Buscar

Apol Cálculo Diferencial Integral a Várias Variáveis

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 3, do total de 8 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 6, do total de 8 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Prévia do material em texto

Questão 1/10 - Cálculo Diferencial Integral a Várias Variáveis
Leia o excerto de texto a seguir: 
"Se considerarmos C uma curva da equação y=f(x)y=f(x), em que a função ff é contínua e derivável no intervalo fechado [a,b][a,b], isso nos permite determinar o comprimento do arco da curva C, de aa até bb. [Para calcular tal comprimento utiliza-se a fórmula ∫ba√1+[f′(x)]2dx∫ab1+[f′(x)]2dx. ]". 
Após esta avaliação, caso queira ler o texto integralmente, ele está disponível em:  RODRIGUES, A. C. D; SILVA, A. R. H. S. Cálculo diferencial e integral de várias variáveis. Curitiba: InterSaberes, 2016, p. 21.
 
Considere o excerto de texto acima, os conteúdos do livro-base Cálculo diferencial e integral a várias variáveis, a equação f′(x)=x3/2−4f′(x)=x3/2−4  e o intervalo [a,b]=[1,4][a,b]=[1,4]. Agora, assinale a alternativa correta que apresenta o comprimento do arco de f(x)f(x) no intervalo [a,b][a,b]: 
Nota: 10.0
	
	A
	80√10−√1388010−138
	
	B
	80278027
	
	C
	80√10−13√13278010−131327
Você acertou!
Comentário: Esta é a alternativa correta, pois para calcularmos o comprimento da curva, devemos ter a derivada da função f,
Se f(x)=x3/2−4f(x)=x3/2−4 então f′(x)=3x1/22f′(x)=3x1/22.
Aplicando a fórmula a ∫ba√1+[f′(x)]2dx∫ab1+[f′(x)]2dx. teremos:
a ∫ba√1+[f′(x)]2dx∫41√1+[3x1/22]2dx∫41√1+9x4dx∫ab1+[f′(x)]2dx∫141+[3x1/22]2dx∫141+9x4dx
Agora, para podermos integrar esta raiz, o que está fora dela deve ser a derivada do que está dentro dela.
Como a derivada de 1+9x41+9x4 é 9/4, inserimos esta fração e tiramos fora da integral. Assim fica fácil a integração.
C=49∫41√1+9x494dxC=49∣∣
∣
∣
∣
∣∣(1+9x4)3/232∣∣
∣
∣
∣
∣∣41=827(1+9x4)3/2∣∣
∣∣41827[(1+9⋅44)3/2−(1+9⋅14)3/2]=827[(1+9)3/2−(1+94)3/2]=827[(10)3/2−(134)3/2]=827[10√10−134√134]=827[10√10−138√13]=827[80√10−13√138]=80√10−13√1327C=49∫141+9x494dxC=49|(1+9x4)3/232|14=827(1+9x4)3/2|14827[(1+9⋅44)3/2−(1+9⋅14)3/2]=827[(1+9)3/2−(1+94)3/2]=827[(10)3/2−(134)3/2]=827[1010−134134]=827[1010−13813]=827[8010−13138]=8010−131327
(Livro-base p. 24). 
	
	D
	√1021610216
	
	E
	827(80√10−√13)827(8010−13)
Questão 2/10 - Cálculo Diferencial Integral a Várias Variáveis
Leia o trecho de texto a seguir: 
"[Em integrais repetidas] na intenção de calcular ∫dc∫h(x)g(x)f(x,y)dydx∫cd∫g(x)h(x)f(x,y)dydx, inicialmente integramos f(x,y)f(x,y) em relação a yy, mantendo xx fixo. Os limites de integração g(x)g(x) e h(x)h(x) dependerão desse valor fixo de xx, o que resultará na quantidade ∫h(x)g(x)f(x,y)dy∫g(x)h(x)f(x,y)dy. E, então, integraremos a quantidade posterior em relação a xx, considerando este uma variável entre os limites constantes de integração cc e dd".
Após esta avaliação, caso queira ler o texto integralmente, ele está disponível em:  RODRIGUES, A. C. D; SILVA, A. R. H. S. Cálculo diferencial e integral de várias variáveis. Curitiba: InterSaberes, 2016, p. 46.
Considerando o trecho de texto acima e os conteúdos do livro-base Cálculo diferencial e integral a várias variáveis, assinale a alternativa correta que apresenta o valor da integral repetida  ∫21∫21xydydx∫12∫12xydydx: 
Nota: 10.0
	
