Buscar

15-1 - WKB approximation Alpha particle decay

Prévia do material em texto

1 
 
WKB approximation:  particle decay 
Masatsugu Sei Suzuki 
Department of Physics, SUNY at Binghamton 
(Date: November 15, 2011) 
 
WKB approximation 
This method is named after physicists Wentzel, Kramers, and Brillouin, who all 
developed it in 1926. In 1923, mathematician Harold Jeffreys had developed a general 
method of approximating solutions to linear, second-order differential equations, which 
includes the Schrödinger equation. But even though the Schrödinger equation was 
developed two years later, Wentzel, Kramers, and Brillouin were apparently unaware of 
this earlier work, so Jeffreys is often neglected credit. Early texts in quantum mechanics 
contain any number of combinations of their initials, including WBK, BWK, WKBJ, 
JWKB and BWKJ. The important contribution of Jeffreys, Wentzel, Kramers and 
Brillouin to the method was the inclusion of the treatment of turning points, connecting 
the evanescent and oscillatory solutions at either side of the turning point. For example, 
this may occur in the Schrödinger equation, due to a potential energy hill. 
(from http://en.wikipedia.org/wiki/WKB_approximation) 
 
________________________________________________________________________ 
Gregor Wentzel (February 17, 1898 – August 12, 1978) was a German physicist known 
for development of quantum mechanics. Wentzel, Hendrik Kramers, and Léon Brillouin 
developed the Wentzel–Kramers–Brillouin approximation in 1926. In his early years, he 
contributed to X-ray spectroscopy, but then broadened out to make contributions to 
quantum mechanics, quantum electrodynamics, and meson theory. 
http://en.wikipedia.org/wiki/Gregor_Wentzel 
 
Hendrik Anthony (2 February 1894 – 24 April 1952) was a Dutch physicist who worked 
with Niels Bohr to understand how electromagnetic waves interact with matter. 
http://en.wikipedia.org/wiki/Hans_Kramers 
 
Léon Nicolas Brillouin (August 7, 1889 – October 4, 1969) was a French physicist. He 
made contributions to quantum mechanics, radio wave propagation in the atmosphere, 
solid state physics, and information theory. 
http://en.wikipedia.org/wiki/L%C3%A9on_Brillouin 
________________________________________________________________________ 
1. Classical limit 
Change in the wavelength over the distance x 
 
x
dx
d   . 
 
When  x 
 

dx
d
 . 
 
2 
 
 
In the classical domain,   
 
 
dx
d
 or 1
dx
d
, 
 
which is the criterion of the classical behavior. 
 
2. WKB approximation 
The quantum wavelength does not change appreciably over the distance of one 
wavelength. We start with the de Broglie wave length given by 
 

h
p  , 
 
)(
2
1 2 xVp
m
 , 
 
or 
 
)]([2
2
2 xVm
h
p 




 

, 
 
or 
 
)((2 xVmp   . 
 
Then we get 
 
]
)(
[22 32
dx
xdV
m
dx
d
h  
 , 
 
or 
 
dx
xdV
p
mh
dx
xdV
p
h
h
m
dx
xdV
h
m
dx
d )()()(
3
3
2
3
2






  . 
 
When 1
dx
d
, we have 
 
1
)(
3

dx
xdV
p
mh
 (classical approximation) 
 
 
3 
 
If dV/dx is small, the momentum is large, or both, the above inequality is likely to be 
satisfied. Around the turning point, p(x) = 0. |dV/dx| is very small when V(x) is a slowly 
changing function of x. Now we consider the WKB approximation, 
 
)()(
2
)(
2
22
xxV
xm
x  










. 
 
When 0V , 
 

ipx
ikx AeAex )( . 
 
If the potential V is slowly varying function of x, we can assume that 
 
)(
)(
xS
i
Aex  , 
 
.....)(
!3
)(
!2
)(
!1
)()( 3
3
2
2
10  xSxSxSxSxS

. 
 
