Buscar

UAM Fisíca, Ondas, Eletricidade e Manhetismo I

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 3, do total de 42 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 6, do total de 42 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 9, do total de 42 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Prévia do material em texto

23/09/2020 Ead.br
https://anhembi.blackboard.com/webapps/late-Course_Landing_Page_Course_100-BBLEARN/Controller# 1/42
introdução
FÍSICA - ONDAS, ELETRICIDADE EFÍSICA - ONDAS, ELETRICIDADE E
MAGNETISMOMAGNETISMO
ONDULATÓRIA - REVISÃOONDULATÓRIA - REVISÃO
DE TRIGONOMETRIA,DE TRIGONOMETRIA,
OSCILAÇÕES E ONDASOSCILAÇÕES E ONDAS
Autor: Me. Hugo M. Vasconcelos
R e v i s o r : R o s a l v o M i ra n d a
I N I C I A R
23/09/2020 Ead.br
https://anhembi.blackboard.com/webapps/late-Course_Landing_Page_Course_100-BBLEARN/Controller# 2/42
introdução
Introdução
Quando deslocamos um sistema de seu equilíbrio estável, forças ou torques tendem a
restaurar este equilíbrio, fazendo com o que os corpos entrem em movimento oscilatório. Na
ausência de atrito, essa oscilação continuaria para sempre. Contudo, devido às condições
enfrentadas pelos objetos, a condição de equilíbrio é restabelecida. Você conhece algum
sistema oscilante? Sabe identi�car os elementos que descrevem esse sistema? Consegue
descrever a propagação de uma onda e suas possíveis interferências umas com as outras?
Fenômenos do tipo periódico estão presentes em diversas aplicações de Engenharia, como
osciladores, corrente elétrica, dentre outros. Atualmente, tem-se estudado muito sobre o
aproveitamento da energia das ondas marítimas. A forma como as ondas propagam-se ao longo
de grandes distâncias cria uma enorme área de energia aproveitável.
23/09/2020 Ead.br
https://anhembi.blackboard.com/webapps/late-Course_Landing_Page_Course_100-BBLEARN/Controller# 3/42
A trigonometria é umas das áreas do conhecimento humano mais antigas. A necessidade de
determinar posições e distâncias, por exemplo, sempre foi uma questão interessante para a
humanidade. Observar a posição dos astros celestes e a relação entre estes foi um importante
campo de estudos de desenvolvimento para a astronomia. Já aplicações que envolvem a
agricultura também fomentaram o desenvolvimento desse campo da Matemática, bem como as
navegações.
Classi�icação de Triângulos e Teorema de
Pitágoras
Um triângulo pode ser de�nido como uma �gura plana, a qual contém três lados. Estes podem
ser classi�cados em função dos lados, como equilátero, isósceles e escalenos, conforme vemos
na representação da Figura 1.1:
TrigonometriaTrigonometria
23/09/2020 Ead.br
https://anhembi.blackboard.com/webapps/late-Course_Landing_Page_Course_100-BBLEARN/Controller# 4/42
Em função dos ângulos, os triângulos podem, ainda, ser classi�cados como obtusângulos (um
ângulo interno maior do que 90º - ângulo obtuso), acutângulos (três ângulos internos menores
do que 90º - ângulos agudos) ou retângulos (um ângulo interno igual a 90º - ângulo reto).
Ângulos adjacentes são aqueles que possuem o mesmo vértice e um lado comum, conforme a
Figura 1.2:
Daremos uma atenção especial ao triângulo retângulo. É possível perceber que qualquer um
dos triângulos – equilátero, isósceles ou escaleno – pode ser dividido em triângulos retângulos
Figura 1.1 - Classi�cação dos triângulos quanto aos ângulos
Fonte: Elaborada pelo autor.
Figura 1.2 - Os ângulos e são adjacentes, pois possuem o mesmo vértice e dividem a
mesma semireta 
Fonte: Elaborada pelo autor.
α β A
AC
− −−
23/09/2020 Ead.br
https://anhembi.blackboard.com/webapps/late-Course_Landing_Page_Course_100-BBLEARN/Controller# 5/42
e, em muitas situações, a resolução de problemas �ca bastante simpli�cada.
Como já dissemos, um triângulo retângulo é aquele que possui um ângulo reto, ou seja, um
ângulo igual a 90º, conforme vemos na Figura 1.3:
Note que, no triângulo retângulo, A, B, e C representam os vértices, enquanto que , e 
representam os lados do triângulo, em que o lado maior é chamado de hipotenusa, e os demais
de catetos.
Pitágoras descobriu que a soma da área dos quadrados menores (azul e verde),  formados pelos
lados e de um triângulo retângulo, é igual à área do quadrado maior (amarelo) de lado . Em
outras palavras, a soma do quadrado dos catetos é igual ao quadrado da hipotenusa. Isto é o
que chamamos de Teorema de Pitágoras, conforme ilustrado na Figura 1.4:
Figura 1.3 - Representação de um triângulo retângulo
Fonte: Elaborada pelo autor.
a,  b c
a c b
23/09/2020 Ead.br
https://anhembi.blackboard.com/webapps/late-Course_Landing_Page_Course_100-BBLEARN/Controller# 6/42
Matematicamente, escrevemos que:
a + c = b
Círculo Trigonométrico
Em trigonometria, o círculo trigonométrico é utilizado para relacionar o sistema angular com os
números reais. Na Figura 1.5, uma ilustração é feita para essa relação, que também é útil para
representar valores de seno e cosseno.
Figura 1.4 - Teorema de Pitágoras
Fonte: Elaborada pelo autor.
2 2 2
23/09/2020 Ead.br
https://anhembi.blackboard.com/webapps/late-Course_Landing_Page_Course_100-BBLEARN/Controller# 7/42
Observe que, no círculo, não apenas há a representação dos ângulos, variando de até ,
mas também o equivalente em radianos, que varia de até , que equivale a .
O radiano ( ) é de�nido como a medida do ângulo central, cujo arco correspondente
representa o mesmo comprimento ( ) do raio ( ) da circunferência, conforme Figura 1.6:
Note que o comprimento dado pelo arco é igual ao raio . Além disso, podemos
determinar uma relação entre um ângulo e da seguinte maneira:
Figura 1.5 - Círculo trigonométrico, em que o eixo x representa o cosseno do ângulo, e o eixo y
representa o seno
Fonte: Elaborada pelo autor.