	A
	9494
Você acertou!
Comentário: Esta é a alternativa correta, pois para calcular a integral repetida, primeiro considera uma das variáveis constante. Em nosso caso, consideraremos a variável x. Então,
∫21∫21xydydx=∫21x[∫21ydy]dx=∫21x[y22]21dx=∫21x[222−122]dx=∫21x32dx=32∫21xdx=32x22∣∣∣21=32[222−122]=32⋅32=94∫12∫12xydydx=∫12x[∫12ydy]dx=∫12x[y22]12dx=∫12x[222−122]dx=∫12x32dx=32∫12xdx=32x22|12=32[222−122]=32⋅32=94
(Livro-base p. 43-47). 
	
	B
	1212
	
	C
	7474
	
	D
	3434
	
	E
	7272
Questão 3/10 - Cálculo Diferencial Integral a Várias Variáveis
Leia o texto a seguir: 
Uma indústria produz três tipos de objetos eletrônicos, sendo representados por x1,x2x1,x2 e x3x3, respectivamente. O custo de produção destes objetos é dado pela função C(x1,x2,x3)=50+2x1+2x2+3x3C(x1,x2,x3)=50+2x1+2x2+3x3. 
Fonte: Texto elaborado pelo autor da questão. 
Considerando o texto acima e os conteúdos do livro-base Cálculo diferencial e integral a várias variáveis, suponha que a empresa fabrica, por mês, 30 unidades do produto x1x1, dez unidades do produto x2x2 e 50 unidades do produto x3x3. Agora, assinale a alternativa correta que apresenta o custo dessa produção: 
Nota: 10.0
	
	A
	120
	
	B
	150
	
	C
	180
	
	D
	280
Você acertou!
Comentário: Esta é a alternativa correta, pois para calcular o custo de produção basta substituir as variáveis pelos valores determinados de x_1,x_2 e x_3 . Assim teremos:
C(30,10,50) = 50+2.30+2.10+3.50 = 280
(Livro-base p. 75-76). 
	
	E
	350
Questão 4/10 - Cálculo Diferencial Integral a Várias Variáveis
Leia o extrato de texto a seguir: 
"[Em integrais repetidas] na intenção de calcular ∫dc∫h(x)g(x)f(x,y)dydx∫cd∫g(x)h(x)f(x,y)dydx, inicialmente integramos f(x,y)f(x,y) em relação a yy, mantendo xx fixo. Os limites de integração g(x)g(x) e h(x)h(x) dependerão desse valor fixo de xx, o que resultará na quantidade ∫h(x)g(x)f(x,y)dy∫g(x)h(x)f(x,y)dy. E, então, integraremos a quantidade posterior em relação a xx, considerando este uma variável entre os limites constantes de integração cc e dd". 
Após esta avaliação, caso queira ler o texto integralmente, ele está disponível em:  RODRIGUES, A. C. D; SILVA, A. R. H. S. Cálculo diferencial e integral de várias variáveis. Curitiba: InterSaberes, 2016, p. 46.
Considerando o extrato de texto acima e os conteúdos do livro-base Cálculo diferencial e integral a várias variáveis, identifique a alternativa que apresenta o valor da integral repetida  ∫10∫10xdydx∫01∫01xdydx:
Nota: 10.0
	