____________________________________________________________________ 
((Mathematica)) 
 
4 
 
WKB approximation
eq1  
—2
2 m
Dx, x, 2  Vx x  ∂ x;
rule1    Exp
—
S & ;
eq2  eq1 . rule1  Simplify

 Sx
— 2 m ∂  2 m Vx  Sx2   — Sx
2 m
rule2 
S 
S0  — S1  —
2
2
S2  —
3
3
S3  —
4
4
S4 & ;
eq3  2 ∂ m  2 m Vx  Sx2   — Sx;
eq4  eq3 . rule2  Expand;
list1  Tablen, Coefficienteq4, —, n, n, 0, 6 
Simplify;
  TableForm
0 2 m ∂  2 m Vx  S0x2
1 2 S0x S1x   S0x
2 S1x2  S0x S2x   S1x
3 S1x S2x  1
3
S0x S3x  1
2
 S2x
4 1
12
3 S2x2  4 S1x S3x  S0x S4x  2  S3x
5 1
24
4 S2x S3x  2 S1x S4x   S4x
6 1
72
2 S3x2  3 S2x S4x
 
 
_______________________________________________________________________ 
For each power of ħ, we have 
 
0)]('[)(22 20  xSxmVm , 
 
 
5 
 
)(")(')('2 010 xiSxSxS  , 
 
)(")(')(')]('[ 120
2
1 xiSxSxSxS  , 
 
..................................................................................................................................... 
 
(a) Derivation of )(0 xS 
 
)()]([2)]('[ 220 xpxVmxS   , 
 
where 
 
)]([2)(2 xVmxp   , 
 
or 
 
)()('0 xpxS  , 
 
or 
 

x
x
dxxpxS
0
)()(0 . 
 
Since )()( xkxp  , 
 

x
x
dxxkxS
0
)()(0  . 
 
(b) Derivation of )(1 xS 
 
)(")(')('2 010 xiSxSxS  , 
 
)('
)('
2)('2
)("
)('
0
0
0
0
1 xS
xS
dx
d
i
xS
xiS
xS  , 
 
which is independent of sign. 
 
)](ln[
2
)]('ln[
2
)(')( 011 xk
i
xS
i
dxxSxS   , 
 
or 
 
6 
 
 
2/1
1 )](ln[)](ln[2
1
)(  xkxkxiS  , 
 
or 
 
)(
1)(1
xk
e xiS

 . 
 
(c) Derivation of )(2 xS 
 
)(")(')(')]('[ 120
2
1 xiSxSxSxS  , 
 
)('
)]('[)("
)('
0
2
11
2 xS
xSxiS
xS

 . 
 
Then the WKB solution is given by 
 
...)](ln[
2
)(
.....)(
!3
)(
!2
)(
!1
)()(
0
3
3
2
2
10


 xkidxxk
xSxSxSxSxS
x
x




 
 
The wave function has the form 
 
)]})(exp["])(exp['))]{(ln(
2
1
exp[)(
00
 
x
x
x
x
dxxkiBdxxkiAxkx  , 
 
or 
 
])(exp[
)(
])(exp[
)(
])(exp[
)(
'
])(exp[
)(
'
)(
00
00




x
x
x
x
x
x
x
x
dxxki
xk
B
dxxki
xk
A
dxxki
xk
B
dxxki
xk
A
x


. 
 
where we put 
 

'A
A  , 

'B
B  . 
 
3. The probability current density 
 
7 
 
We now consider the case of B = 0. 
 
])(exp[
)(
)(
0

x
x
dxxki
xk
A
x . 
 
The probability is obtained as 
 
mv
A
xk
A
xxxP

22
)(
)()(*)(   , 
 
where mvxk )( . 
 
The probability current density is 
 
2
2
2
A
mmv
A
vvJ

  . 
 
 
 
Fig. 
2avdtJadt  , or 2vJ  . 
 
4. WKB approximation near the turning points 
We consider the potential energy V(x) and the energy  shown in the following figure. 
The inadequacy of the WKB approximation near the turning point is evident, since 
0)( xk implies an unphysical divergence of )(x . 
 
(a) V(x): increasing function of x around the turning point x = a 
 
 
 
8 
 
Vx
x
aO
E
 
 
(i) For x>>a where V(x)>, 
 
])(exp[
)(
])(exp[
)(
)( 11  
x
a
x
a
I dxx
x
B
dxx
x
A
x 



 , 
 
where A1 and B1 are constants, and 
 
  )(21)( xVmx

, 
 
(ii) For x<a where V(x)<, 
 
])(sin[
)(
])(cos[
)(
)( 22  
a
x
a
x
II dxxk
xk
B
dxxk
xk
A
x , 
 
where 
 
)(2
1
)( xVmxk  

. 
 
