Buscar

Relatório 01 - Medidas de Tensão e Frequência com o Osciloscópio

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 3, do total de 14 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 6, do total de 14 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 9, do total de 14 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Prévia do material em texto

3
Universidade Estadual Paulista – UNESP
Faculdade de Ciências e Tecnologia
Campus de Presidente Prudente
Relatório referente a disciplina de Laboratório de Física IV
Prática 1:
Osciloscópio
Docente: Prof Dr Carlos Alberto Tello Saenz
Discentes: Fernanda Bertaco da Silva
 Valdinei Liber de Faria
Presidente Prudente
Março/2018
SUMÁRIO
RESUMO.........................................................................................................03
1. INTRODUÇÃO TEÓRICA................................................................................04
1. OBJETIVOS ....................................................................................................08
1. PROCEDIMENTO EXPERIMENTAL...............................................................09
3.1. Materiais utilizados...................................................................................11
3.2. Procedimentos..........................................................................................12
1. RESULTADOS E DISCUSSÃO ......................................................................15
1. CONCLUSÃO .................................................................................................23
REFERÊNCIAS BIBLIOGRÁFICAS ................................................................24
RESUMO
O osciloscópio é um instrumento cuja finalidade é realizar medições de tensões contínuas, alternadas, períodos, frequências e defasagem. No display de um osciloscópio podem ser observadas funções formadas a partir do sinal de circuitos eletrônicos, portanto, podem ser observadas ondas senoidais, triangulares e quadráticas, além de ser possível realizar o calculo do erro relativo utilizando de observações do mesmo. Este instrumento é de suma importância, uma vez que o equipamento oferece dados importantes para determinação de parâmetros de onda. O osciloscópio possui também boa precisão, uma vez que a taxa de variação dos resultados apresenta baixíssima diferença. 
1. INTRODUÇÃO
Um osciloscópio é um instrumento de medida cujo objetivo é visualizar fenômenos elétricos, o que possibilita que sejam medidas tensões contínuas, alternadas, períodos, frequência e defasagem, possuindo elevado grau de precisão [3]. Pode-se ver abaixo, na figura 01, a esquematização de um osciloscópio:
 Figura 01 – Osciloscópio.
No display (gerador de funções) de um osciloscópio podemos observar a formação de fenômenos transitórios e formas de onda dos sinais de circuitos eletrônicos em geral [2]. Geralmente, um gerador de funções possui a capacidade de gerar ondas senoidais, triangulares, quadráticas e dente-de-serra, com diversas frequências e amplitudes. Existem também diversos botões de ajustes acoplados ao painel, incluindo um frequencímetro, além de saídas de sinal [1].
O osciloscópio analógico dispõe de um tubo de raios catódicos (figura 02), sendo geralmente alimentado por uma fonte de energia [2]. Este tubo de raios catódicos possui uma espécie de canhão que emite um feixe de elétrons que, ao incidir na tela, produz um ponto luminoso. A partir de campos elétricos e magnéticos, pode-se deflexionar este feixe e com isso formar qualquer tipo de figura na tela do osciloscópio [2].
As placas defletoras constituem o sistema de deflexão do osciloscópio, movimentando por atração o feixe através de um campo elétrico, o que leva a formas a figura na tela [3].
 Figura 02 – Tubo de raios catódicos.
Dentro da tensão contínua (aquela que não muda sua polaridade) temos a tensão contínua constante e a tensão contínua variável. Enquanto a constante mantem seu valor em função do tempo, a variável varia seu valor sem que ocorra mudança de sua polaridade [3]. As ondas senoidais, quadráticas e triangulares são observáveis através de tensões contínuas variáveis.
Essa tensão contínua variável pode ser repetitiva ou periódica. Para toda função periódica temos um período (T) que seria o tempo de duração de um ciclo completo e uma frequência (f) que seria o número de ciclos em um intervalo de tempo de 1 segundo [3]. Como uma é o inverso da outra, tem-se as seguintes equações:
 Equação 01 - Frequência.
 Equação 02 – Período.
Quando temos uma tensão que apresenta características periódicas é necessário estabelecer um valor que indique a componente DC da forma de onda. Este valor médio, ou valor DC, é uma relação entre a área da figura em um intervalo de tempo igual a um período. Este valor é medido por um voltímetro nas escalas VDC e pelo osciloscópio [3].
Sabe-se que uma função alternada muda de polaridade com o tempo [3]. Quando tempo uma tensão alternada fornecida através da rede elétrica, temos que ela obedece a seguinte função: 
 Equação 03 – Função de uma onda senoidal.
2. OBJETIVOS
	Utilizando o osciloscópio, verificar as formas de onda senoidal, triangular e quadrada, além de medir tensões alternadas, contínuas e frequências de modo a conseguir calcular o erro relativo do mesmo.
3. PROCEDIMENTO EXPERIMENTAL
3.1. Parte 1:
