Determine o valor da capacitância 
assim obtida. 
 
 
 
745 pF 
 
456 pF 
 531 pF 
 
821 pF 
 615 pF 
 
 
 
 
 
 6a Questão 
 
 
Atualmente há diversos exemplos quanto à natureza do elemento resistivo de um potenciômetro. Considerando os 
itens abaixo, assinale a opção que contem exemplo quanto à natureza do elemento resistivo INCORRETO: 
 
 
 filme de madeira (wood film) e filme de metal 
 
cerâmica e fio enrolado 
 
composição de carbono e plástico 
 fio enrolado e CERMET 
 
CERMET e filme de carbono 
 
 
 
 
 
 7a Questão 
 
 
A resistividade de um material expressa a resistência que este apresenta a passagem de correta elétrica. Apesar de estar relacionada 
a resistência elétrica R através da expressão =R.A/l, é uma constante do material e não varia com A (área da seção reta do condutor 
no formato cilíndrico) e nem l (comprimento do condutor), ou seja, quando aumentamos o comprimento, a resistência aumenta e 
quando aumentamos a área da seção reta, a resistência diminui, mantendo, desta forma, a resistividade constante. A resistividade 
varia, no entanto, com a temperatura do condutor. Considerando o exposto, marque a opção correta. 
 
 
 
Nada podemos afirmar sobre a resistividade do isolante sem conhecer suas dimensões. 
 
A resistividade elétrica de um material isolante é a mesma na terra, a 30oC,ou no Pólo Norte, a -30oC, 
pois é uma constante e depende apenas da natureza do mesmo. 
 À medida que um isolante tende para o estado de isolante perfeito, sua resistividade tende à zero. 
 
Quanto maior o comprimento de um fio isolante, maior é a sua resistividade. 
 À medida que um condutor tende para o estado de condutor perfeito, sua resistividade tende à zero. 
 
 
 
 
 
 8a Questão 
 
 
Deseja-se construir um capacitor de 18 nF utilizando-se duas placas paralelas com 240 cm2 de área 
cada uma e espaçadas de 0,02 mm. Determine o valor da constante dielétrica do material a ser 
utilizado. 
 
 
 
1,3 
 2,1 
 
1,9 
 
1,5 
 1,7 
 
1a Questão 
 
 
Ao projetarmos aparatos elétricos, devemos prever que existirão partes deste equipamento em que a condução 
elétrica é essencial e outras partes nas quais a condução não só é desnecessária, mas altamente inconveniente 
devido ao perigo de choque elétrico. Para excluir ou minimizar as possibilidades de descargas elétricas deletérias a 
vida, utilizam-se materiais isolantes como os polímeros e os cerâmicos, que possuem algumas propriedades 
características, entre as quais só NÃOpodemos citar: 
 
 
 
Os cerâmicos possuem não só baixa condutividade elétrica, mas também baixa condutividade térmica. 
 Os polímeros são compostos de grandes cadeias moleculares, apresentando baixo ponto de fusão. 
 
Os polímeros apresentam grande facilidade de se ajustar aos formatos solicitados, devido a grande 
ductilidade. 
 
Os cerâmicos existem em grande abundância na natureza, tendo como exemplos os nitretos e silicatos. 
 Os cerâmicos são materiais capazes de absorver energia sem fragmentação fácil, apresentando baixa 
fragilidade. 
 
 
 
 
 
 2a Questão 
 
 
Capacitor é um sistema composto por dois condutores (chamados de armaduras ou de placas) separados por um dielétrico (isolante). 
Considera-se, de forma simplificada, que a carga deste sistema quando submetido a uma diferença de potencial é a carga em módulo 
de uma das placas, ou seja, se uma placa tem carga +Q e a outra possui carga ¿Q, dizemos que o capacitor tem carga Q. 
 
Considerando o exposto, indique a opção correta. 
 
 
 
 
A condutividade elétrica de um dielétrico deve ser alta, uma vez que deve haver condução de carga em seu 
interior. 
 
A borracha, o cerâmico genérico e o aço inoxidável são elementos tipicamente encontrados como dielétricos. 
 Em um sistema constituído de uma pessoa (o corpo é um condutor) sobre uma prancha de madeira que se 
encontra sobre um terreno (condutor), podemos dizer que se poderia formar um capacitor onde a pessoa e 
a terra seriam as armaduras do capacitor e a prancha seria o dielétrico. 
 
Um sistema constituído por duas placas condutoras paralelas submetidas a uma diferença de potencial e 
com vácuo entre elas não pode ser considerado um capacitor. 
 