________________________________________________________________________ 
(b) V(x): decreasing function of x around the turning point 
 
 
9 
 
Vx
x
bO
E
 
 
(i) For x<<b where V(x)>, 
 
))(exp(
)(
))(exp(
)(
)(  
b
x
b
x
I dxx
x
B
dxx
x
A
x 



 , 
 
with 
 
  )(21)( xVmx

, 
 
(ii) For x>b where V(x)<, 
 
)))(sin(
)(
))(cos(
)(
2
)(  
x
b
x
b
II dxxk
xk
B
dxxk
xk
A
x 
 
where 
 
)(2
1
)( xVmxk  

. 
 
_______________________________________________________________________ 
5. Exact solution of wave function around the turning point x= a 
 
 
10 
 
Vx
x
aO
E
 
 
The Schrödinger equation is given by 
 
)()(
2 2
22
xxV
dx
d
m
   , 
 
or 
 
0])([
2 2
22
  xV
dx
d
m

, 
 
where  is the energy of a particle with a mass m. We assume that 
 
)()( axgExV  , 
 
in the vicinity of x =a, where g>0. Then the Schrödinger equation isexpressed by 
 
0)(
2
22
2
  axgm
dx
d

. 
 
Here we put 
 
)(
2
3/1
2
ax
mg
z 






. 
 
((Note)) 
 
dz
dmg
dz
d
dx
dz
dx
d
3/1
2
2







, 
 
 
11 
 
2
23/2
22
2 2
dz
dmg
dx
d







. 
 
Then we get 
 
0)(
)(
2
2
 zz
dz
zd  . 
 
The solution of this equation is given by 
 
)()(2)( 21 zBCzACz ii  , 
 
where we use 2C1 instead of C1. The asymptotic form of the Airy function Ai(z) for large 
|z| is given by 
 
)
4
cos(||)( 4/12/1
   zzAi , for z<0 
 
and 
 
  ezzAi
4/12/1
2
1
)( , for z>0 
 
where 
 
2/3||
3
2
z 
 
 
12 
 
-10 -8 -6 -4 -2 2 4
z
0.5
1.0
Aiz
 
 
Fig. Plot of the Ai(z) (red) and its asymptotic form (blue) as a function of z for z<0. 
 
 
The asymptotic form of the Airy function Bi(z) for large |z|, 
 
)
4
sin(||)( 4/12/1
   zzBi , for z<0 
 
 ezzBi
4/12/1)(  , for z>0 
 
with 
 
2/3||
3
2
z 
 
 
13 
 
-10 -8 -6 -4 -2 2
z
-0.5
0.5
1.0
1.5
2.0
Biz
 
 
Fig. Plot of the Bi(z) (red) and its asymptotic form (blue) as a function of z for z<0. 
 
Here we note that 
 
For z<0, 
2/1
3/1
22
||
2
)(
2
)( z
mg
xag
m
xk 






. 
 
Then we have 
 












 
2/3
2/3
2/1
2
2/1
2
||
3
2
)(
2
3
2
2
)(
z
xa
mg
dxxa
mg
dxxk
a
x
a
x


 
 
For z>0, 
2/1
3/1
22
||
2
)(
2
)( z
mg
axg
m
x 






 , 
 
we have 
 
 
14 
 














 
2/3
2/3
2/1
2
2/1
2
||
3
2
)(
2
3
2
2
)(
z
ax
mg
dxax
mg
dxx
x
a
x
a


 
 
______________________________________________________________________ 
6. Connection formula (I; upward) 
 
Vx
x
aO
E
 
 
 
15 
 
 
 
Fig. Connection formula (I; upward). The condition 1
dx
d
 for the WKB 
approximation is not satisfied in the vicinity of x = a. We need the asymptotic 
form the exact solution of the Schrödinger equation. 
 