Primeiramente, ligou-se o osciloscópio à fonte e, ajustou-se a mesma com uma voltagem especificada (2V, 5V, 8V, 10V e 15V), alterando, se necessário, a posição do atenuador do osciloscópio. Para 2V da fonte, a posição do atenuador do osciloscópio era de 2mV/divisão, visto que, para este valor de tensão fora contadas duas divisões. Para ajudar na identificação dessas divisões, uma grade chamada “graticule” ou “retículo” é desenhada na face da tela. Cada quadrado na graticule é conhecido como uma divisão, e cada divisão pode variar de acordo com os comandos fornecidos ao osciloscópio.
Além da tensão de 2V, foram feitas as demais, alterando a posição do atenuador quando era necessário, pois, para as tensões de 8V, 10V e 15V, o atenuador foi recolocado em 5mV/div.
Após contar-se o número de divisões entre os picos mostrados na graticule do osciloscópio, tínhamos que multiplicar o valor apontado pelo atenuador com o número de divisões entre esses picos. Assim, obtêm-se a tensão medida pelo osciloscópio (VmO). Posteriormente, com os resultados, calculou-se o desvio padrão de cada tensão medida pelo aparelho.
3.2. Parte 2:
	Na segunda parte do experimento, observou-se a interação do osciloscópio com uma fonte geradora de frequências específicas e diferentes tipos de ondas. No caso, ondas senoidais, triangulares e quadradas.
	Primeiramente, ajustou-se o gerador para um sinal específico, mudando, se necessário a posição de varredura do osciloscópio. Após isso, verificou-se o número de divisões entre os picos das ondas que se estava analisando. E com isso, pôde-se calcular o período e a frequência aferida pelo osciloscópio. Por exemplo, regulou-se o mesmo em onda senoidal com 100Hz. A posição de varredura era de 2ms/div, verificou-se que havia 5 divisões entre os picos. Com isso, conseguiu-se calcular o período e a frequência medida pelo osciloscópio.
	O mesmo procedimento foi realizado tanto coma onda quadrada, tanto com a triangular. Posteriormente, com os resultados, calculou-se o desvio padrão de cada frequência medida pelo aparelho.
3.3. Parte 3
Inicialmente, conectou-se em série o gerador de sinais juntamente com o multímetro e o osciloscópio. Ajustou-se o multímetro em tensão alternada (VAC) e o gerador em 60Hz. E, regulou-se o valor de tensão por divisões do osciloscópio conforme fosse necessário. A medida que se modificava o valor da amplitude no gerador de sinais, a mesma se alterava na graticule do osciloscópio.
Regulou-se o valor da tensão no multímetro e, ajustou-se a amplitude da melhor maneira para se aferir o número de divisões presentes no osciloscópio. O valor de tensão por divisões multiplicado pelo valor ??????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????Contou os quadradinhos ate o pico, do eixo x ate a amplitude
4. RESULTADOS E DISCUSSÕES
4.1. Parte 1
	Tensão (V)
	Posição do atenuador (mV)
	Número de divisões
	Tensão (VmO) medida no osciloscópio 
	2
	2
	1
	2
	5
	2
	2,5
	5
	8
	5
	1,8
	9
	10
	5
	2,2
	11
	15
	5
	3,2
	16
4.2. Parte 2
	Onda Senoidal
	Frequência do gerador (Hz)
	Posição de varredura (ms)
	Número de divisões
	Período (s)
	Frequência (Hz)
	100Hz
	2
	5
	1,0x10-2
	100
	5KkHz
	0,2
	1
	2,0x10-4
	5,0x103
	Onda Quadrada
	Frequência do gerador (Hz)
	Posição de varredura (ms)
	Número de divisões
	Período (s)
	Frequência (Hz)
	250
	0,5
	8
	4,0x10-3
	250
	1200
	0,2
	4
	8,0x10-4
	1250
	Onda Triangular
	Frequência do gerador (Hz)
	Posição de varredura (ms)
	Número de divisões
	Período (s)
	Frequência (Hz)
	600
	0,5
	3,2
	1,65x10-3
	606,06
	10kHz
	50x10-6
	2
	1,0x10-4
	1x104
4.3. Parte 3
	Tensão (V) multímetro
	Valor de pico (Vp)
	Valor de pico a pico (Vpp)
	Vef calculado (V)
	1
	1,0 . 1,5 = 1,5
	3,0 
	1,06
	3
	0,8 . 5 = 4
	8,0
	2,83
	5
	1,4 . 5 = 7
	14,0
	4,95
Os resultados obtidos apresentaram pequena variação, ou seja, proximidade entre o valor medido e a voltagem gerada no osciloscópio, o que mostra que o osciloscópio estava bem calibrado.
Nem todos os valores de frequência encontrados foram precisos, porém isso pode ser devido a falta de marcador no equipamento.
Ao realizarmos os cálculos visando medir o valor de Vef, através do osciloscópio, utilizando a equação e comparando seu resultado com o dado pelo multímetro, obteve-se valores próximos do medido, apresentando baixíssima diferença.
CONCLUSÃO
Conclui-se, através deste experimento, que o instrumento de medida fornecido (osciloscópio) é um instrumento que pode ser utilizado para medição de voltagem, tanto para corrente contínua, no qual apresenta um gráfico em linha reta, quanto para corrente alternada, que apresenta gráficos de ondas senoidais, triangulares e quadráticas, podendo assim perceber suas particularidades.
Pode-se, ainda, concluir que os valores de voltagem, período e frequência observados estão de acordo com o real, uma vez que a taxa de variação foi baixa. Portanto, é notável a importância do experimento, uma vez que o equipamento oferece dados importantes para determinação de parâmetros de onda.
REFERÊNCIAS BIBLIOGRÁFICAS
[1] MEDIDAS DE TENSÃO E FREQUÊNCIA COM O OSCILOSCÓPIO. Faculdade Estácio de Curitiba. Disponível em: < https://pt.scribd.com/doc/259720134/Lab-Medidas-de-Tensao-e-Frequencia-com-o-Osciloscopio>. Acesso em: 20 mar. 2018.
[2] NEWTON, C. B., FUNDAMENTOS DO OSCILOSCÓPIO. Disponível em: <http://www.newtoncbraga.com.br/index.php/instrumentacao/108-artigos-diversos/10697-fundamentos-do-osciloscopio-ins261>. Acesso em: 20 mar. 2018.
[3] OSCILOSCÓPIO. Roteiro referente ao Laboratório de Eletricidade e Eletrônica. Física IV, experiência 24.

Continue navegando