Prévia do material em texto
RAD1504 – GESTÃO DA QUALIDADE I Ferramentas básicas da qualidade Prof. Dr. Erasmo Jose´ Gomes Profa. Dra. Márcia Mazzeo Grande As Ferramentas da Qualidade • As Sete “tradicionais ou básicas” • Estratificação (com utilização de Gráficos como suporte) • Folha de Verificação • Gráfico de Pareto • Diagrama Causa-Efeito (Ishikawa ou Espinha de Peixe) • Histograma • Diagrama de Dispersão • Gráfico de Controle As Ferramentas da Qualidade As Sete “novas” • Diagrama de Afinidades • Diagrama de Relações • Diagrama de Árvores • Diagrama de Matriz • Diagrama de Priorização • Diagrama de Processo Decisório • Diagrama de Setas Ferramentas Avançadas • QFD • FMEA • Planejamento de experimentos Outras •Brainstorming •5W 2H • . As ferramentas da qualidade são utilizadas para coletar, processar e dispor as informações necessárias ao giro dos ciclos PDCA Outras Ferramentas Brainstorming • Técnica para identificar opiniões de um grupo sobre um assunto (ou problema) • É feita para desencadear conceitos e idéias dos demais participantes, estimulados por associações e correlações e através de linhas de raciocínio que se alteram ao longo da atividade • O objetivo é gerar idéias de forma a romper com eventuais paradigmas e bloqueios existentes Brainstorming Execução da Técnica • Pode ser executado de forma estruturada (com participação ordenada dos participantes) • OU pode ser feito não estruturadamente (com contribuições não ordenadas) • As reuniões devem durar 15-20 minutos • Pode ser realizado individualmente com anotações (duram horas ou dias) Brainstorming Cuidados ao utilizar esta ferramenta • Ter um problema CLARAMENTE definido • Realizar com número razoável de participantes (~ 4 a 8) • NUNCA criticar uma idéia (eliminações são feitas posteriormente) • Escrever as idéias em locais visíveis a todos • Escrever EXATAMENTE as palavras ou frases ditas pelos participantes (sem interpretações do coordenador) • Ao final, fazer uma breve avaliação, com classificação do que foi discutido e apresentado - se necessário, solicitar esclarecimentos • Elaborar a lista final e encaminhar a todos os participantes 5W 2H Utilizado para orientação de grupos de trabalho na obtenção de respostas para melhor determinação (detalhamento) dos problemas e de fatores relacionados a eles. • What? O que? • Why? Por que? • Where? Onde? • When? Quando? • Who? Quem? • How? Como? • How Much? Quanto? 5 W 2 H 1. Estratificação • Levantamento e Agrupamento de dados em diferentes “categorias” • Vários pontos de vista devem ser considerados para focalizar a ação • Exemplo: Roupas Danificadas numa lavanderia — Tipo de Dano — Tipo de Roupa — Operador — Marca de Sabão — Máquina de Lavar — Máquina de Passar — Dia da semana Estratificação • É comum a utilização de gráficos - de vários tipos - para facilitar a visualização da estratificação. Exemplos: São formulários planejados nos quais os dados coletados são preenchidos de forma fácil e concisa. Registram os dados dos itens a serem verificados, permitindo uma rápida percepção da realidade e uma imediata interpretação da situação, ajudando a diminuir erros e confusões. As folhas de verificação podem apresentar-se de vários tipos para: • Distribuição do Processo de Produção; • Verificação de Itens Defeituosos; • Localização de Defeito; • Causas de Defeitos; 2. Folhas de Verificação • Para a distribuição do processo de produção: É usado quando se quer coletar dados de amostras de produção. • A folha de verificação pode facilitar a classificação de dados no instante da sua coleta – Exemplo 2: Variações na medida de um produto podem ser verificadas, anotadas e então repassadas para gráficos (geralmente histogramas) para análises posteriores. NO ENTANTO, com folhas de verificação especialmente formuladas, tudo pode ser feito num mesmo documento. - Exemplo 1 Verificação de Itens Defeituosos Este tipo é usado quando queremos saber quais os tipos de defeitos mais freqüentes e números de vezes causados por cada motivo. Exemplo: Numa peça de azulejo, os tipos de defeitos após o produto acabado. Defeito Maio 6 7 8 9 Total Tamanho Errado 26 Forma Errada 9 Peso Errado 8 Incompleto 52 Total 27 19 24 25 95 QUALIDADE DO PRODUTO Neste exemplo é possível determinar o grau de variação do número de defeitos contabilizados no dia a dia, os defeitos mais freqüentes e os defeitos menos freqüentes. Produto: Transporte coletivo Data: 16/05/02 Tipo de reclamações: degrau, freadas, atraso, roleta, ventilação Total de respondentes: 500 usuários Inspetor: Ronaldo Berger Tipo de reclamações Contagem Freqüência Falta de ventilação | | | | | | | | | | | | | 13 Freadas bruscas | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | 40 Atraso do horário | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | 32 Largura da roleta | | | | | | | | | | | 11 Altura do degrau | | | | | | | | | | | | | | | | | 17 Outros | | | | | | | | | | | | | Total 126 É usada para localizar defeitos externos, tais como: mancha, sujeira, riscos, pintas, e outros. Geralmente esse tipo de lista de verificação tem um desenho do item a ser verificado, na qual é assinalado o local e a forma de ocorrência dos defeitos. Exemplo: Bolha estourada na superfície de vidro, nas peças cerâmicas. Esta folha nos mostra o local onde mais aparece o tipo da bolha. Esse tipo de folha de verificação é uma importante ferramenta para a análise do processo, pois nos conduz para onde e como ocorre o defeito. Localização de Defeito FOLHA DE VERIFICAÇÃO PARA LOCALIZAÇÃO DE BOLHAS Nome do Produto: pára-brisa modelo XYZ Material: Vidro Data: XX / ZZ / YY • Exemplo: Lista de Localização de Dados de Não conformidades em chapa de vidro. Exemplo de Folha de Verificação RELAÇÃO COM OUTRAS FERRAMENTAS Relaciona-se com a maioria das ferramentas, pois é um passo básico, onde vamos encontrar as informações, principalmente para determinar a causa, especificação extensão, onde e quando ocorre o problema. Relaciona-se com o brainstorming, diagrama de causa e efeito e estratifição para elaborar as atividades e a forma da coleta de dados. 3. DIAGRAMA DE PARETO OU GRÁFICO DE PARETO O gráfico de Pareto é um diagrama que apresenta os itens e a classe na ordem dos números de ocorrências, apresentando a soma total acumulada. Permite-nos visualizar diversos elementos de um problema auxiliando na determinação da sua prioridade. É representado por barras dispostas em ordem decrescente, com a causa principal vista do lado esquerdo do diagrama, e as causas menores são mostradas em ordem decrescente ao lado direito. É uma das ferramentas mais eficientes para encontrar problemas. O princípio de Pareto é conhecido pela proporção “80/20”. “É comum que 80% dos problemas resultem de cerca de apenas 20% das causas potenciais” . “Dito de outra forma, 20% dos nossos problemas causam 80% das dores de cabeça”. Pareto QUANDO USAR O DIAGRAMA DE PARETO • Para identificar os problemas. • Achar as causas que atuam em um defeito. • Descobrir problemas e causas; Problema erro, falhas, gastos, retrabalhos .... Causas operador, equipamento, matéria-prima ... • Melhor visualização da ação, priorizar a ação e confirmar os resultados de melhoria. • Verificar a situação antes e depois do problema, devido às mudanças efetuadas no processo. • Detalhar as causas maiores em partes específicas, eliminando a causa. • Estratificar a ação. • Identificar os itens que são responsáveis pelos maiores impactos. • Definir as melhorias de um projeto, tais como: principais fontes de custo e causas que afetam um processo, em função de número de não conformidade, e outros. PRÉ-REQUISITOS PARA A CONSTRUÇÃO DO DIAGRAMA DE PARETO • Coleta de dados • Folha de verificação • A freqüência relativa e acumulada na ocorrência de cada item. • Estratificação, separando o problema em proporçõesou família. COMO FAZER OS DIAGRAMAS DE PARETO • Decidir o que vai ser analisado e o tipo de problema. • Selecionar o método e o período para coletar os dados. Coletar os dados de acordo com sua causa e assunto. • Estabelecer um período de tempo para coletar dados, tais como: horas, dias, semanas, meses, etc. • Reunir os dados dentro de cada categoria • Listar as categorias em ordem decrescente de freqüência da esquerda para a direita. Os itens de menos importância podem ser colocados dentro de uma categoria "outros" que é colocada na última barra à direita do eixo. • Calcular a freqüência relativa e a acumulada para cada categoria, sendo que a acumulada será mostrada no eixo vertical e à direita. Defeito Freq. Individual Acumulada Parafuso solto 68 33,5% 33,5% Sujeira 41 20,2% 53,7% Riscos 29 14,3% 68,0% Solda 21 10,3% 78,3% Junção 15 7,4% 85,7% Alinhamento 12 5,9% 91,6% Trinca 10 4,9% 96,6% Rebarba 6 3,0% 99,5% Bolha 1 0,5% 100,0% 203 100% 33,5% 20,2% 14,3% 10,3% 7,4% 5,9% 4,9% 3,0% 0,5% 33,5% 53,7% 68,0% 78,3% 85,7% 91,6% 96,6% 99,5% 100,0% 0,0% 5,0% 10,0% 15,0% 20,0% 25,0% 30,0% 35,0% 40,0% Parafuso solto Sujeira Riscos Solda Junção Alinhamento Trinca Rebarba Bolha 0,0% 10,0% 20,0% 30,0% 40,0% 50,0% 60,0% 70,0% 80,0% 90,0% 100,0% Individual Acumulada 78,3% VANTAGENS • A análise de Pareto permite a visualização dos diversos elementos de um problema, ajudando a classificá-los e priorizá-los • Permite a rápida visualização dos 80% mais representativos; • Facilita o direcionamento de esforços; • Pode ser usado indefinidamente, possibilitando a introdução de um processo de melhoria contínua na Organização; • A consciência pelo “Princípio de Pareto” permite ao gerente conseguir ótimos resultados com poucas ações. DESVANTAGENS • Existe uma tendência em se deixar os “20% triviais” em segundo plano. Isso gera a possibilidade de Qualidade 80% e não 100%; • Não