 
(i) Asymptotic form for z<0 (x<a) 
 
The asymptotic form of the wave function for z<0 (x<a) can be expressed by 
 
)]
4
)(sin(
)(
1
)
4
)(cos(
)(
1
2[
2
)
4
sin(||)
4
cos(||2)()(2
2
1
6/1
2
2/1
4/12/1
2
4/12/1
121














a
x
a
x
ii
dxxk
xk
C
dxxk
xk
C
mg
zCzCzBCzAC

 (1) 
where 
 
2/3||
3
2
)( zdxxk
a
x
  , 2/1
3/1
2
||
2
)( z
mg
xk 






. 
 
 
16 
 
(ii) The asymptotic form for z>0; 
 
The asymptotic form of the wave function for z>0 (x>a) can be expressed by 
 
)])(exp(
)(
1
))(exp(
)(
1
[
2
)()(2
2
1
6/1
2
2/1
4/12/1
2
4/12/1
121












x
a
x
a
ii
dxx
x
C
dxx
x
C
mg
ezCezCzBCzAC





 

 (2) 
 
where 
 
2/3||
3
2
)( zdxx
x
a
  , 2/1
3/1
2
||
2
)( z
mg
x 






 . 
 
From Eqs.(1) and (2) we have the connection rule (I; upward) as follows. 
 
])(exp[
)(
])(exp[
)(
]
4
)(sin[
)(
]
4
)(cos[
)(
2





x
a
x
a
a
x
a
x
dxx
x
B
dxx
x
A
dxxk
xk
B
dxxk
xk
A





 (I; upward) 
 
at the boundary of x = a. 
 
Vx
x
aO
E
 
 
where C1 = A and C2 = B. 
 
17 
 
 
______________________________________________________________________ 
7. Exact solution of wave function around the turning point x= b 
 
Vx
x
bO
E
 
 
The Schrödinger equation is given by 
 
)()(
2 2
22
xxV
dx
d
m
   , 
 
or 
 
0])([
2 2
22
  xV
dx
d
m

, 
 
where  is the energy of a particle with a mass m. We assume that 
 
)()( bxgxV  , 
 
in the vicinity of x =b, where g>0. The Schrödinger equation is expressed by 
 
0)(
2
22
2
  bxgm
dx
d

. 
 
Here we put 
 
)(
2
3/1
2
bx
mg
z 






. 
 
Then we get 
 
 
18 
 
0)(
)(
2
2
 zz
dz
zd  . 
 
The solution of this equation is given by 
 
)()(2)( 21 zBCzACz ii  . 
 
We note the following. 
 
(i) For z<0 (x>b) 
k(x) is expressed by 
 
2/1
3/1
22
||
2
)(
2
)( z
mg
bxg
m
xk 






, 
 










  2/32/3
2/1
2
2/1
2
||
3
2
)(
2
3
22
)( zbx
mg
dxbx
mg
dxxk
x
b
x
b 
. 
 
(ii) For z>0 (x<b), where >V(x) 
(x) is expressed by 
 
2/1
3/1
2
22
2
)(
2
)]([
2
)(
z
mg
xbg
m
xV
m
x










 
 
 









 
2/32/3
2/1
2
2/1
2 3
2
)(
2
3
22
)( zxb
mg
dxxb
mg
dxx
b
x
b
x 
 
 
__________________________________________________________________ 
8. Connection formula-II (downward) 
 
 
19 
 
 
 
Fig. Connection formula (II; downward). The condition 1
dx
d
 for the WKB 
approximation is not satisfied in the vicinity of x = b. We need the asymptotic 
form the exact solution of the Schrödinger equation. 
 
 
The asymptotic form for z<0; 
 
)]
4
)(sin(
)(
1
)
4
)(cos(
)(
1
2[
2
)
4
sin(||)
4
cos(||2)()(2
2
1
6/1
2
2/1
4/12/1
2
4/12/1
121














x
b
x
b
ii
dxxk
xk
C
dxxk
xk
C
mg
zCzCzBCzAC

 
 
The asymptotic form for z>0; 
 
 
20 
 
)])(exp(
)(
1
))(exp(
)(
1
[
2
)()(2
2
1
6/1
2
2/1
4/12/1
2
4/12/1
121












b
x
b
x
ii
dxx
x
C
dxx
x
C
mg
ezCezCzBCzAC





 

 
 
Then we have the connection formula (II; downward) as 
 
]
4
)(sin[
)(
]
4
)(cos[
)(
2
])(exp[
)(
])(exp[
)(










x
b
x
b
b
x
b
x
dxxk
xk
B
dxxk
xk
A
dxx
x
B
dxx
x
A
 (II, downward) 
 
with 
Vx
x
bO
E
 
 
where C1 = A and C2 = B. 
 