	A
	1414
	
	B
	1313
	
	C
	11
	
	D
	22
	
	E
	1212
Você acertou!
Comentário: Esta é a alternativa correta, pois para calcular a integral repetida, primeiro considera uma das variáveis constante. Em nosso caso, consideraremos a variável x. Então,
∫10∫10xdydx=∫10x[∫10dy]dx=∫10x[y]10dx=∫10x[1−0]dx=∫10xdx=[x22]10=122−022=12∫01∫01xdydx=∫01x[∫01dy]dx=∫01x[y]01dx=∫01x[1−0]dx=∫01xdx=[x22]01=122−022=12
(Livro-base página 43-47). 
Questão 5/10 - Cálculo Diferencial Integral a Várias Variáveis
Leia o trecho de texto a seguir:
"Uma sequência numérica é usada em linguagem corrente para dar significado a uma sucessão de objetos e coisas que estão dispostos em ordem definida. Os números também são expressos em sequências que podem ser de algarismos pares, ímpares, decimais ou com um valor incremental [...]". 
Após esta avaliação, caso queira ler o texto integralmente, ele está disponível em:  RODRIGUES, A. C. D; SILVA, A. R. H. S. Cálculo diferencial e integral de várias variáveis. Curitiba: InterSaberes, 2016, p. 101.
Considerando o trecho de texto acima e os conteúdos do livro-base Cálculo diferencial e integral de várias variáveis, assinale a alternativa correta que apresenta a lei de formação da sequência dos números pares positivos (n), considerando que n é um número natural diferente de zero: 
Nota: 10.0
	
	A
	an=2n
Você acertou!
Comentário: A sequência dos números pares positivos é 2, 4, 6, 8, 10, ....
Como n começa em 2, pelo enunciado, 
para a alternativa b) teremos 2.1+1 = 3 (o primeiro número par positivo é 2); 
para a alternativa c) teremos 1 + 1 = 2, 2+1=3 (o segundo número par é 4); 
para alternativa d) teremos 2.1-1 = 1 (o primeiro número par é 2);
para a alternativa e) teremos 1-1=0 (o primeiro número par é 2); 
Para a alternativa a), a correta, temos: 2.1=2, 2.2=4, 2.3=6, 2.4=8,... continuando assim a sequência para n natural diferente de zero. Desta forma, obtemos a sequência dos números pares.
(livro-base, p. 101). 
	
	B
	an=2n+1
	
	C
	an=n+1
	
	D
	an=2n-1
	
	E
	an=n-1
Questão 6/10 - Cálculo Diferencial Integral a Várias Variáveis
Leia o extrato de texto a seguir: 
"[Em integrais repetidas] na intenção de calcular ∫dc∫h(x)g(x)f(x,y)dydx∫cd∫g(x)h(x)f(x,y)dydx, inicialmente integramos f(x,y)f(x,y) em relação a yy, mantendo xx fixo. Os limites de integração g(x)g(x) e h(x)h(x) dependerão desse valor fixo de xx, o que resultará na quantidade ∫h(x)g(x)f(x,y)dy∫g(x)h(x)f(x,y)dy. E, então, integraremos a quantidade posterior em relação a xx,considerando este uma variável entre os limites constantes de integração cc e dd". 
Após esta avaliação, caso queira ler o texto integralmente, ele está disponível em:  RODRIGUES, A. C. D; SILVA, A. R. H. S. Cálculo diferencial e integral de várias variáveis. Curitiba: InterSaberes, 2016, p. 46..
Considerando o extrato de texto acima e os conteúdos do livro-base Cálculo diferencial e integral a várias variáveis, assinale a alternativa correta que apresenta o valor da integral repetida  ∫21∫102xydydx∫12∫012xydydx: 
Nota: 10.0
	
	A
	11
	
	B
	3232
Você acertou!
Comentário: Esta é a alternativa correta, pois para calcular a integral repetida, primeiro considera uma das variáveis constante. Em nosso caso, consideraremos a variável x. Então,
∫21∫102xydydx=2∫21x[∫10ydy]dx=2∫21x[y22]10dx=2∫21x[122−022]dx=2∫21x12dx=∫21xdx=x22∣∣∣21222−12242−12=32∫12∫012xydydx=2∫12x[∫01ydy]dx=2∫12x[y22]01dx=2∫12x[122−022]dx=2∫12x12dx=∫12xdx=x22|12222−12242−12=32
(Livro-base p. 43-47). 
	