é uma ferramenta de fácil aplicação: você pode pensar que sabe, mas na hora de fazer pode mudar de opinião. • É preciso levar em conta o custo em um gráfico específico e por isso, ele não é completo. RELAÇÃO COM OUTRAS FERRAMENTAS Folha de verificação: é extremamente necessária na obtenção de dados para a formação do diagrama de Pareto. Brainstorming: é usado após o diagrama de Pareto, para identificar aqueles itens que são responsáveis pelo maior impacto. Diagrama de causa e efeito: após priorizar a causa do problema, através do diagrama de Pareto, faz-se um diagrama de causa e efeito do problema. Esse nos auxiliará a enxergar aqueles itens que precisam ser verificados, modificados ou aqueles que devem ser acrescentados. Após faz-se novamente um diagrama de Pareto das causas principais, determinando assim a causa que mais contribui para o efeito do problema. RELAÇÃO COM OUTRAS FERRAMENTAS Histograma: faz-se a combinação com o diagrama de Pareto, pois o histograma envolve a medição dos dados, temperatura, dimensão, etc. enquanto que o Pareto nos mostra o tipo do defeito. Com esta inter-relação dos dois podemos obter o tipo de defeito com o número da variação existente. 4. DIAGRAMA DE CAUSA E EFEITO OU ESPINHA DE PEIXE É uma representação gráfica que permite a organização das informações possibilitando a identificação das possíveis causas de um determinado problema ou efeito. Também chamado de diagrama de espinha de peixe ou diagrama de Ishikawa. Mostra as causas principais de uma ação, as quais dirigem para as sub-causas, levando ao resultado final. Embora não identifique, ele próprio, as causas do problema, o diagrama funciona como um “veículo para produzir com o máximo de foco possível, uma lista de todas as causas conhecidas ou presumíveis, que potencialmente contribuem para o efeito observado.” QUANDO USAR DIAGRAMA DE CAUSA E EFEITO • Quando necessitar identificar todas as causas possíveis de um problema. • Obter uma melhor visualização da relação entre a causa e efeito dela decorrente. • Classificar as causas dividindo-as em sub-causas. • Para saber quais as causas que estão provocando determinado problema. • Identificar com clareza a relação entre os efeitos, e suas prioridades. • Em uma análise dos defeitos: perdas, falhas, desajuste do produto, etc. com o objetivo de identificá-los e melhorá-los. PRÉ-REQUISITOS PARA CONSTRUIR O DIAGRAMA DE CAUSA E EFEITO •Sugestões de possíveis causas do problema (Brainstorming) das pessoas envolvidas no processo. • Análise de Pareto, para revelar a causa mais dominante. COMO FAZER UM DIAGRAMA DE CAUSA E EFEITO • Definir o problema a ser analisado de forma objetiva; • Estabeleça e enuncie claramente o problema (efeito) a ser analisado, escrevendo-o em um retângulo à direita. Desenhe uma seta da esquerda para a direita até o retângulo; Problema (Efeito) • Reunir um grupo de pessoas fazendo um Brainstorming sobre as causas possíveis; • Classifique as causas encontradas no Brainstorming em “famílias ou categorias de causas”. Normalmente, costuma-se denominar essas “famílias ou causas” como “causas primárias potenciais” que devem ser escritas dentro de retângulos ligados diretamente ao eixo horizontal do diagrama. Na indústria, por exemplo, as “causas primárias potenciais” são conhecidas como “ fatores de manufatura” ou 6 M’s (Matéria- prima, Máquina, Medida, Meio ambiente, Mão-de-obra e Método); Escreva as subcausas (secundárias, terciárias, etc.) como indicado na figura abaixo: Causa Secundária Causa Terciária Para cada causa primária (dentro do retângulo), identifique as subcausas que a afetam; • Assinale no diagrama as causas que pareçam ter forte relação com o problema (efeito), considerando-se: a experiência e intuição; os dados existentes; Causa Secundária Causa Terciária Causas Importantes • Revisar todo o diagrama para verificar se nada foi esquecido; • Analisar o gráfico no sentido de encontrar a causa principal, observando as causas que aparecem repetidas, se estas causas estão relacionadas com o efeito. Se eliminar a causa reduz o efeito, obtenha o consenso de todos do grupo. VANTAGENS • É uma ferramenta estruturada, que direciona os itens a serem verificados para que se chegue a identificação das causas; • Apesar de existir um esqueleto a ser preenchido, não há restrição às ações dos participantes quanto às propostas a serem apresentadas; • Permite ter uma visão ampla de todas as variáveis que interferem no bom andamento da atividade, ajudando a identificar a não-conformidade. DESVANTAGENS • Limitada a solução de um problema por aplicação; • Não apresenta quadro evolutivo ou comparativo histórico, como é o caso do histograma; • Para cada nova situação, é necessário percorrer todos os passos do processo, utilizando o diagrama. RELAÇÃO COM OUTRAS FERRAMENTAS Brainstorming: para coletar sugestões sob