9. Tunneling probability 
We apply the connection formula to find the tunneling probability. In order that the 
WKB approximation apply within a barrier, it is necessary that the potential V(x) does not 
change so rapidly. Suppose that a particle (energy  and mass m) penetrates into a barrier 
shown in the figure. There are three regions, I, II, and III. 
 
 
21 
 
ba
I II III
Vx
E
 
 
Fig. The connection formula I (upward) is used at x = a and the connection formula II 
(downward) is used at x = b. 
 
For x>b, (region III) 
 
]
4
)(sin[
)(
]
4
)(cos[
)(
)]
4
)((exp[
)(
1
1
1
1
1
1




x
b
x
b
x
b
III
dxxk
xk
iA
dxxk
xk
A
dxxki
xk
A


 
 
(we consider on the wave propagating along the positive x axis), where 
 
))((
2
)(
21
xV
m
xk  

. 
 
The connection formula (II, downward) is applied to the boundary between the regions 
III and II. 
 
]
4
)(sin[
)(2
]
4
)(cos[
)(
])(exp[
)(2
])(exp[
)(2
1
1
1
1










x
b
x
b
b
x
b
x
dxxk
xk
B
dxxk
xk
A
dxx
x
B
dxx
x
A
 (II, downward) 
 
Here we get 
 
22 
 
 
iAB 2 . 
 
Then we get the wave function of the region II, 
 
]
4
)(sin[
)(
]
4
)(cos[
)(
])(exp[
)(
])(exp[
)(2
1
1
1
1











x
b
x
b
III
b
x
b
x
II
dxxk
xk
iA
dxxk
xk
A
dxx
x
iA
dxx
x
A
 
 
or 
 
])(exp[
2)(
])(exp[
1
)(
])()(exp[
)(
])()(exp[
)(2

 




x
a
x
a
x
a
b
a
b
a
x
a
II
dxx
r
x
A
dxx
rx
iA
dxxdxx
x
iA
dxxdxx
x
A









 
 
where 
 
])([
2
)(
2
  xVmx

, 
 
and 
 
])(exp[ 
b
a
dxxr  , 
 
Next, the connection formula (I; upward) is applied to the boundary between the regions 
II and I. 
 
 
23 
 
)])(exp(
)(
))(exp(
)(
)]
4
)(sin(
)(
)
4
)(cos(
)(
2
2
2
2
2





x
a
x
a
a
x
a
x
dxx
x
D
dxx
x
C
dxxk
xk
D
dxxk
xk
C





 (I; upward) 
 
Here we get 
 
r
iAC
1
 , 
 
r
A
D
2
 . 
 
Then we have the wave function of the region I, 
 
)]}
4
)((exp[)]
4
)(({exp[
4)(
)]}
4
)((exp[)]
4
)(({exp[
1
)(
]
4
)(sin[
)(2
]
4
)(cos[
1
)(
2
22
2
22
2
2
2
2
2
















a
x
a
x
a
x
a
x
a
x
a
x
I
dxxkidxxki
ir
xk
A
dxxkidxxki
rxk
iAdxxkr
xk
A
dxxk
rxk
iA
 
 
or 
 
)]}
4
)((exp[))
4
1
()]
4
)((exp[)
4
1
{(
)(
)]}
4
)((exp[)
1
4
()]
4
)((exp[)
1
4
{(
)(
22
2
22
2








x
a
x
a
a
x
a
x
I
dxxki
r
r
dxxki
r
rxk
iA
dxxki
r
r
dxxki
r
r
xk
iA
 
 
The first term corresponds to that of the reflected wave and the second term corresponds 
to that of the incident wave. Then the tunneling probability is 
 
 
24 
 
))(2exp(
)
4
1
(
1 2
2



b
a
dxxr
r
r
T  , 
 
where 
 
))(exp( 
b
a
dxxr  . 
 