A resistividade de um material dielétrico é da mesma ordem de grandeza que a resistividade de um material 
condutor. 
 
 
 
 
 
 3a Questão 
 
 
Considere um capacitor de placas paralelas, com r igual a 2,5, com d=2,0 mm entre as placas. Suponha que outro 
material com constante dielétrica igual a 10 tnha sido utilizado no lugar do dielétrico anterior, mantendo-se, no 
entanto, a capacitância inalterada através do ajuste da distância entre as placas. 
Considerando o contexto anterior, determine o novo valor de "d". 
 
 
 
12,0 mm 
 
1,0 mm 
 8,0 mm 
 
10,0 mm 
 
4,0 mm 
 
 
 
 
 
 4a Questão 
 
 
Deseja-se construir um capacitor de 1,2 nF utilizando-seduas placas paralelas espaçadas de 0,2 
mm. O valor da constante dielétrica do material utilizado é 2,26. Determine a área de cada uma 
das placas a serem utilizadas. 
 
 
 
180 cm2 
 
140 cm2 
 
160 cm2 
 
120 cm2 
 
100 cm2 
 
 
 
 
 
 5a Questão 
 
 
Capacitância é uma grandeza física associada a dispositivos denominados de capacitores e que possuem a finalidade de armazenar 
carga. Do ponto de vista quantitativo, define-se capacitância, C, de um capacitor como a razão entre a sua carga, Q, e a diferença 
de potencial, V, ao qual o mesmo está submetido, ou seja, C=Q/V. No sistema internacional de unidades (SI), a capacitância é medida 
em Farad (F). Considerando o exposto, determine a opção correta. 
 
 
 
Um capacitor que possui capacitância igual a 0,06F e está submetido a uma diferença de potencial igual a 
submetido a 2V acumula uma carga de 0,003C. 
 
A capacitância do capacitor sempre varia com a corrente elétrica do circuito, como mostra a expressão 
C=Q/V. 
 Um capacitor submetido a 120V e que tenha acumulado uma carga de 0,008C possui capacitância igual a 
0,00007 F. 
 
Um capacitor que tenha acumulado uma carga de 0,010C e que possui capacitância igual a 2F está 
submetido a uma diferença de potencial igual a submetido a 0,05V 
 Dois capacitores idênticos submetidos respectivamente a diferenças de potencial iguais a 2V e V/2 terão 
2C e 1C de carga respectivamente. 
 
 
 
 
 
 6a Questão 
 
 
Um fio condutor de comprimento inicial l, apresenta a 25 graus Celsius , uma resistência R = 90 Ohm; corta-se um 
pedaço de 1 m de fio, e elevando-se a temperatura do fio restante para 75 graus Celsius, verifica-se que a 
resistência ôhmica do mesmo é de 100 W. Sabendo-se que o coeficiente de temperatura do material é de 4x10- 3 
1/C , determine o comprimento inicial l do fio. 
 
 
 
5 m 
 
10 m 
 13,5 m 
 15 m 
 
12 m 
 
 
 
 
 
 7a Questão 
 
 
Uma forma de quantificar a polarização de um material dielétrico é através de seu momento de dipolo elétrico, 
dado pela expressão p=q.d, na qual "q" é a magnitude da carga do dipolo e "d" é a distância entre as cargas. 
Supondo que a manipulação físico-química do material tenha dobrado sua carga em alguns pequenos volumes do 
mesmo, assim como dividido por dois a distância entre as cargas de sinal oposto. 
Nos pequenos volumes do material mencionado anteriormente, determine como ficou o dipolo. 
 
 
 p 
 
p/4 
 p/2 
 
2p 
 
4p 
 
 
 
 
 
 8a Questão 
 
 
Os diversos tipos de capacitores têm as seguintes características: 
I. Os capacitores de mica são encontrados com valores altos de capacitância. 
II. O capacitor de cerâmica suporta tensões elevadas até 3 kV. 
III. O capacitor eletrolítico de alumínio é utilizado em fontes de alimentação. 
IV. Os capacitores de polyester são capacitores caros que podem funcionar em altas frequências. 
V. O capacitor eletrolítico de alumínio é um capacitor de alta capacitância e não suporta tensões elevadas. 
Das afirmações acima podemos dizer que são verdadeiras as: 
 
 
 e. As afirmações II, III e V. 
 b. As afirmações II e III. 
 a. Somente a afirmação V. 
 c. As afirmações I e V. 
 d. As afirmações I, II e IV. 
 