diversos pontos de vista, a fim de encontrar a causa do problema. Folha de Verificação: para registrar as idéias sugeridas no Brainstorming e aplicar no diagrama de causa e efeito. Diagrama de Pareto: para revelar quais as causas é a mais dominante, como já descrito no item anterior Gráfico de Controle: pode ser usado quando este detecta um obstáculo, mas não é capaz de propor uma solução. Neste caso então se utiliza o diagrama de causa e efeito. Histograma: através dos dados obtidos do histograma, pode-se usar o diagrama de causa e efeito para atacar a causa mais provável. Diagrama de Causa e Efeito• Exemplo: Roupas danificadas numa lavanderia Insumos Tipo de sabão Métodos Operação inadeq. Mesa de passar Falta de limpeza equipamentos Medidas Temperatura incorreta Tempo incorreto Pessoas Desatenção Falta de treinamento Ambiente Iluminação fraca Equipamentos Defeitos Obsolescência 5. HISTOGRAMA São gráficos de barras que mostram a variação sobre uma faixa específica. É uma ferramenta que nos possibilita conhecer as características de um processo ou um lote de produto permitindo uma visão geral da variação de umconjunto de dados. A maneira como esses dados se distribuem contribui de uma forma decisiva na identificação dos dados. Eles descrevem a freqüência com que variam os processos e a forma de distribuição dos dados como um todo. QUANDO USAR O HISTOGRAMA São várias as aplicações dos histogramas, tais como: • Verificar o número de produtos não-conformes. • Determinar a dispersão dos valores de medidas em peças. • Em processos que necessitam ações corretivas. • Para encontrar e mostrar através de gráfico o número de unidade por cada categoria. PRÉ-REQUISITOS PARA CONSTRUIR UM HISTOGRAMA • Coleta de dados • Calcular os parâmetros: amplitude "R", classe "K", freqüência de cada classe, média e desvio padrão. Classe Amplitude da classe Frequência Amplitude (R) HISTOGRAMA Histograma • Exemplo: LIE LSE LIE - Limite Inferior de Especificação LSE - Limite Superior de Especificação Temperatura Forma de Sino (nem sempre) Histograma • Exemplo de Histograma que não atende às especificações: LIE LSE COMO FAZER UM HISTOGRAMA • Coletar os dados. • Determinar a amplitude "R“, onde: R = (maior valor - menor valor) • Determinar a classe "K“, de acordo com a tabela abaixo. Escolha o número da classe usando o bom senso. k≈√n. Nº Dados (N) Nº Células (K) < 50 5 a 7 50 a 100 6 a 10 101 a 250 7 a 12 > 250 10 a 20 • Determinar o intervalo (ou amplitude) da classe "H". Onde: H = R /k => (amplitude / classe) R = Amplitude (maior valor – menor valor) • Determinar o limite da classe. O maior e o menor valor levantado na coleta de dados da amostra. • Determinar a freqüência de cada classe. • Construir o gráfico, no eixo vertical a classe com a freqüência calculada e no eixo horizontal o intervalo de cada classe. Menor Valor 421 Maior Valor 462 Amplitude 41 => (462-421) Classes (k) 6 (Tabela => N=38) Amplitude da Classe 6,8 => (M-m)/k = (462-421)/6 Arredondamento 7 439; 449; 462; 446; 451; 439; 433; 441; 454; 449; 452; 443; 430; 435; 422; 425; 431; 448; 434; 441; 427; 436; 421; 428; 426; 434; 436; 437; 433; 441; 430; 434; 435; 426; 429; 435; 437; 448; Peso (grama) N = 38 Classes 421 + 7 421 - 428 (428+1) + 7 429 - 436 (436+1) + 7 437 - 444 (444+1) + 7 445 - 452 (452+1) + 7 453 - 460 (460+1) + 7 461 - 468 Amplitude da Classe = 7 Número de Classes = 6 1 2 3 4 5 6 Acréscimo em função das necessidades/realidade do ambiente de produção Histograma 7 14 8 7 1 1 0 2 4 6 8 10 12 14 16 421-428 429-436 437-444 445-452 453-460 461-468 Peso (g) Fr eq üê nc ia Média = 437 8 4 4 5 7 9 12 7 12 8 8 15 8 14 5 13 7 9 7 10 10 12 7 9 8 12 27 9 10 13 7 18 12 10 8 32 25 17 26 16 22 12 5 21 7 11 13 11 16 19 16 1 13 18 16 14 12 12 21 8 18 27 17 20 15 8 16 16 18 18 Média = 12,9 Maior Valor 32 Menor Valor 1 Amplitude (R) 31 Observações (N) 70 Número de Classes (K) 7 Amplitude da Classe (H=R/K = 31/7) 4,43 Arredondamento 4 Tabela Fonte: Manual do Programa de Gestão da Qualidade do Hospital das Clinicas da Faculdade de Medicina da Universidade de São Paulo. Metodologia para o Estudo e Análise de Problemas (EAP). Anexo 1 - Ferramentas de Qualidade I. Tempo de espera (em dias) de laudos de exames radiológicos dos pacientes ambulatoriais Classe Limite Inferior da Classe Amplitude Classe Limite Superior da Classe Novo Limite Inferior Amplitude Classe Novo Limite Superior Intervalos 1 1 4 5 1 4 5 1 - 5 2 5 4 9 5+1 = 6 4 10 6 - 10 3 9 4 13 10+1=11 4 15 11 - 15 4 13 4 17 15+1=16 4 20 16 - 20 5 17 4 21 20+1=21 4 25 21 - 25 6 21 4 25 25+1=26 4 30 26 - 30 7 25 4 29 30+1=31 4 35 31 - 35 Histograma 6 23 18 15 4 3 1 0 5 10 15 20 25 1-5 6-10 11-15 16-20 21-25 26-30 31-35 Tempo de Espera (dias) Fr eq üê nc ia Média = 12,9 dias Número de Classes = 7 Amplitude da Classe= 4 1,68 1,60 1,68 1,75 1,75 1,60 1,65 1,54 1,63 1,65 1,68 