0 360
o
0 2π 180
o
1 rad
C R
Figura 1.6 - De�nição do conceito de radiano no círculo
Fonte: Elaborada pelo autor.
AB R
α rad
23/09/2020 Ead.br
https://anhembi.blackboard.com/webapps/late-Course_Landing_Page_Course_100-BBLEARN/Controller# 8/42
Funções Trigonométricas
Iniciamos nossos estudos sobre trigonometria. Agora, vamos conhecer algumas características
mais detalhadas das funções trigonométricas, como domínio, imagem e grá�co.
A função seno é dada por 
Na Figura 1.7, é possível notar que seu comportamento repete-se a cada intervalo , ou seja,
é uma função periódica, com período . Além disso, trata-se de uma função ímpar, uma vez
que é simétrica em relação à origem, ou seja, 
A função cosseno é dada por , conforme o grá�co da Figura 1.8:
α = C/R
f (x) = sen (x) .
2π
2π
f (−x) = f (x) .
Figura 1.7 - Grá�co da função 
Fonte: Elaborada pelo autor.
f (x) = sen (x)
f (x) = cos  (x)
23/09/2020 Ead.br
https://anhembi.blackboard.com/webapps/late-Course_Landing_Page_Course_100-BBLEARN/Controller# 9/42
É possível notar que seu comportamento repete-se a cada intervalo , ou seja, é uma função
periódica, com período . Além disso, trata-se de uma função par, uma vez que é simétrica, em
relação ao eixo , ou seja, Perceba, também, que esta é defasada, com
relação à função seno em .
praticarVamos Praticar
Um eletricista está realizando um reparo na instalação elétrica de um prédio. Para atingir pontos altos,
utiliza uma escada que possui 4 m de comprimento. Em um dado instante, o eletricista precisou fazer
um reparo em uma �ação localizada no teto do apartamento. Considerando que o menor ângulo que a
escada pode ter, em relação à parede, para garantir segurança ao eletricista, é de 20^o, qual deve ser a
altura máxima do teto, para que o eletricista consiga atingir?
a) 1,45 m.
b) 1,36 m.
c) 3,00 m.
d) 3,75 m.
Figura 1.8 - Grá�co da função 
Fonte: Elaborada pelo autor.
f (x) = cos (x)
2π
2π
y f (−x) = −f (x) .
π/2
23/09/2020 Ead.br
https://anhembi.blackboard.com/webapps/late-Course_Landing_Page_Course_100-BBLEARN/Controller# 10/42
e) 4,50 m.
23/09/2020 Ead.br
https://anhembi.blackboard.com/webapps/late-Course_Landing_Page_Course_100-BBLEARN/Controller# 11/42
Você, com certeza, já viu uma mola. É um objeto bem familiar, que pode ser utilizado para
diversos �ns, como na composição dos botões de seleção de componentes eletrônicos, nos
sistemas de suspensão de automóveis ou até em colchões. Esta pode ser utilizada tanto
esticada quanto comprimida.
Contudo, você sabe o que acontece quandomovimentamos uma mola? Inicialmente, esta está
em equilíbrio. Quando esticamos ou comprimimos-na, exercemos uma força paralela ao seu
comprimento. Mas o que acontece depois? A mola �ca oscilando? Será que é possível descrever
essas oscilações, matematicamente? E mais: será que esse movimento é característico somente
das molas? Observe ao seu redor. Existem vários movimentos que se repetem ou oscilam, como
o pêndulo de um relógio antigo, as vibrações de uma corda de violão ou o som de um clarinete.
Oscilador Harmônico Simples
A oscilação é o que ocorre quando um sistema em equilíbrio estável, conforme a Figura 1.9, é
perturbado, produzindo um movimento de vai e vem, até retornar à posição de equilíbrio.
Oscilações -Oscilações -
MovimentoMovimento
Harmônico SimplesHarmônico Simples
23/09/2020 Ead.br
https://anhembi.blackboard.com/webapps/late-Course_Landing_Page_Course_100-BBLEARN/Controller# 12/42
Um modelo do movimento harmônico simples é o sistema massa-mola. Considere um bloco de
massa preso à uma mola, como ilustrado na Figura 1.10. Quando o bloco move-se para a
direita, a força age para restaurar no sentido oposto (esquerda), levando o bloco para a posição
de equilíbrio , ou seja, sempre que o bloco estiver na posição de equilíbrio, a força
restauradora será nula.
Em muitos sistemas, a força restauradora surge, quando deslocamos o sistema do equilíbrio, de
modo que a força é proporcional ao deslocamento, conforme descrito na equação (1).
Figura 1.9 - Ilustração do equilíbrio estável
Fonte: Elaborada pelo autor.
m
x = 0
Figura 1.10 - Um sistema massa-mola em uma superfície sem atrito
Fonte: Serway e Jewett (2011, p. 5).
F (x) = −kx          (1)
23/09/2020 Ead.br
https://anhembi.blackboard.com/webapps/late-Course_Landing_Page_Course_100-BBLEARN/Controller# 13/42
Sendo o deslocamento do corpo em relação à posição de equilíbrio, e a constante elástica
da mola que, no Sistema Internacional (SI), possui unidade de newton por metro . Em
um movimento harmônico simples, a força é proporcional ao deslocamento. Como a força é
restauradora, veri�camos a existência de um sinal negativo. Assim, toda vez que uma força age
em um sentido, o deslocamento age no sentido oposto, de modo a restaurar a posição de
equilíbrio.
Partícula em Movimento Harmônico Simples
O modelo discutido na seção anterior pode ser descrito como uma partícula em movimento
harmônico simples. Podemos aplicar a segunda Lei de Newton, ao sistema massa-mola,
escolhendo o eixo como referência, ao longo do qual ocorre a oscilação. Então:
Lembrando que, por de�nição, , podemos escrever:
Que podemos reescrever como:
A qual chamamos a razão de , assim, e a equação toma a forma:
A solução deve ser do tipo periódica. A equação da posição deve satisfazer a equação
diferencial de segunda ordem, bem como possuir a representação matemática da posição da
partícula como uma função do tempo. As funções trigonométricas seno e cosseno exibem este
comportamento. Sendo assim, podemos nos basear nessas funções, para encontrar a nossa
solução.