9. -particle decay: quantum tunneling 
 
r1 r2
Coulomb repusion
Nuclear binding
Vr
rO
E
 
 
 
Fig. Gamov's model for the potential energy of an alpha particle in a radioactive 
nucleus. 
 
 
25 
 
-2
0
2
4
6
8
10
r
nu
cl
ea
r
po
te
nt
ia
lM
eV

Re yar
Ea
 
 
Fig. The tunneling of a particle from the 238U (Z = 92). The kinetic energy 4.2 MeV. 
http://demonstrations.wolfram.com/GamowModelForAlphaDecayTheGeigerNutt
allLaw/ 
 
For r1<r<r2. 
 
  )(21)( rVmr

. 
 
At r = r2, 
 
20
2
1
4
2
r
eZ

  . 
 
The tunneling probability is 
 
])(2exp[
1
2  
r
r
drreP  , 
 
where 
 
 
26 
 
])1([arccos
2
])(arccos[
2
1
2
)(
2
)(
2
1
2
1
2
1
2
121
2
1
2
2
2
1
2
1
2
1
r
r
r
r
r
r
r
m
rrr
r
r
r
m
dr
r
rm
drrV
m
drr
r
r
r
r
r
r

















 
 
where m is the mass of -particle (= 4.001506179125 u). fm = 10-15 m (fermi). 
The quantity P gives the probability that in one trial an  particle will penetrate the 
barrier. The number of trials per second could estimated to be 
 
12r
v
N  , 
 
if it were assumed that a particle is bouncing back and forth with velocity v inside the 
nucleus of diameter 2r1. Then the probability per second that nucleus will decay by 
emitting a particle, called the decay rate R, would be 
 
2
12
 e
r
v
R . 
 
((Example)) 
We consider the  particle emission from 238U nucleus (Z = 92), which emits a K = 
4.2 MeV  particle. The a particle is contained inside the nuclear radius r1 = 7.0 fm (fm = 
10-15 m). 
 
(i) The distance r2: 
From the relation 
 
20
2
4
2
r
Ze
K

 , 
 
we get 
 
r2 = 63.08 fm. 
 
(ii) The velocity of a particle inside the nucleus, v: 
 
27 
 
From the relation 
 
2
1 2
1
vmK  , 
 
where m is the mass of the a particle; m = 4.001506179 u, we get 
 
v = 1.42318 x 107 m/s. 
 
(iii) The value of : 
 
])(arccos[
2
121
2
1
2 rrrr
r
r
mK


 =51.8796. 
 
(iv) The decay rate R: 
 
2
12
 e
r
v
R = 8.813 x 10-25. 
 
 
((Mathematica)) 
 
28 
 
Clear"Global`";
rule1  u  1.660538782 1027, eV  1.602176487 1019,
qe  1.602176487 1019, c  2.99792458 108,
—  1.05457162853 1034, 0  8.854187817 1012,
MeV  1.602176487 1013, Ma  4.001506179125 u,
fm  1015, Z1  92, r1  7 fm , K1  4.2 MeV;
eq0  K1 
2 Z1 qe2
4  0 r
. rule1
6.729141013 
4.245021026
r
eq01  Solveeq0, r; r2  r . eq011
6.308421014
r2
fm
. rule1
63.0842
eq1 
1
2
Ma v2  K1 . rule1; eq2  Solveeq1, v;
v1  v . eq22
1.42318107
 
2 Ma K1
—
r2 ArcCos r1
r2
  r1 r2  r1 .
rule1
51.8796
R1 
v1
2 r1
Exp2  . rule1
8.812821025 
 
29 
 
 
9. Bound state: Bohr-Sommerfeld condition. 
 
ab
I II III
Vx
E
 
 
For x<b (region I), the unnormalized wave function is 
 
])(exp[
)(
1

b
x
I dxx
x


 , 
 
Using the connection rule (II; downward) 
 
]
4
)(sin[
)(2
]
4
)(cos[
)(
])(exp[
)(2
])(exp[
)(2











x
b
x
b
II
b
x
b
x
dxxk
xk
B
dxxk
xk
A
dxx
x
B
dxx
x
A
I
 (II; downward) 
 
we get 
 
2A , B = 0. 
 