1,68 1,58 1,49 1,60 1,61 1,62 1,66 1,65 1,50 1,67 1,64 1,62 1,65 1,63 1,59 1,78 1,69 1,58 1,63 1,71 1,70 1,56 1,74 1,65 1,73 1,72 1,68 1,68 1,63 Maior 1,78 Menor 1,49 Amplitude (R) 0,29 N 40 Classe 5 Amplitude Classe (R/k = 0,29/5) 0,06 Classe L.I.Classe L.S.Classe 1 1,49 1,55 2 1,56 1,62 3 1,63 1,69 4 1,70 1,76 5 1,77 1,83 Altura dos alunos Tabela Histograma 3 10 19 7 1 0 2 4 6 8 10 12 14 16 18 20 1,49 - 1,55 1,56 - 1,62 1,63 - 1,69 1,70 - 1,76 1,77-1,83 Altura dos Alunos (m) Fr eq üê nc ia M éd ia = 1 ,6 5 Número de Classes = 5 Amplitude das classes = 0,06 • Visão rápida de análise comparativa de uma seqüência de dados históricos; • Rápido de elaborar, tanto manual como com o uso de um software (por exemplo, o Excel); • Facilita a solução de problemas, principalmente quando se identifica numa série história a evolução e a tendência de um determinado processo. Vantagem • Fica ilegível quando se necessita a comparação de muitas seqüências ao mesmo tempo; • Quanto maior o tamanho de (n) maior o custo de amostragem e teste; • Para um grupo de informações é necessário a confecção de vários gráficos a fim de que se consiga uma melhor compreensão dos dados contidos no histograma; DESVANTAGENS Folha de verificação: para anotar os dados confirmando a variabilidade do processo. Digrama de causa efeito: já descrito no item anterior Diagrama de Pareto: já descrito no item anterior RELAÇÃO COM OUTRAS FERRAMENTAS 6. DIAGRAMA DE DISPERSÃO São gráficos que permitem a identificação entre causas e efeitos, para avaliar o relacionamento entre variáveis. O diagrama de dispersão é a etapa seguinte do diagrama de causa e efeito, pois verifica-se se há uma possível relação entre as causas, isto é, nos mostra se existe uma relação, e em que intensidade . Exemplos: A relação entre… • a humidade contida nos tecidos e a elongação do fio • um ingrediente e a dureza do produto • a velocidade de corte e as variações nos comprimentos das lâminas • os níveis de iluminação e erros de inspeção • altura e peso QUANDO USAR UM DIAGRAMA DE DISPERSÃO • Para visualizar uma variável com outra e o que acontece se uma se alterar. • Para verificar se as duas variáveis estão relacionadas, ou se há uma possível relação de causa e efeito. • Para visualizar a intensidade do relacionamento entre as duas variáveis, e comparar a relação entre os dois efeitos. PRÉ-REQUISITOS PARA CONSTRUIR O DIAGRAMA DE DISPERSÃO Coletar dados sob forma de par ordenado, em tempo determinado, entre as variáveis que se deseja estudar as relações. COMO FAZER UM DIAGRAMA DE DISPERSÃO • Coletar os pares da amostra que poderão estar relacionados. • Construir os eixos, a variável causa no eixo horizontal e a variável efeito no eixo vertical. • Colocar os dados no diagrama. • Adicionar informações complementares, tais como: nome das variáveis, período de coleta, tamanho da amostra e outros. VANTAGENS: • Permite a identificação do possível relacionamento entre variáveis consideradas numa análise; • Ideal quando há interesse em visualizar a intensidade do relacionamento entre duas variáveis; • Pode ser utilizado para comprovar a relação entre dois efeitos, permitindo analisar uma teoria a respeito de causas comuns. DESVANTAGENS • É um método estatístico complexo, que necessita de um nível mínimo de conhecimento sobre a ferramenta para que se possa utilizá-la; • Exige um profundo conhecimento do processo cujo problema deseja- se solucionar; • Não há garantia de causa-efeito. Há necessidade de reunir outras informações para que seja possível tirar melhores conclusões. RELAÇÃO COM OUTRAS FERRAMENTAS Diagrama de causa e efeito: é usado para verificar se há uma possível relação da causa com o efeito. Folha de verificação: é usada no levantamento de dados Exemplo: Na moldagem de tanques plásticos, avaliação da relação entre a variação de ar (no sopro - causa) como causa de paredes finas (defeito) Diagrama de Dispersão 0,86 0,87 0,88 0,89 0,9 0,91 0,92 0,93 0,94 8 8,2 8,4 8,6 8,8 9 9,2 9,4 9,6 Pressãode sopro Am os tr a D ef ei tu os a (% ) Diagrama de Dispersão Análise dos Diagramas: POSSÍVEL CORRELAÇÃO NEGATIVA POSSÍVEL CORRELAÇÃO POSITIIVA G H I J 7. Gráfico de Controle • Utilizado para acompanhar o processo ao longo do tempo • Para o monitoramento da variabilidade e para a avaliação da estabilidade de um processo. • A intenção é monitorar e eliminar variações anormais • Consiste de uma linha central, um par de limites de controle (acima e abaixo) e valores característicos marcados no gráfico representando o estado do processo. • Os limites de controle são calculados por: (valor médio) ± 3 (desvio-padrão) • Se valores estiverem dentro dos limites, sem tendência particular, o processo é considerado sob controle • Se os pontos estiverem fora dos limites ou apresentarem disposição atípica, o processo está fora de controle Gráfico de