1a Questão 
 
 
Um condutor de cobre com seção reta circular, 12 metros de comprimento e raio de 1,5 
mm é percorrido por um acorrente de 2,2 A. Determine a diferença de potencial sobre 
este condutor. Considere a condutividade do cobre igual a 5,8 x 107 S/m. 
 
 
 64 mV 
 1,2 V 
 
6,4 V 
 
120 mV 
 
640 mV 
 
 
 
 
 
 2a Questão 
 
 
Em uma experiência típica envolvendo eletricidade, consideram-se dois corpos, 1 e 2, suspensos por fios isolantes, aos quais foram 
fornecidas cargas elétricas iguais. Observa-se que o corpo 1 adquire carga em toda a sua superfície, enquanto o corpo 2 mantém a 
carga concentrada no ponto de carregamento. Considerando as informações, escolha a alternativa correta: 
 
 
 Uma explicação para tal fenômeno é que no corpo 1, as cargas possuem liberdade de movimentação, 
enquanto no corpo 2, isso não ocorre. 
 Provavelmente 1 e 2 são semicondutores. 
 
Provavelmente tanto o material 1 como o 2 são cerâmicos. 
 
O corpo 1 trata-se de um isolante elétrico, enquanto o corpo 2 é um condutor elétrico. 
 
A diferença entre um condutor e um isolante é que o primeiro pode ser carregado 
 
 
 
 
 
 3a Questão 
 
 
Alguns materiais apresentam uma grande resistência ao trânsito de elétrons, sendo denominados de isolantes. 
Estes materiais encontram grande aplicação, quando desejamos isolar o operador de máquinas que 
apresentam força eletromotriz do perigo de choques elétricos. 
Entre os materiais a seguir relacionados, qual o que MELHOR poderia ser utilizado como isolante, considerando 
aspectos elétricos. 
Material Condutividade (Ohm.m-1) 
Alumina 5,5 x 10-13 
Concreto 6,7 x 10-9 
Porcelana 7,5 x 10-10 
Sílica fundida 9,0 x 10-18 
Poliestireno 8,4 x 10-14 
 
 
 
 
Concreto 
 Sílica fundida 
 Porcelana 
 
Poliestireno 
 
Alumina 
 
 
 
 
 
 4a Questão 
 
 
O Isolante tem a função de isolação entre o condutor interno e externo, porém esta é uma visão simplificada do 
que acontece na transmissão de um sinal. Qual das alternativas abaixo é a aquela totalmente incorreta no que 
tange a conformidade com o texto? 
 
 
 
Muitas vezes uma simples inspeção visual do cabo que desejamos adquirir pode nos indicar alguma 
informação sobre a qualidade do mesmo. 
 
Além da corrente elétrica, também deve ser considerado o campo elétrico e magnético que se estabelece na 
isolação em função desta corrente e nível de tensão. 
 Na transmissão de um sinal devemos lembrar que o "sinal" não é formado apenas pela corrente elétrica que 
ocorre devido a aplicação de um determinado nível de tensão nos condutores interno e externo. 
 Este meio a qual chamamos simplesmente de isolação não tem grande importância na qualificação de um 
cabo coaxial, além daquela de isolar os codutores internos e externos. 
 
A isolação é importante, e, para que tenhamos certeza sob a qualidade desta isolação devemos levar o 
material a laboratório e submetê-lo a testes apropriados para verificarmos suas características. 
 
 
 
 
 
 5a Questão 
 
 
O valor da resistividade elétrica dos metais e suas ligas possuem uma dependência com a variação da 
temperatura. De que modo esta dependência é explicitada? 
 
 
 
 
 
Linear 
 
Logarítmica 
 
Quadrática 
 Exponencial 
 
 Trigonométrica 
 
1a Questão 
 
 
Os cabos telefônicos possuem diversas classificações, entre as quais a de cabo externo e cabo interno às 
instalações prediais. Com relação a estas classificações, NÃO podemos afirmar que: 
 
 
 Entre os fios internos, encontram-se aqueles do tipo FI-60, com 0,60 mm de diâmetro. 
 
Os cabos externos são constituídos por par de fios paralelos ou trançados. 
 Os fios interno e externo devem ser isolados do meio exterior, o que é feito de forma idêntica para ambos. 
 
Os cabos externos são isolados por uma camada protetora com material termoplástico e podem ter 
diâmetro de condutor entre 0,65 mm e 1,6 mm. 
 
Os cabos internos são constituídos por um par trançado de fios de cobre estanhado isolados por PVC. 
 