	C
	1212
	
	D
	5252
	
	E
	7272
Questão 7/10 - Cálculo Diferencial Integral a Várias Variáveis
Leia o excerto de texto a seguir:
"Em geral, podemos concluir que a derivada direcional de um campo escalar numa determinada direção será o produto escalar dessa direção pelo gradiente do campo escalar". 
Após esta avaliação, caso queira ler o texto integralmente, ele está disponível em:  RODRIGUES, A. C. D; SILVA, A. R. H. S. Cálculo diferencial e integral de várias variáveis. Curitiba: InterSaberes, 2016, p. 86.
Considere o excerto de texto acima, os conteúdos do livro-base Cálculo diferencial e integral de várias variáveis e a função f(x,y)=lnx−lny.f(x,y)=lnx−lny. Agora, assinale a alternativa correta que apresenta a derivada de ff no ponto P=(12,−13)P=(12,−13), na direção do vetor unitário ⃗u=(35,−45).u→=(35,−45).
Nota: 10.0
	
	A
	∂f∂⃗u(35,−13)=85.∂f∂u→(35,−13)=85.   
	
	B
	∂f∂⃗u(35,−13)=−135.∂f∂u→(35,−13)=−135.   
	
	C
	∂f∂⃗u(35,−13)=−65.∂f∂u→(35,−13)=−65.    
Você acertou!
Comentário: Esta é a alternativa correta, pois notamos que ∂f∂⃗u(x0,y0)=∇f(x0,y0)⋅⃗u.∂f∂u→(x0,y0)=∇f(x0,y0)⋅u→. Assim, ∂f∂⃗u(1/2,−1/3)=∇f(1/2,−1/3)⋅(3/5,−4/5).∂f∂u→(1/2,−1/3)=∇f(1/2,−1/3)⋅(3/5,−4/5). Como ∂f∂x(x,y)=1x e ∂f∂y(x,y)=−1y,∂f∂x(x,y)=1x e ∂f∂y(x,y)=−1y, temos ∇f(1/2,−1/3)=(2,3)∇f(1/2,−1/3)=(2,3) e, portanto, ∂f∂⃗u(1/2,−1/3)=(2,3)⋅(3/5,−4/5)=−65.∂f∂u→(1/2,−1/3)=(2,3)⋅(3/5,−4/5)=−65.
(livro-base, p. 86). 
	
	D
	−57.−57.   
	
	E
	−85.−85.   
Questão 8/10 - Cálculo Diferencial Integral a Várias Variáveis
Leia o fragmento de texto a seguir: 
"A função da derivada parcial em relação a um valor xixi é a derivada de f em relação a xixi uma vez que admitamos todas as outras variáveis como constantes". 
Após esta avaliação, caso queira ler o texto integralmente, ele está disponível em:  RODRIGUES, A. C. D; SILVA, A. R. H. S. Cálculo diferencial e integral de várias variáveis. Curitiba: InterSaberes, 2016, p. 80.
Considerando o fragmento de texto acima e os conteúdos do livro-base Cálculo diferencial e integral de várias variáveis, assinale a alternativa correta que corresponde às derivadas parciais da função f(x,y,z)=3x2+4xy−3zy.f(x,y,z)=3x2+4xy−3zy.
Nota: 10.0
	
	A
	∂f∂x=6x+4y;∂f∂y=4x−3z;∂f∂z=−3y.∂f∂x=6x+4y;∂f∂y=4x−3z;∂f∂z=−3y.
Você acertou!
Comentário: Esta é a alternativa correta, pois calculamos a derivada parcial separadamente em relação a cada variável. Assim, temos: 
∂∂x(3x2+4xy−3zy)=6x+4y;∂∂y(3x2+4xy−3zy)=4x−3z;∂∂z(3x2+4xy−3zy)=−3y.∂∂x(3x2+4xy−3zy)=6x+4y;∂∂y(3x2+4xy−3zy)=4x−3z;∂∂z(3x2+4xy−3zy)=−3y. 
(Livro-base, p. 80). 
	
	B
	∂f∂x=4y;∂f∂y=4y−3x;∂f∂z=−3y.∂f∂x=4y;∂f∂y=4y−3x;∂f∂z=−3y.
	
	C
	∂f∂x=−6x−4z;∂f∂y=y;∂f∂z=y.∂f∂x=−6x−4z;∂f∂y=y;∂f∂z=y.
	
	D
	∂f∂x=x;∂f∂y=y;∂f∂z=z.∂f∂x=x;∂f∂y=y;∂f∂z=z.
	