Controle 1 2 3 4 5 6 7 8 9 10 11 12 passagem do tempo ou eventos pa râ m et ro d e de se m pe nh o procure pela causa da variação especial procure pela causa da variação especial LSC - limite superior de controle LIC - limite inferior de controle considere apenas estas variações como normais Gráfico de Controle Limite superior de controle Limite inferior de controle 3 desvios padrão 3 desvios padrão x x x x x x x x x x x x x PROCESSO SOB CONTROLE LSC LIC LSC LIC LSC LIC LSC LIC LSC LIC PROCESSO FORA OU SAINDO DE CONTROLE x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x Gráfico de Controle Análise de Gráficos de Controle • Existem alguns métodos para analisar gráficos de controle • Um deles é o desenvolvido por Brassard (1992), no qual são feitas algumas recomendações para se identificar um gráfico “fora de controle”: – Se um ou mais pontos estão fora dos limites de controle OU – Fazendo uma subdivisão na zona de controle e analisando o comportamento dos pontos ... Gráfico de Controle • Segundo tal método, um gráfico é considerado fora de controle, e devem ser investigadas as mudanças ocorridas, com posterior ajustes no processo, se ocorrerem: – Dois pontos, em três sucessivos, de um mesmo lado da linha central, na Zona A ou acima desta. – Quatro pontos, em cinco sucessivos, de um mesmo lado da linha central, na Zona B ou acima desta – Nove pontos sucessivos de um mesmo lado da linha central – Seis pontos consecutivos ascendentes ou descendentes – Quatorze pontos numa série alternando para cima ou para baixo – Quinze pontos numa série dentro da zona C De um modo geral podemos dividir os Gráficos de Controle em dois grandes grupos: i.- Gráficos de Controle para Variáveis; VARIÁVEIS - dados que podem ser medidos, ou sofrem variação contínua, tais como, resistência à tração dureza, uma dimensão (comprimento, altura, etc...) • Gráfico Média e Amplitude • Gráfico Valor Individual •Gráfico de desvio/erro Tipos de Gráficos de Controle ii.- Gráficos de Controle para Atributos. ATRIBUTOS - dados que só podem ser contados ou classificados, tais como, número de itens defeituosos, nro de defeitos, passa/não passa, claro/escuro, com trinca/sem trinca, etc... • Gráfico pn (número de itens defeituosos) • Gráfico p (fração defeituosa) • Gráfico c (número de defeitos) • Gráficos u (número de defeitos por unidade) Tipos de Gráficos de Controle Gráfico de Controle - recomendações • Algumas recomendações na construção dos gráficos: – Não confundir Limite Superior e Inferior de Controle com Limites de especificações (tolerâncias) - LIC e LSC são estatisticamente calculados – Os dados devem ser registrados sempre na ordem em que foram coletados – Nunca alterar o processo durante uma seqüência de coleta de dados para análise LSC e LIC para a carta de a partir da amplitude R RAX nd RX n XXLSC m 2 2 333 +=+=+=+= σσ RAX nd RX n XXLIC m 2 2 333 −=−=−=−= σσ X Limites para carta de controle de dispersão – Valores para a amplitude 4 2 4 44 2 4 1 3 1 1 3 BSc c S c c SSLSC = −+= − += 3 2 4 44 2 4 1 3 1 1 3 BSc c S c c SSLIC = −−= − −= 4 2 3 2 3 313 DR d d R d d RRLSC = +=+= 3 2 3 2 3 313 DR d d R d d RRLIC = −=−= n c4 d2 d3 A2 A3 B3 B4 D3 D4 2 0.798 1.128 0.853 1.880 2.659 0 3.267 0 3.267 3 0.886 1.693 0.888 1.023 1.954 0 2.568 0 2.575 4 0.921 2.059 0.88 0.729 1.628 0 2.266 0 2.282 5 0.940 2.326 0.864 0.577 1.427 0 2.089 0 2.115 6 0.952 2.534 0.848 0.483 1.287 0.030 1.970 0 2.004 10 0.973 3.078 0.797 0.308 0.975 0.248 1.716 0.223 1.777 15 0.982 3.472 0.756 0.223 0.789 0.428 1.572 0.347 1.653 20 0.987 3.735 0.729 0.180 0.680 0.510 1.490 0.415 1.585 25 0.990 3.931 0.708 0.153 0.606 0.565 1.435 0.459 1.541 Fatores de correção Carta de controle para atributos n pppLSC )1(3 −+= n pppLSC )1(3 −−= Corpo de Prova Amostra 1 Amostra 2 Amostra 3 Amostra 4 Amostra 5 Amostra 6 Amostra 7 1 310 300 340 330 360 350 330 2 330 340 280 320 350 340 320 3 340 330 320 330 320 330 330 4 320 330 330 310 300 320 320 5 340 340 300 320 320 330 320 6 310 340 320 310 330 340 310 7 320 320 320 320 340 330 330 Média (x/) 324 329 316 320 331 334 323 Amplitude (R) 30 40 60 20 60 30 20 X//= 325 R/= 37 LIC = X// - (A2 x R/) LSC = X// + (A2 x R/) LIC= (325) – (0,419 x 37) LSC= (325) + (0,419 x 37) A 2= 0,419 Tabela (para n=7) LIC = 310 LSC = 341 Gráfico das Médias Gráfico da Amplitude LSC = D4 x R/ LIC = D3 x R/ D4 = 1,924 D3 = 0,076 Tabela (para n=7) LSC = 1,924 x 37 LIC = 0,076 x 37 LSC = 71 LIC = 3 Gráfico de Controle - Médias 324 329 316 320 331 334 323 325 310 341 290 295 300 305 310 315 320 325 330 335 340 345 1 2 3 4 5 6 7 Amostras Va lo re s X/ X// LIC LSC Gráfico de Controle - Amplitude 30 40 60 20 60 30 20 37 3 71 0 10 20 30 40 50 60 70 80 1 2 3 4 5 6 7 Amostras A m pl itu de R R/ LIC LSC VANTAGENS: • Mostram tendência, ao longo do tempo, de um determinado processo • Apresentam dados estratificados em