No tempo inicial , puxamos o corpo de massa e, depois, soltamos. Como o
movimento inicial tem um deslocamento não nulo, a função cosseno é mais apropriada que a
função seno, já que Logo, a solução é dada por:
x k
(N/m)
x
F = ma = −kx       (2)
a = dv/dt = x/dd2  t2 
m  = −kx        (3)
xd
2
dt2
= − x                    (4)
xd
2
dt2
k
m
k/m ω2 = k/mω2
= − x          (5)
xd
2
dt2
ω
2 
x (t)
(t = 0) m
cos ( ) = 1.00
x (t) = A cos  (ωt  + Φ)           (6)
23/09/2020 Ead.br
https://anhembi.blackboard.com/webapps/late-Course_Landing_Page_Course_100-BBLEARN/Controller# 14/42
 é a amplitude máxima do movimento a partir do equilíbrio; é a constante de fase,
apresentando o deslocamento da curva do cosseno para a direita ou para a esquerda 
A função é periódica, ou seja, sua forma repete-se a cada período de oscilação . A
função cosseno completa um ciclo a cada (em radianos), isto é, (em graus). O
argumento da função cosseno é o qual pode variar de até , e o tempo pode variar de 
até Logo:
ou seja,
conforme representação na Figura 1.11:
De�nindo a frequência como o inverso do período, ou seja, o número de oscilações por unidade
de tempo, podemos escrever:
Podemos, também, escrever a frequência angular em termos de ou . Assim:
A Φ
(Φ < 0)
(Φ > 0).
x (t) T
2π 360o
ωt, 0 2π 0
2π.
ωT = 2π          (7)
T = 2π/ω                   (8)
Figura 1.11 - Representação grá�ca do movimento harmônico simples  a) b) 
Fonte: Serway e Jewett (2011, p. 6).
Φ < 0 Φ = 0
f = = =                                            (9)
1
T
ω
2π
1
2π
 
k
m
−−−
√
ω f T
23/09/2020 Ead.br
https://anhembi.blackboard.com/webapps/late-Course_Landing_Page_Course_100-BBLEARN/Controller# 15/42
A diferença entre estas é igual a . Tendo a frequência de oscilação da unidade de medida em 
, e a frequência angular da unidade de no sistema internacional.
Também podemos obter a velocidade e a aceleração da partícula no movimento harmônico
simples a partir da posição, como ilustrado na Figura 1.12. Para simpli�car, vamos considerar
que a constante de fase . Logo:
Ou seja, a velocidade e a aceleração não são constantes, mas variam entre valores máximos e
mínimos, no decorrer do tempo. Como as funções seno e cosseno variam entre e , os
valores máximos da velocidade e da aceleração, em módulo, são:
O oscilador harmônico simples não é apenas um movimento vibratório, mas também um tipo
muito especí�co de movimento, o qual é determinado pelas equações que acabamos de
estudar.
ω = 2πf =                                               (10)
2π
T
2π
Hz ω rad/s
ϕ = 0
x (t) = Acos (ωt)                         (11)
v (t) = = −ωAsen (ωt)               (12)
dx
dt
a (t) = = − Acos (ωt)            (13)
xd2
dt2
ω2
−1 +1
= ωA = A             (14)vmax
k
m
−−−
√
= A = A            (15)amax ω
2 k
m
23/09/2020 Ead.br
https://anhembi.blackboard.com/webapps/late-Course_Landing_Page_Course_100-BBLEARN/Controller# 16/42
O período corresponde a uma oscilação completa; (b) a velocidade  da partícula; e (c) a
aceleração da partícula.
Energia no Movimento Harmônico
Simples
Assim, como um objeto cai na superfície da Terra, devido ao potencial gravitacional, uma mola
também tem energia potencial, quando é comprimida ou esticada. É a energia potencial
elástica.
Ao deslocar o sistema massa-mola do equilíbrio, você realiza o trabalho, que é convertido em
energia potencial na mola. Quando o objeto é deslocado por uma distância , a partir da
posição de equilíbrio , a mola é contraída para levar o objeto de volta à posição inicial.
Quando o objeto passa pela posição de equilíbrio, este possui energia cinética máxima e
nenhuma energia potencial. A partir daí, o corpo passa pelo ponto de equilíbrio, ganhando
energia potencial, bem como comprimindo a mola.
Vamos considerar um objeto que desliza sobre uma superfície sem atrito. Também vamos
desprezar a resistência do ar. Nesse sistema, o processo continua inde�nidamente. Em um
movimento oscilatório, a energia está continuamente sendo transferida nas formas de energia
potencial e energia cinética.
Para um sistema massa-mola, a energia potencial é dada por:
Figura 1.12 - Descrição do MHS de uma partícula com relação ao (a) deslocamento , com
uma constante de fase igual a zero
Fonte: Halliday (2016, p. 91).
x (t)
Φ
T v (t)
a (t)
x
x = 0
23/09/2020 Ead.br
https://anhembi.blackboard.com/webapps/late-Course_Landing_Page_Course_100-BBLEARN/Controller# 17/42
Podemos ilustrar, na Figura 1.13, explicitamente, essa troca entre a energia potencial e a
energia cinética no movimento harmônico simples, pois basta substituir a dependência da
posição (amplitude) , em relação ao tempo na expressão da energia potencial, e a velocidade
na expressão da energia cinética.
Fazendo isso, encontramos:
Consideramos que . Ambas as energias têm o mesmo valor máximo , mas a
energia potencial é máxima,quando a energia cinética é zero e vice-versa.
O que podemos dizer sobre a energia total do sistema? É dada por:
Como resultado, encontramos que, apesar da energia cinética e de a energia potencial 
variarem no tempo, sua soma – a energia total do sistema – não muda, isto é, a energia total do
U = k             (16)
1
2
x
2
x
Figura 1.13 - Ilustração da variação da Energia Potencial (azul), Energia Cinética (verde) e
Energia Total (linha pontilhada), com a variação da amplitude de oscilação da partícula
Fonte: Elaborada pelo autor.