 
 
 
 
 2a Questão 
 
 
Contrariando o que se julgava definido, a partir de 1970, diversas linhas de pesquisa apresentaram como produto polímeros 
condutores, que chegavam a apresentar condutividade comparável a do Cobre. 
Considerando os itens abaixo, assinale a opção correta: 
 
 
 
Com o advento dos polímeros condutores, as luvas dos equipamentos de proteção individual poderão ser 
confeccionadas com este material. 
 Nos casos em que o peso do condutor é relevante, é interessante ter a opção de substituir o metal 
condutor por polímeros condutores. 
 Todos os metais podem ser substituídos por polímeros condutores, nos casos que os primeiros atuam 
como condutores. 
 
No caso dospolímeros, a corrente elétrica gerada não depende da estrutura de elétrons presente. 
 
A condutividade de um polímero condutor nunca será comparável a de um condutor não polimérico. 
 
 
 
 
 
 3a Questão 
 
 
A Engenharia de Cabos para Rede Telefônica recomenda o uso da família CIT. Das 
alternativas abaixo qual aquela que está totalmente correta quanto a especificação de 
um cabo CIT para os padrões dos modernos serviços? 
 
 
 Recomendado para instalações internas em centrais telefônica, edifícios 
comerciais, residenciais e industriais, ou aplicações que exijam segurança contra 
a propagação de fogo; · Fabricado com isolamento em termoplástico especial, 
este cabo apresenta características elétricas estáveis quando da variação de 
temperatura, conferindo ao produto ótimo rendimento na transmissão de sinais 
analógicos e digitais; · Certificado de homologação ANATEL 0582-02-0256; · 
Blindagem em fita de poliéster metalizada. 
 Recomendado para instalações internas em centrais telefônica, edifícios 
comerciais, residenciais e industriais, ou aplicações que exijam segurança contra 
a propagação de fogo; · Fabricado com isolamento em papel, este cabo apresenta 
características elétricas estáveis quando da variação de temperatura, conferindo 
ao produto ótimo rendimento na transmissão de sinais analógicos e digitais; · 
Certificado de homologação ANATEL 0582-02-0256; · Blindagem em fita de 
poliéster metalizada. 
 Recomendado para instalações internas em centrais telefônica, edifícios 
comerciais, residenciais e industriais, sem aplicações que exijam segurança 
contra a propagação de fogo; Fabricado com isolamento em termoplástico 
especial, este cabo apresenta características elétricas estáveis quando da 
variação de temperatura, conferindo ao produto ótimo rendimento na 
transmissão de sinais analógicos e digitais; · Certificado de homologação ANATEL 
0582-02-0256; · Blindagem em fita de poliéster metalizada. 
 Recomendado para instalações internas em centrais telefônica, edifícios 
comerciais, residenciais e industriais, ou aplicações que exijam segurança contra 
a propagação de fogo; · Fabricado com isolamento em termoplástico especial, 
este cabo apresenta características elétricas estáveis quando da variação de 
temperatura, conferindo ao produto ótimo rendimento na transmissão de sinais 
somente analógicos· Certificado de homologação ANATEL 0582-02-0256; · 
Blindagem em fita de poliéster metalizada. 
 Recomendado para instalações especificamente externas de telefonia e aplicações 
que exijam segurança contra a propagação de fogo; Fabricado com isolamento 
em termoplástico especial, este cabo apresenta características elétricas estáveis 
quando da variação de temperatura, conferindo ao produto ótimo rendimento na 
transmissão de sinais analógicos e digitais; · Certificado de homologação ANATEL 
0582-02-0256; · Blindagem em fita de poliéster metalizada. 
 
 
 
 
 
 4a Questão 
 
 
Um dos modelos mais simples de capacitor é representado por placas paralelas nas quais ocorre o acúmulo de cargas 
quando uma diferença de potencial é aplicada entre as mesmas. Neste modelo de capacitor, a capacitância é definida 
por C =  A / l, onde "A" representa a área das placas, "l" a distância entre elas e  é a permissividade do vácuo. 
Considerando-se um capacitor de placas paralelas quadradas de lado "l", que distam entre si "2l", determine o efeito 
na capacitância do capacitor se dobrarmos o lado da placa. 
 
(CALLISTER, WILLIAM D. Jr. Materials Science and Engineering - An Introduction, John Wiley & Sons, USA, 1997, 
Chapter 19). 
 
 
 
 
 Será quadruplicada. 
 
Será reduzida a metade. 
 
Será reduzida a quarta parte. 
 
Não será alterada. 
 
Será duplicada. 
 