diversas categorias; • É útil para comparar dados resultantes de processo de contagem variáveis discretas e atributos). DESVANTAGENS • Tem que ser atualizados, conforme o período mostrado no gráfico (diário, semanal, mensal, anual, etc.); • É genérico. Não há detalhes sobre a informação (histórico/composição); • Tem que ter conhecimentos básicos de estatísticas para poder utilizar e escolher o tipo mais adequado para cada situação. RELAÇÃO COM OUTRAS FERRAMENTAS Diagrama de causa e efeito: pode ser usado para encontrar a causa fundamental como já descrito no item anterior. Brainstorming: faz um levantamento de sugestões do grupo para identificar a causa Folha de verificação: na coleta dos dados no processo. Histograma: para nos mostrar aproximadamente a distribuição normal e se todas as amostras encontram-se dentro das faixas especificadas. FERRAMENTA OBJETIVO CATEGORIA DE APLICAÇÃO Estratificação Agrupar informações em blocos ou grupos para facilitar análises e comparações • Análise de causa • Coleta e análise de dados Diagrama de Pareto Identificar os aspectos prioritários do problema • Coleta e análise de dados • Análise de causa Diagrama de Causa e Efeito Identificar e organizar as possíveis causas de um problema de maneira lógica • Análise de causa Histograma Mostrar o comportamento de variável sob estudo e determinar o tipo de distribuição • Coleta e análise de dados Diagrama de Dispersão Demonstrar o grau de relação entre as variáveis • Coleta e análise de dados • Análise de causa Folha de verificação Coletar dados significativos e representativos da situação • Coleta e análise de dados Gráfico de Controle Detectar mudanças no comportamento do processo • Coleta e análise de dados B Á SI C AS Fonte: CRITÉRIOS DE EXCELÊNCIA E FERRAMENTAS DA QUALIDADE: Uma integração em buscada excelência do desempenho http://www.faesp.br/rafi/ed3/artigos_rodrigo.aspx Categorias de Aplicação das Ferramentas da Qualidade FERRAMENTA DESCRIÇÃO MÉTODO DE USO OBSERVAÇOES FASE PDCA PARETO Um diagrama no qual eventos indesejáveis ou custos ligados à qualidade, produtividade são estratificados de acordo com suas causas/manifestações e plotados em ordem de importância. Pode existir uma série de problemas ou causas de problemas indesejáveis. O diagrama permite priorizar a causa ou problema mais crítico. Muito cuidado na hora de escolher a característica para priorização. IHISKAWA Um diagrama na forma de espinha de peixe onde podem ser separados de forma clara o problema (efeito) e todas as possíveis causas. Deve ser desenvolvido em grupo com as pessoas que participam do processo relativo ao problema. Após listadas as possíveis causas, procede-se à priorização. O problema deve ser único e específico. HISTOGRAMA Divide uma faixa de valores de alguma característica mensurável em classes e verifica a frequência de valores em cada classe para posterior plotagem (gráfico de barras). Fornece uma visualização do comportamento do processo, permitindo avaliar sua capacidade, assim como padrões de estratificação. Seguir as regras quanto ao número de dados, classes etc. P DC A P DC A P DC A FERRAMENTA DESCRIÇÃO MÉTODO DE USO OBSERVAÇOES FASE PDCA ESTRATIFICAÇ ÃO Conceito usado para buscar diferentes causas ou tipos de problemas. Pode ser usado no planejamento da coleta de dados ou posteriormente ao uso do Histograma/Diagrama de Dispersão. Muitas vezes a estratificação não é claramente notada GRÁFICO DE CONTROLE Gráfico onde determinada característica/indicador da qualidade é plotada ao longo do tempo.Podem ser calculados limites de controle. Usado para acompanhar o comportamento de um indicador/característica da qualidade. Quando usado com os limites de controle, permite separar causas comuns das especiais. Seguir as regras quanto ao número de dados, cálculo dos limites, padrões de não- aleatoriedade DIAGRAMA DE DISPERSÃO Gráfico onde duas características (pares de dados) são plotadas para verificar possível correlação. Coleta dados aos pares de duas variáveis (causa/efeito) para checar a existência real da relação de causa e efeito. Seguir as regras quando ao número de dados e forma de análise. P DC A P DC A P DC A Fonte: Manual do Programa de Gestão da Qualidade do Hospital das Clinicas da Faculdade de Medicina da Universidade de São Paulo. Metodologia para o Estudo e Análise de Problemas (EAP). Anexo 1 - Ferramentas de Qualidade I. Ferramenta Identificação do Problema Análise do Problema Planejamento e Implementação Brainstorming ● ● Fluxograma ● ● Lista de Verificação ● Histograma ● Diagrama Ishikawa ● ● ● Gráfico de Pareto ● ● ● Diagrama de Dispersão ● Gráfico de Controle ● ● ● Ferramentas da Qualidade por aplicação FERRAMENTAS O QUE É PARA QUE UTILIZAR FOLHA DE VERIFICAÇÃO Planilha para a coleta de dados Para facilitar a coleta de dados pertinentes a um problema DIAGRAMA DE PARETO