U = k = k = k (ωt)          (17)
1
2
x
2 1
2
(Acos (ωt))2
1
2
A
2
K = k = m = m se (ωt) = k se (ωt)        (18)
1
2
v
2 1
2
(−ωAsen (ωt))2
1
2
ω
2
A
2
n
2 1
2
A
2
n
2
= k/mω2 k1
2
A
2
E = U + K = k (ωt)   + k se (ωt) = k       (19)
1
2
A
2 1
2
A
2
n
2 1
2
A
2
K U
23/09/2020 Ead.br
https://anhembi.blackboard.com/webapps/late-Course_Landing_Page_Course_100-BBLEARN/Controller# 18/42
sistema é conservada.
Movimento Harmônico Simples e
Movimento Circular Uniforme
Existem alguns dispositivos bastantes conhecidos, os quais apresentam uma relação entre o
movimento oscilatório e o movimento circular. Os pistões de um motor de automóvel, por
exemplo, movem-se para cima e para baixo, em um movimento oscilatório, que é resultado do
movimento circular das rodas. Nas antigas locomotivas, o eixo de acionamento vai e volta,
também, de forma oscilatória, gerando o movimento circular. Esse movimento de vai e vem
aparente é apenas um componente do movimento circular real e tem uma forma senoidal.
Especi�camente, o vetor posição de qualquer objeto em movimento circular faz um ângulo
que aumenta linearmente com o tempo: , em que medimos em relação ao eixo .
Quando o objeto está sobre o eixo , temos . Logo, as duas componentes (polares) do
objeto:
tornam-se:
Essas são as equações para dois osciladores harmônicos simples diferentes: um na direção , e
outro na direção . Já que um oscilador é o cosseno e o outro é seno, estes estão com uma
diferença de fase (defasagem) de ou .
Podemos pensar, portanto, que o movimento circular uniforme é o resultado de movimentos
harmônicos simples perpendiculares, com mesma amplitude e frequência, mas com de
diferença de fase. Isso ajuda-nos a entender porque usamos o termo frequência angular para o
movimento harmônico simples, mesmo sabendo que não há nenhum ângulo envolvido no
sistema.
O argumento na descrição do movimento harmônico simples é o mesmo que aparece no
ângulo da correspondência angular. O tempo para que ocorra um ciclo no movimento
harmônico simples é o mesmo tempo de revolução no movimento circular, tal que os valores de 
e são exatamente os mesmos.
É possível veri�car que os movimentos harmônicos simples perpendiculares, com mesma
amplitude e frequência, somam-se vetorialmente para produzir o movimento circular. Se as
r
θ = ωt θ x
x t = 0
x = r cosθ            y = r senθ
x (t) = rcoscos  (ωt)               y (t) = r sen  (ωt)
x
y
90o π/2
90o
ωt
θ
T ω
23/09/2020 Ead.br
https://anhembi.blackboard.com/webapps/late-Course_Landing_Page_Course_100-BBLEARN/Controller# 19/42
amplitudes ou frequências não são as mesmas, os movimentos tornam-se mais complexos.
Pêndulo Simples
Um pêndulo simples consiste em uma partícula de massa m, suspensa por um �o inextensível e
de massa desprezível, com comprimento . Quando a partícula é afastada de sua posição de
equilíbrio e liberada em seguida, o pêndulo oscilará em um plano vertical, sob a ação da
gravidade, como mostra a Figura 1.14:
As forças que atuam sobre a partícula de massa são tensão do �o e   força gravitacional 
, que pode ser decomposta em duas componentes: uma tangencial ao movimento, de
módulo ; e outra radial, de módulo .
A componente tangencial é uma força restauradora, pois tende a trazer a partícula para sua
posição de equilíbrio, a mais baixa do pêndulo. Essa força age sempre contrariamente ao
movimento da partícula. Aplicando a lei de Newton, na direção tangencial, temos:
O comprimento do arco $s$ está relacionado ao ângulo por:
L
Figura 1.14 - Forças que atuam em um pêndulo simples
Fonte: Tipler (2009, p. 477).
m T
mg
mgsenΦ mgcosΦ
m = ma = −mgsenΦ                 (20)
sd2
dt2
θ
s = LΦ
23/09/2020 Ead.br
https://anhembi.blackboard.com/webapps/late-Course_Landing_Page_Course_100-BBLEARN/Controller# 20/42
Derivando ambos os lados dessa relação, encontramos:
Substituindo esse resultado na equação (1), temos:
Para ângulos pequenos:
e podemos escrever:
Logo, temos a mesma equação, que descreve o movimento de um objeto ligado a uma mola, isto
é, uma equação de movimento harmônico simples. Para pequenos deslocamentos angulares, a
= L
xd2
dt2
Φd2
dt2
= − senΦ
θd2
dt2
g
L
reflitaRe�ita
Percebeu que a massa m não aparece nesta
equação �nal? Isso signi�ca que o movimento
do pêndulo não depende dela. Re�ita sobre
este fato.
senΦ ≈ Φ
= − Φ                 Φ ≪ 1
Φd2
dt2
g
L
23/09/2020 Ead.br
https://anhembi.blackboard.com/webapps/late-Course_Landing_Page_Course_100-BBLEARN/Controller# 21/42
representação grá�ca do movimento do pêndulo simples é semelhante ao padrão sinusoidal
para o movimento harmônico simples. Analogamente, sua solução é:
 é a amplitude do movimento ou posição angular máxima, e a frequência angular do
pêndulo é dada por:
Portanto, o período do movimento para pequenas oscilações é:
O período e a frequência angular do pêndulo simples, oscilando em ângulos pequenos,
dependem apenas do comprimento do �o e da aceleração da gravidade.
Φ = coscos  (ωt + ϕ)           (21)Φmax
θmax
ω =                         (22)
g
L
−−
√
T = = 2π                    (23)
2π
ω
L
g
−−
√
saibamaisSaiba mais
Você pode estudar as oscilações em um pêndulo
formado por um corpo rígido qualquer, em que o corpo
oscila em um plano vertical, em torno de um eixo que
passa pelo corpo.