	E
	∂f∂x=−4xyz;∂f∂y=6xyz;∂f∂z=xyz.∂f∂x=−4xyz;∂f∂y=6xyz;∂f∂z=xyz.
Questão 9/10 - Cálculo Diferencial Integral a Várias Variáveis
Leia o extrato de texto a seguir: 
"[Em integrais repetidas] na intenção de calcular ∫dc∫h(x)g(x)f(x,y)dydx∫cd∫g(x)h(x)f(x,y)dydx, inicialmente integramos f(x,y)f(x,y) em relação a yy, mantendo xx fixo. Os limites de integração g(x)g(x) e h(x)h(x) dependerão desse valor fixo de xx, o que resultará na quantidade ∫h(x)g(x)f(x,y)dy∫g(x)h(x)f(x,y)dy. E, então, integraremos a quantidade posterior em relação a xx, considerando este uma variável entre os limites constantes de integração cc e dd". 
Após esta avaliação, caso queira ler o texto integralmente, ele está disponível em:  RODRIGUES, A. C. D; SILVA, A. R. H. S. Cálculo diferencial e integral de várias variáveis. Curitiba: InterSaberes, 2016, p. 46. 
Considerando o extrato de texto acima e os conteúdos do livro-base Cálculo diferencial e integral a várias variáveis, identifique a alternativa que apresenta o valor da integral repetida ∫20∫20yzdzdy∫02∫02yzdzdy: 
Nota: 10.0
	
	A
	0
	
	B
	2
	
	C
	4
Você acertou!
Comentário: Para calcular a integral repetida, primeiro considera uma das variáveis constante. Em nosso caso, consideraremos a variável x. Então,
∫20∫20yzdzdy=∫20y[∫20zdz]dy=∫20y[z22]20dy=∫20y[222−022]dy=∫20y2dy=2∫20ydy=2y22∣∣∣20=2[222−022]=2⋅2=4∫02∫02yzdzdy=∫02y[∫02zdz]dy=∫02y[z22]02dy=∫02y[222−022]dy=∫02y2dy=2∫02ydy=2y22|02=2[222−022]=2⋅2=4
(livro-base, p. 43-47). 
	
	D
	8
	
	E
	16
Questão 10/10 - Cálculo Diferencial Integral a Várias Variáveis
Leia o extrato de texto a seguir: 
"A função da derivada parcial em relação a um valor xi é a derivada de f em relação a xi uma vez que admitamos todas as outras variáveis como constantes". 
Após esta avaliação, caso queira ler o texto integralmente, ele está disponível em:  RODRIGUES, A. C. D; SILVA, A. R. H. S. Cálculo diferencial e integral de várias variáveis. Curitiba: InterSaberes, 2016, p. 80.
Considerando o extrato de texto acima e os conteúdos do livro-base Cálculo diferencial e integral a várias variáveis, assinale a alternativa correta que corresponde às derivadas parciais da função: f(x,y)=x2y2−3xy−13.f(x,y)=x2y2−3xy−13.
Nota: 10.0
	
	A
	∂f∂x=2xy2−3y+13  e  ∂f∂y=2x2y−3x+13.∂f∂x=2xy2−3y+13  e  ∂f∂y=2x2y−3x+13.   
	
	B
	∂f∂x=2y2−3y  e  ∂f∂y=2y−3.∂f∂x=2y2−3y  e  ∂f∂y=2y−3.   
	
	C
	∂f∂x=2xy2+3y  e  ∂f∂y=2x2y+3x.∂f∂x=2xy2+3y  e  ∂f∂y=2x2y+3x.   
	
	D
	∂f∂x=2x−3y e ∂f∂y=2y−3x.∂f∂x=2x−3y e ∂f∂y=2y−3x.    
	
	E
	∂f∂x=2xy2−3y  e  ∂f∂y=2x2y−3x.∂f∂x=2xy2−3y  e  ∂f∂y=2x2y−3x.   
Você acertou!
Comentário: Esta é a alternativa correta, pois calculamos a derivada separadamente em relação a cada variável. Assim,
∂∂x(x2y2−3xy+13)=2xy2−3ye∂∂y(x2y2−3xy+13)=2x2y−3x.∂∂x(x2y2−3xy+13)=2xy2−3ye∂∂y(x2y2−3xy+13)=2x2y−3x.
(livro-base, p. 80).

Continue navegando