 
 
 
 
 5a Questão 
 
 
Está provado que correntes superiores a 20mA são capazes de causar paradas respiratórias, conduzindo algumas vezes a morte. 
Um dos objetivos de se utilizar equipamento de proteção individual composto de materiais isolantes elétricos é evitar este tipo de 
acidente. 
Considerando o exposto, determine a opção que provavelmente só apresenta materiais isolantes elétricos. 
 
 
 
Madeira, borracha, Platina e isopor. 
 
Silício, Prata, água pura salgada. 
 Ferro, madeira porosa e borracha. 
 
Cobre, Ouro Níquel e Nitrato de Manganês. 
 Borracha, isopor, madeira e cerâmica genérica. 
 
 
 
 
 
 6a Questão 
 
 
Para satisfazer a Taxa de Transmissão e Ocupação dos Pares, os projetos de Engenharia em Cabos Telefônicos 
internos e externos devem considerar os parâmetros elétricos e as condições físicas da rede. Das alternativas 
abaixo, assinale a única verdadeira. 
 
 
 
As condições físicas podem ser Perda de Retorno, outros Sinais e Crosstalk Next/Fext 
 
Os parâmetros elétricos podem ser Pupinização, Paralelos e Conexões 
 As condições físicas podem ser Resistência elétrica e Atenuação. 
 
Os parâmetros elétricos podem ser Pupinização, Paralelos, Resistência elétrica, Atenuação, Perda de 
Retorno 
 Os parâmetros elétricos podem ser Resistência elétrica, Atenuação, Perda de Retorno, outros Sinais e 
Crosstalk Next/Fext 
 
 
 
 
 
 7a Questão 
 
 
A Itália também teve seu expoente científico nos primórdios da pesquisa com eletricidade, seu nome era Luigi Galvani (1737-1798). 
Embora atuasse na área hoje conhecida como biomédica, como professor de anatomia da Universidade de Bolonha, foi um dos 
primeiros cientistas a relatar o efeito de correntes elétricas na musculatura de um ser vivo, quando acidentalmente durante a 
dissecação de um sapo o aproximou de um instrumento elétrico. 
Considerando o exposto, determine a opção que provavelmente só apresenta materiais isolantes elétricos. 
 
 
 Isopor, madeira e cerâmica. 
 Cobre, Ouro, Ferro e Níquel. 
 
Silício, Prata, água salgada. 
 
Madeira, borracha, Platina e isopor. 
 
Nitrato de Prata, madeira porosa e borracha. 
 
 
 
 
 
 8a Questão 
 
 
Os fios elétricos utilizados em instalações prediais são específicos para este uso, apresentando como fator 
determinante para instalação o diâmetro (ou bitola) dos mesmos. Com relação a estes tipos de fio, NÃO podemos 
afirmar que: 
 
 
 Quanto maior for a seção reta do fio, menor é a sua resisitividade. 
 
Quanto maior for a bitola do fio, menor é a sua resistência elétrica. 
 Uma classificação comum da bitola dos fios é a americana AWG (American Wire Gauge). 
 
Quanto maior for a área da seção reta do fio, maior é a sua resistência elétrica. 
 
Estes fios possuem como proteção uma camada polimérica para evitar o contato e, consequentemente, o 
choque elétrico. 
 
1a Questão 
 
 
Entre as diversas propriedades dos materiais elétricos, há duas que merecem especial relevância devido a aplicação 
das mesmas nos dispositivos elétricos do dia a dia: a ferroeletricidade e a piezoeletricidade. Com relação a estes 
dois tipos de propriedade, NÂO podemos afirmar: 
 
 
 Os materiais piezoelétricos são aqueles que transformam luz em energia elétrica. 
 
O titanato de bário é o exemplo de um material ferroelétrico, que pode ser utilizado como material 
dielétrico em capacitores. 
 Materiais ferroelétricos são materiais que possuem a capacidade de formação natural de dipolos elétricos, 
apresentando magnetização permanente. 
 
Os materiais ferroelétricos possuem alto custo, limitando o seu uso em Engenharia. 
 
O carbeto de silício é um exemplo de material transdutor muito utilizadi em micrifones. 
 
 
 
 
 
 2a Questão 
 
 
Existem materiais que apresentam polarização elétrica espontânea a nível microestrutural, ou seja, mesmo na ausência de campos 
elétricos externos, estes materiais apresentam dipolos elétricos. Isto ocorre em conseqüência da combinação de cargas elétricas 
pertencentes a íons de sinais contrários e a assimetria geométrica da rede cristalina que compõem a substância, como mostrado na 
figura a seguir. 
 
 
 
 
(CALLISTER, WILLIAM

Outros materiais