ACESSAR
https://pt.khanacademy.org/science/physics/mechanical-waves-and-sound/harmonic-motion/v/pendulum
23/09/2020 Ead.br
https://anhembi.blackboard.com/webapps/late-Course_Landing_Page_Course_100-BBLEARN/Controller# 22/42
Oscilador Harmônico Amortecido
Em um movimento harmônico simples, como pode ser veri�cado na Figura 1.15, um objeto
oscila com amplitude constante. Isso ocorre porque não há nenhum mecanismo de dissipação
de energia. Na realidade, o atrito ou algum outro mecanismo de dissipação de energia (por
exemplo, a resistência do ar) está sempre presente. Na presença de algum tipo de energia
dissipativa, a amplitude da oscilação diminui, com o passar do tempo, e o movimento deixa de
ser harmônico simples, para tornar-se um movimento harmônico amortecido. A diminuição na
amplitude é chamada amortecimento.
Esse tipo de movimento é essencial para o sistema de suspensão de um automóvel. O
amortecedor, ligado a uma mola principal de suspensão, é constituído de um pistão, em um
reservatório de óleo, que se move em resposta a uma vibração na estrada. Nesse pistão, há
buracos que deixam passar o óleo. Assim, durante o movimento, surgem forças de viscosidade
que procam um amortecimento.
Em muitos sistemas, a força de amortecimento é aproximadamente proporcional à velocidade
e com direção oposta:
 é uma constante. Usamos a seta para indicar as grandezas vetoriais.
Figura 1.15 - Oscilador amortecido devido a um líquido viscoso
Fonte: Tipler (2009, p. 483).
= −b                        (24)F ⃗ d v ⃗ 
b
23/09/2020 Ead.br
https://anhembi.blackboard.com/webapps/late-Course_Landing_Page_Course_100-BBLEARN/Controller# 23/42
Vamos, agora, escrever a segunda lei de Newton, , incluindo a força de
amortecimento como a força restauradora. Para o sistema massa-mola, temos:
A solução exata para essa equação pode ser encontrada usando métodos padrões para a
resolução de equações diferenciais, que podem não ser familiares a você. Portanto, vamos,
simplesmente, indicar sua solução sem provas. Para constantes de amortecimento
su�cientemente pequenas, a solução é dadapor:
em que:
Essa equação descreve um movimento senoidal, cuja amplitude cai exponencialmente até zero.
Esse decréscimo depende da constante de amortecimento b e da massa m. Quando o
amortecimento é tão fraco, ou seja, o valor de b é pequeno, que somente uma pequena fração
da energia total é perdida em cada ciclo, a frequência é, essencialmente, a mesma da oscilação
sem amortecimento, isto é, chamada de frequência natural:
Por outro lado, se o amortecimento é forte, a força de amortecimento diminui o movimento, e a
frequência torna-se menor. Quando , a amplitude reduz-se a de seu valor
inicial, em que é a constante de Euler. Esse tempo é chamado de meia-vida da
oscilação.
As equações que você acabou de ver são válidas para . Quando atinge um valor
crítico máximo, , o sistema é chamado de criticamente amortecido, pois este não
oscila e volta ao equilíbrio de forma exponencial.
Muitos sistemas físicos podem ser modelados como osciladores amortecidos. Amortecedores
de automóveis, por exemplo, são projetados com molas especí�cas para dar um amortecimento
crítico, de modo que obtenha um retorno rápido ao equilíbrio, para absorver a energia
transmitida pelos solavancos da estrada.
∑ = mF ⃗  a ⃗ 
m = −kx − b                         (25)
xd2
dt2
dx
dt
x (t) = A coscos  ( t + ϕ)                      (26) .e
−( )tb
2m ω′
=                                            (27)ω′ −
k
m
( )b
2m
2
− −−−−−−−−−−
√
≅ =                                           (28)ω′ ωo k/m
− −−−
√
t = 2m/b 1/e
e = 2, 718
b ≤ 2 k/m
− −−−√ b
= 2mbc ωo
23/09/2020 Ead.br
https://anhembi.blackboard.com/webapps/late-Course_Landing_Page_Course_100-BBLEARN/Controller# 24/42
Oscilador Harmônico Forçado e
Ressonância
Para manter um sistema amortecido oscilando inde�nidamente, a energia mecânica deve ser
injetada no sistema. Quando isso é feito, o oscilador é dito excitado ou forçado. Quem mantém
uma criança oscilando, no balanço de jardim, empurrando-a pelo menos uma vez a cada ciclo,
está forçando um oscilador. Se o mecanismo de excitação injeta energia no sistema a uma taxa
maior do que a taxa com que esta é dissipada, a energia mecânica do sistema e a amplitude
aumenta com o tempo. Se o mecanismo de excitação injeta energia a mesma taxa com que esta
é dissipada, a amplitude permanece constante no tempo. Nesse caso, o movimento do oscilador
é estacionário.
A Figura 1.16 mostra um sistema, o qual consiste num corpo em uma mola que está sendo
excitada, movendo-se o ponto de apoio para cima e para baixo, em um movimento harmônico
simples de freqüência . No início, o movimento é complicado, mas este acaba por entrar em
regime estacionário, quando o sistema oscila com a mesma frequência de excitação e com uma
amplitude constante e, portanto, com energia constante. Em regime estacionário, a energia
injetada no sistema pela força de excitação, a cada ciclo, é igual à energia dissipada pelo
amortecimento em cada ciclo.
A amplitude e, portanto, a energia de um sistema em regime estacionário não depende apenas
da amplitude da força de excitação, mas também depende de sua frequência. A frequuência
ω
Figura 1.16 - Um corpo preso a uma mola vertical pode ser forçado movendo-se o suporte para
cima e para baixo
Fonte: Tipler e Mosca (2009, p. 487).