Then we have 
 
)]
4
)(cos[
)(
2   
x
b
II dxxk
xk
. for b<x<a 
 
This may also be written as 
 
30 
 
 
]
4
)(sin[])(cos[
)(
2
]
4
)(cos[])(sin[
)(
2
]
4
)()(sin[
)(
2
]
24
)()(cos[
)(
2
]
4
)()(cos[
)(
2
]
4
)(cos[
)(
2















a
x
a
b
a
x
a
b
a
x
a
b
a
x
a
b
a
x
a
b
x
b
II
dxxkdxxk
xk
dxxkdxxk
xk
dxxkdxxk
xk
dxxkdxxk
xk
dxxkdxxk
xk
dxxk
xk
 
 
Here we use the connection rule (I, upward), 
 
])(exp[
)(
])(exp[
)(
]
4
)(sin[
)(
]
4
)(cos[
)(
2





x
a
x
a
a
x
a
x
dxx
x
B
dxx
x
A
dxxk
xk
B
dxxk
xk
A





 (I; upward) 
 
From this we have 
 
]
4
))(sin[])(cos[
)(
2
]
4
))(cos[])(sin[
)(
2






a
x
a
b
a
x
a
b
II
dxxkdxxk
xk
dxxkdxxk
xk
 
 
with 
 
])(sin[
a
b
dxxkA , ])(cos[2 
a
b
dxxkB . 
 
Since III should have such a form 
 
 
31 
 
])(exp[
)( 
x
a
III dxx
x
A 

 . 
 
for x>a. Then we need the condition that 
 
0])(cos[2  
a
b
dxxkB , 
or 
 
)
2
1
()(  ndxxk
a
b
, 
 
or 
 
)
2
1
()(  ndxxp
a
b
, 
 
where n = 0, 1, 2, ... (Bohr-Sommerfeld condition). 
 
10. Simple harmonics 
We consider a simple harmonics, 
 
22
00
22 2)
2
1
(2))((2)( xxmxmmxVmxp   , 
 
where 
 
2
0
0
2


m
x  . 
 
Then we get 
 
0
2
0
0
2
0
0
0
22
00
2
2
1
4
22)(
00
0



  
 m
m
x
mdxxxmdxxp
xx
x
. 
 
When 
 
)
2
1
()(
0
0


ndxxp
x
x
, 
 
 
32 
 
 
we have 
 



)
2
1
(
0
 n , 
 
or 
 
 )
2
1
(  n 
 
_______________________________________________________________________ 
APPENDIX 
 
Connection formula 
 
)(2
1
)( xVmxk  

 
 
  )(21)( xVmx

 
 
 
 
(i) Connection formula at x = a (upward) 
 
 
33 
 
)])(exp(
)(
))(exp(
)(
)]
4
)(sin(
)(
)
4
)(cos(
)(
2
1
1
1
1





x
a
x
a
a
x
a
x
dxx
x
B
dxx
x
A
dxxk
xk
B
dxxk
xk
A





 formula I (upward) 
 
(ii) Connection formula at x = b (downward) 
 
)]
4
)(sin(
)(2
)
4
)(cos(
)(
)])(exp(
)(2
))(exp(
)(2
2
2
2
2










x
b
x
b
b
x
b
x
dxxk
xk
D
dxxk
xk
C
dxx
x
D
dxx
x
C
 formula II (downward) 
 
 
 
 
(i) Connection formula at x = b 
 
]
4
)(sin[
)(2
]
4
)(cos[
)(
])(exp[
)(2
])(exp[
)(2
1
1
1
1










x
b
x
b
b
x
b
x
dxxk
xk
D
dxxk
xk
C
dxx
x
D
dxx
x
C
 formula II (downward,) 
 
(ii) Connection formula at x = a 
 
34 
 
 
])(exp[
)(
])(exp[
)(
]
4
)(sin[
)(
]
4
)(cos[
)(
2
2
2
2
2





x
a
x
a
a
x
a
x
dxx
x
B
dxx
x
A
dxxk
xk
B
dxxk
xk
A





 formula I (upward)

Continue navegando