Diagrama de barra que ordena as ocorrências do maior para o menor Priorizar os poucos mas vitais DIAGRAMA DE CAUSA E EFEITO Estrutura do método que expressa, de modo simples e fácil, a série de causa de um efeito ( problema) Ampliar a quantidade de causas potenciais a serem analisadas DIGRAMA DE DISPERSÃO Gráfico cartesiano que representa a relação entre duas variáveis Verificar a correlação entre duas variáveis HISTOGRAMA Diagrama de barra que representa a distribuição da ferramenta de uma população Verificar o comportamento de um processo em relação à especificação FLUXOGRAMA São fluxos que permite a visão global do processo por onde passa o produto Estabelecer os limites e conhecer as atividades GRÁFICO DE CONTROLE Gráfico com limite de controle que permite o monitoramento dos processos Verificar se o processo está sob controle BRAINSTORMING É um conjunto de idéias ou sugestões criado pelos membros da equipe que permite avanços na busca de soluções Ampliar a quantidade de opções a serem analisadas. 5W2H É um documento de forma organizada para identificar as ações e a responsabilidade de cada um. Para planejar as diversas ações que será desenvolvida no decorrer do trabalho. Fonte: IVETE DE FÁTIMA ROSSATO, UMA METODOLOGIA PARA A ANÁLISE E SOLUÇÃO DE PROBLEMAS. DISSERTAÇÃO SUBMETIDA A UNIVERSIDADE FEDERAL DE SANTA CATARINA PARA A OBTENÇÃO DO GRAU DE MESTRE EM ENGENHARIA. Março, 1996. RESUMO DAS UTILIDADES DAS PRINCIPAIS FERRAMENTAS DA QUALIDADE FERRAMENTA Folha de Verificação Diagrama de Pareto Diagrama de causa e efeito Diagrama de Dispersão Gráfico de controle Histograma Fluxograma Brainstormi ng 5W2H Folha de Verificação X X X X X X Diagrama de Pareto X X X X Diagrama de causa e efeito X X X X X Gráfico de controle X X X Diagrama de dispersão X X Histograma X X X Fluxograma Brainstorming X X X X X 5W1H X X FonteIVETE DE FÁTIMA ROSSATO, UMA METODOLOGIA PARA A ANÁLISE E SOLUÇÃO DE PROBLEMAS. DISSERTAÇÃO SUBMETIDA A UNIVERSIDADE FEDERAL DE SANTA CATARINA PARA A OBTENÇÃO DO GRAU DE MESTRE EM ENGENHARIA. Março, 1996. RELAÇÕES ENTRE FERRAMENTAS: Folha de verificação Diagrama de Pareto Diagram a de causa e efeito Diagrama de dispersão Gráfico de control e Histograma Fluxograma Brainstorming 5W2H coletas de dados X X X X X freqüência de ocorrência X X reuniões de grupo X X X X gráficos X X X X X estatística X X etapas e informação do processo X PRINCIPAIS DADOS PARA CONSTRUÇÃO DAS FERRAMENTAS DA QUALIDADE IVETE DE FÁTIMA ROSSATO, UMA METODOLOGIA PARA A ANÁLISE E SOLUÇÃO DE PROBLEMAS. DISSERTAÇÃO SUBMETIDA A UNIVERSIDADE FEDERAL DE SANTA CATARINA PARA A OBTENÇÃO DO GRAU DE ESTRE EM ENGENHARIA. Março, 1996. RAD1504 – GESTÃO DA QUALIDADE I As Ferramentas da Qualidade As Ferramentas da Qualidade As ferramentas da qualidade são utilizadas para coletar, processar e dispor as informações necessárias ao giro dos ciclos PDCA Outras Ferramentas� Brainstorming Brainstorming Brainstorming 5W 2H��Utilizado para orientação de grupos de trabalho na obtenção de respostas para melhor determinação (detalhamento) dos problemas e de fatores relacionados a eles. 1. Estratificação Estratificação Número do slide 11 Número do slide 12 Número do slide 13 Número do slide 14 Número do slide 15 Número do slide 16 Número do slide 17 Número do slide 18 Número do slide 19 Exemplo de Folha de Verificação Número do slide 21 Número do slide 22 Pareto Número do slide 24 Número do slide 25 Número do slide 26 Número do slide 27 Número do slide 28 Número do slide 29 Número do slide 30 Número do slide 31 Número do slide 32 Número do slide 33 Número do slide 34 Número do slide 35 Número do slide 36 Número do slide 37 Número do slide 38 Número do slide 39 Número do slide 40 Número do slide 41 Número do slide 42 Número do slide 43 Número do slide 44 Diagrama de Causa e Efeito Número do slide 46 Número do slide 47 Número do slide 48 Histograma Histograma Número do slide 51 Número do slide 52 Número do slide 53 Número do slide 54 Número do slide 55 Número do slide 56 Número do slide 57 Número do slide 58 Número do slide 59 Número do slide 60 Número do slide 61 Número do slide 62 Número do slide 63 Número do slide 64 Número do slide 65 Número do slide 66 Número do slide 67 Número do slide 68 Número do slide 69 Diagrama de Dispersão 7. Gráfico de Controle Gráfico de Controle Gráfico de Controle Gráfico de Controle Gráfico de Controle Número do slide 77 Número do slide 78 Gráfico de Controle - recomendações LSC e LIC para a carta de a partir da amplitude R Limites para carta de controle de dispersão – Valores para a amplitude Fatores de correção Carta de controle para atributos Número do slide 84 Número do slide 85 Númerodo slide 86 Número do slide 87 Número do slide 88 Número do slide 89 Número do slide 90 Número do slide 91 Número do slide 92 Número do slide 93 Número do slide 94 Número do slide 95