23/09/2020 Ead.br
https://anhembi.blackboard.com/webapps/late-Course_Landing_Page_Course_100-BBLEARN/Controller# 25/42
natural de um oscilador, , é a sua frequência, quando não há forças de excitação e nem
forças de amortecimento presentes. No caso de uma mola, por exemplo, . Se a
frequência de excitação é su�cientemente próxima da frequência natural do sistema, o sistema
oscilará com uma amplitude relativamente grande. Por exemplo, se o suporte da �gura anterior
oscila em uma frequência próxima da frequência natural do sistema massa-mola, a massa
oscilará com uma amplitude muito maior do que a que teria se o suporte oscilasse com
frequências signi�cativamente maiores ou menores, conforme ilustração na Figura 1.17. Esse
fenômeno é chamado ressonância. Quando a frequência de excitação é igual à frequência
natural do oscilador, a energia por ciclo transferida ao oscilador é máxima. A frequência natural
do sistema é, então, chamada de frequência de ressonância.
A Figura 1.17 mostra os grá�cos da potência média, injetada em um oscilador, como função da
frequência de excitação para dois valores diferentes de amortecimento. Essas curvas são
chamadas curvas de ressonância. Quando o amortecimento é fraco (grande Q), a largura do
pico de ressonância correspondente é pequena, e dizemos que a ressonância é estreita. Para
amortecimento forte, a curva de ressonância é larga. A largura de cada curva de ressonância, 
, indicada na Figura 1.16, é a largura na metade da altura máxima. Pode-se mostrar que,
para o amortecimento fraco, a razão entre a largura de ressonância e a frequência de
ressonância é igual ao inverso do fator :
ωo
=ωo k/m
− −−−√
Figura 1.17 - Curva de ressonância para um oscilador forçado
Fonte: Tipler e Mosca (2009, p. 487).
Δω
Q
=                                              (29)
Δω
ωo
1
Q
23/09/2020 Ead.br
https://anhembi.blackboard.com/webapps/late-Course_Landing_Page_Course_100-BBLEARN/Controller# 26/42
Assim, o fator é uma medida direta da estreiteza da ressonância. Existem muitos exemplos
de ressonância. Quando você senta em um balanço, intuitivamente, você inclina-se para
impulsioná-lo com sua mesma frequência natural. Muitas máquinas vibram, porque possuem
partes giratórias, as quais não estão perfeitamente balanceadas.
Ondas Progressivas e ondas Harmônicas
Em geral, falamos de onda quando há transmissão de um sinal entre dois pontos distantes, sem
que haja transporte direto de matéria. Para uma onda na superfície da água, podemos associar
esse sinal, por exemplo, a uma crista, em que a elevação da água é máxima. Para uma onda na
corda, fazemos um movimento para cima e para baixo, causando uma perturbação, gerando
uma sinuosidade ou um pulso, o qual se deslocará ao longo da corda.
As ondas classi�cam-se em dois tipos:
1. ondas transversais: quando a vibração é perpendicular à direção de propagação,
como mostrado na Figura 1.19. Por exemplo, as ondas do mar e ondas em uma corda.
2. ondas longitudinais: quando a direção de propagação coincide com a direção de
vibração, como mostrado na Figura 1.18. Nos líquidos e gases, a onda propaga-se
dessa forma. A mola e o som são alguns exemplos.
Q
Figura 1.18 - Na ilustração, um êmbolo move-se para trás e para frente, criando uma onda
longitudinal
Fonte: Halliday (2016, p. 119).
23/09/2020 Ead.br
https://anhembi.blackboard.com/webapps/late-Course_Landing_Page_Course_100-BBLEARN/Controller# 27/42
Uma onda progressiva é uma onda que se propaga de um ponto a outro e transporta energia na
direção de propagação. O oposto de onda progressiva é uma onda oscilante, denominada onda
estacionária, em que não há �uxo de energia. As ondas sonoras produzidas na fala são
progressivas, enquanto que as originadas no interior de uma �auta são ondas estacionárias.
Você verá, agora, a descrição matemática da propagação de um pulso em uma onda. Vamos
assumir que a perturbação mantém sua forma enquanto se propaga, desprezando quaisquer
perdas por atrito ou outras formas de dissipação de energia.
Para simpli�car, vamos considerar uma onda mecânica transversal, que se propaga em uma
longa corda esticada. O grá�co (a), na Figura 1.19, mostra um pulso ondulatório,, de forma
arbitrária no instante , que viaja com velocidade v na direção . Matematicamente, no
instante , a altura y da corda passa a ser descrita por uma função , que descreve a
forma do pulso. Em um instante t posterior, o pulso percorreu uma distância , conforme
mostra (b).
A coordenada indica o deslocamento transversal de um ponto particular da corda. Esta
depende da coordenada e do tempo , ou seja, . No instante inicial, temos:
 é uma função que descreve a forma da onda, ou seja, o pulso.Como estamos assumindo que o
pulso não muda ao longo de sua propagação, para qualquer tempo posterior, a onda continuará
sendo descrita pela função . No referencial que acompanha o pulso, devemos usar a
relação entre as abscissas dos dois referenciais:
t = 0 x
t = 0 f (x)
vt
Figura 1.19 - Um pulso transversal propagando-se com velocidade v para a direita
Fonte: Tipler e Mosca (2009, p. 502).
y
x t y = y (x, t)
y (x, t = 0) = f (x)                                     (30)
f
f (x)
23/09/2020 Ead.br
https://anhembi.blackboard.com/webapps/late-Course_Landing_Page_Course_100-BBLEARN/Controller# 28/42
Portanto, em um instante , a onda é descrita por:
A função tem, no instante , a mesma forma em relação ao ponto , que a
função tem em relação ao ponto no instante . Para descrever a onda
completamente, temos de conhecer a função 
Quando a onda propaga-se no sentido negativo, basta fazer . Nesse caso, temos:
Como antes, representa a forma da onda em .
A função descreve, completamente, a forma da onda e seu movimento é válido para
ondas de diferentes formas, sejam transversais ou longitudinais.
Um caso particular de onda progressiva é a onda harmônica simples, na qual a função em 
possui a forma senoidal. Uma onda harmônica simples pode ser produzida, por exemplo,
movendo uma das extremidades de uma corda longa para cima e para baixo, mantendo sempre
o mesmo deslocamento vertical.
Escolhendo as coordenadas de forma que, em , esta possua um mínimo em ,
temos:
 é a amplitude da onda, e é uma constante chamada número de onda. Se a amplitude for
máxima em , temos uma função cosseno, com constante de fase nula:
Podemos encontrar o valor de , lembrando que a onda repete-se e, portanto, de�nimos:
comprimento de onda : distância entre duas cristas ou dois vales da onda;
período : intervalo de tempo para que a onda viaje por uma distância .
A função seno repete-se quando o ângulo ou o argumento �ca acrescido de , logo, devemos
ter:
= x − vt                                            (31)x′
t
y (x, t) = f ( ) = f (x − vt)                               (32)x′
f (x − vt) t x = vt
f (x) x = 0 t = 0
f.
x v = −v
y (x, t) = f (x + vt)                                   (33)
f (x) t = 0
y (x, t)
t = 0
x = 0 t = 0
y (x, 0) = Asen (kx)                               (34)
A k
t = 0
y (x, 0) = Acos (kx)                            (35)
k
(λ)
(T ) λ
2π
kλ = 2π                  (36)
23/09/2020 Ead.br
https://anhembi.blackboard.com/webapps/late-Course_Landing_Page_Course_100-BBLEARN/Controller# 29/42
ou:
O número de onda é uma grandeza angular, cuja unidade no SI é o rad/m, assim, como a
frequência angular, este é medido em :
Existe uma relação simples entre o período e o comprimento de onda, que é a velocidade de
qualquer onda periódica. Por de�nição, a velocidade da onda é a distância de um comprimento
de onda percorrida por um período . Assim, tem-se:
Como qualquer outro movimento harmônico, o período está relacionado à frequência:
Logo, a velocidade de propagação da onda também pode ser escrita em termos da frequência:
Essa terminologia para as relações fundamentais da frequência e velocidade aplicam-se tanto
para ondas transversais quanto para as ondas longitudinais.
Para descrever uma onda movendo-se com velocidade , devemos trocar na expressão 
 por , obtendo:
Sabemos que e . Logo, o argumento da função cosseno torna-se:
Também sabemos que . A frequência angular que descreve o movimento
harmônico simples é a mesma na descrição do movimento ondulatório. Não é de admirar-se,
pois, em um ponto �xo no espaço, a onda oscila como um oscilador harmônico simples. Dessa
maneira, podemos escrever uma onda que se propaga na forma senoidal como:
k =                 (37)
2π
λ
rad/s
ω = = 2πf                (38)
2π
T
T
v =                             (39)
λ
T
f =                                       (40)
1
T
v = λf                                      (41)
v x
y (x, 0) x  vt
y (x, t) = Acos [k (x − vt)]                         (42)
k = 2π/λ v = λ/T
kvt = ( )( ) t = t                            (43)2π
λ
λ
T
2π
T
ω = 2π/T
23/09/2020 Ead.br
https://anhembi.blackboard.com/webapps/late-Course_Landing_Page_Course_100-BBLEARN/Controller# 31/42
Radio e) .
Superposição e Interferência de Ondas
Muitas vezes, duas ou mais ondas sonoras estão presentes no mesmo lugar, ao mesmo tempo.
Um exemplo são as ondas sonoras quando todo mundo está falando em uma festa ou quando a
música toca nos alto-falantes do sistema de som estéreo.
A Figura 1.20 ilustra esse tipo de situação. Ela mostra dois pulsos transversais de alturas iguais,
ambos “para cima”, movendo-se um em direção ao outro. Quando eles se encontram, os dois
pulsos se fundem e formam outro, que é a soma individual de cada pulso. Esse é um exemplo do
princípio de superposição linear.
y (x, t) = 3, 6 cos  (0, 449x − 2, 09t)
Figura 1.20 - Exemplo de superposição linear
Fonte: Halliday (2016, p. 132).
23/09/2020 Ead.br
https://anhembi.blackboard.com/webapps/late-Course_Landing_Page_Course_100-BBLEARN/Controller# 32/42
Princípio da superposição: quando duas ou mais ondas sobrepõem-se, a onda resultante é a
soma algébrica das ondas individuais. Matematicamente, quando as ondas sobrepõem-se, o
deslocamento da corda é dado pela soma algébrica:
Esse princípio pode ser aplicado a todos os tipos de ondas.
No ponto de encontro das duas ondas que você viu na �gura, as cristas coincidem-se, e a
amplitude da onda resultante é, momentaneamente, a soma das duas. Nesse caso, interferem
construtivamente.
Vamos aplicar o princípio de superposição a duas ondas senoidais propagando-se no mesmo
sentido em um meio. As duas ondas podem ter a mesma frequência, mesmo comprimento de
onda e amplitude, mas fases diferentes. Assim, escrevemos:
 e são as constantes de fase de cada onda. Se essas ondas encontrarem-se, a função de
onda resultante é, de acordo com o princípio da superposição:
Em que usamos a identidade trigonométrica:
A constante de fase da onda resultante é dada por .
A função também é senoidal e tem a mesma frequência e comprimento de onda das ondas
individuais. A amplitude resultante é dada por:
Em que é a diferença de fase entre as ondas. Se for zero, a amplitude da onda
resultante é , ou seja, o dobro da amplitude das ondas individuais. Nesse caso, as duas ondas
interferem construtivamente. A condição geral, para que aconteça uma interferência
construtiva, é:
(x, t) = (x, t) + (x, t)                         (45)y′ y1 y2
(x, t) = Asen (kx − ωt − )                  (46)y1 ϕ1
(x, t) = Asen (kx − ωt − )                      (47)y2 ϕ2
ϕ1 ϕ2
y (x, t) = + = 2Acos (Δϕ) sen (kx − ωt − )                (47)y1 y2 ϕ
′
sena + senb = 2coscos ( )  sen( )                     (48)a − b
2
a + b
2
ϕ =
( + )ϕ1 ϕ2
2
y
y (x, t) = 2Acos( )                            (49)Δϕ
2
Δϕ = −ϕ2 ϕ1
2A
23/09/2020 Ead.br
https://anhembi.blackboard.com/webapps/late-Course_Landing_Page_Course_100-BBLEARN/Controller# 33/42
Por outro lado, se $\Delta \phi $ é qualquer múltiplo ímpar de $\pi $,
A onda resultante tem amplitude nula, ou seja, as duas ondas interferem destrutivamente.
Nesse caso, o máximo de uma onda coincide com o mínimo da outra.
Δϕ = 2mπ               (m = 0, ±1, ±2, …)
Δϕ = (2m + 1) π               (m = 0, ±1, ±2, …)                    (51)
23/09/2020 Ead.br
https://anhembi.blackboard.com/webapps/late-Course_Landing_Page_Course_100-BBLEARN/Controller# 34/42
indicações
Material
Complementar
L IVRO
Vibrações e ondas
Editora: IST Press
Autor: João Paulo Silva
ISBN: 978-9898481146
Comentário: o livro cobre, essencialmente, todos os tópicos de um
curso introdutório em vibrações e ondas. Os temas são abordados
recorrendo, geralmente, a exemplos de mecânica ou
eletromagnetismo, sendo, também, dados vários exemplos da física
subatômica. Frequentemente, o estudo de vibrações é associado a
outros temas (termodinâmica, óptica, etc.) e, nesses casos, o
presentelivro cobrirá o programa de vibrações.
23/09/2020 Ead.br
https://anhembi.blackboard.com/webapps/late-Course_Landing_Page_Course_100-BBLEARN/Controller# 35/42
WEB
O que signi�ica a descoberta das ondas
gravitacionais?
Ano: 2016
Comentário: as ondas gravitacionais são ondulações na curvatura
do espaço-tempo, que se propagam para o exterior, a partir da fonte.
São ondas transversais, as quais comprimem e esticam o que estiver
em seu caminho.
A C E S S A R
https://www.youtube.com/watch?v=jMVAgCPYYHY
23/09/2020 Ead.br
https://anhembi.blackboard.com/webapps/late-Course_Landing_Page_Course_100-BBLEARN/Controller# 36/42
conclusão
Conclusão
Você estudou os elementos dos fenômenos ondulatórios e suas aplicações. Primeiro, você
entendeu a dinâmica do movimento oscilatório, por meio de um exemplo típico, um corpo ou
partícula de massa m, ligado a uma mola horizontal. Nesse caso, surge uma força restauradora
da forma , em que é uma constante, e é o deslocamento da partícula em relação à
sua posição de equilíbrio. Depois, com base na segunda lei de Newton, você viu como resolver a
equação de movimento do sistema.
Ademais, vimos que a energia está continuamente sendo transferida nas formas de energia
potencial e energia cinética , sendo máxima quando é zero, e vice-versa. A energia
total no sistema é constante, ou seja, , já que o sistema não é
dissipativo.
Como aplicação do movimento oscilatório, você estudou o pêndulo simples, que consiste em
uma partícula de massa m, suspensa por um �o de comprimento .
Na segunda parte, foram observados os elementos de uma onda progressiva, em particular, de
uma onda harmônica. Você aprendeu, também, o princípio da superposição: quando duas ondas
sobrepõem-se, a onda resultante é a soma algébrica das ondas individuais, podendo ocorrer
uma interferência construtiva ou destrutiva.
O movimento oscilatório ocorre em todo o mundo físico. As moléculas de água oscilam para
aquecer a comida em um forno micro-ondas, por exemplo. Edifícios e pontes sofrem
movimentos desse tipo. Como engenheiro, você precisará realizar estudos detalhados desses
fenômenos, para evitar resultados desastrosos.
= kxFx k x
U K U K
E = U + K = k
1
2
A
2
L
referências
23/09/2020 Ead.br
https://anhembi.blackboard.com/webapps/late-Course_Landing_Page_Course_100-BBLEARN/Controller# 37/42
Referências
Bibliográ�cas
HALLIDAY, D. Fundamentos de Física: gravitação, ondas e termodinâmica. 10. ed. Rio de
Janeiro: LTC, 2016.
SERWAY, R. A.; JEWETT, J. W. Jr. Física para cientistas e engenheiros: oscilações, ondas e
termodinâmica. São Paulo: Cengage Learning, 2011.
TIPLER, P. A.; MOSCA, G. Física para cientistas e engenheiros: mecânica, oscilações e ondas,
termodinâmica. 6. ed. Rio de Janeiro: LTC, 2009.
23/09/2020 Ead.br
https://anhembi.blackboard.com/webapps/late-Course_Landing_Page_Course_100-BBLEARN/Controller# 38/42
23/09/2020 Ead.br
https://anhembi.blackboard.com/webapps/late-Course_Landing_Page_Course_100-BBLEARN/Controller# 30/42
Radio 
Radio 
Radio 
Radio 
Em que usamos o sinal de +/– para descrever uma onda propagando-se na direção de x positivo
(sinal negativo) e na direção de x negativo (sinal positivo). O argumento do cosseno é chamado
de fase da onda. Para compreender melhor o assunto, acompanhe o seguinte exemplo prático.
praticarVamos Praticar
Um sur�sta rema para além de onde quebram-se as ondas de forma senoidal, com cristas de 14 m de
distância. Este oscila em uma crista com comprimento vertical de 3,6 m, um processo que leva 1,5
segundos. É possível a�rmar que a equação que descreve a onda é igual:
a) a equação apresenta uma forma do tipo .
b) a equação é descrita por .
c) .
d) .
y (x, t) = Acos [kx ± ωt)]                         (44)
y (x, t) =  cos  (0, 100x − ωt)y1
y (x, t) =  cos  (0, 449x − 1, 5t)y1
y (x, t) = 1, 8 cos  (0, 449x − 2, 09t)
y (x, t) = 10 cos  (0, 449x − 2, 09t)
23/09/2020 Ead.br
https://anhembi.blackboard.com/webapps/late-Course_Landing_Page_Course_100-BBLEARN/Controller# 39/42
23/09/2020 Ead.br
https://anhembi.blackboard.com/webapps/late-Course_Landing_Page_Course_100-BBLEARN/Controller# 40/42
23/09/2020 Ead.br
https://anhembi.blackboard.com/webapps/late-Course_Landing_Page_Course_100-BBLEARN/Controller# 41/42
23/09/2020 Ead.br
https://anhembi.blackboard.com/webapps/late-Course_Landing_Page_Course_100-BBLEARN/Controller# 42/42

Outros materiais