Buscar

LIVRO_Concreto Auto-adensável marcado

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 3, do total de 148 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 6, do total de 148 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 9, do total de 148 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Prévia do material em texto

CONCRETO 
AUTO-ADENSÁVEL 
Bernardo Fonseca Tutikian 
Denise Carpena Dal Molin 
Bernardo Fonseca Tutikian é engenheiro civil, 
formado pela Universidade Federal do Rio Grande 
do Sul (UFRGS) em 2002, mestre e doutor em 
engenharia, ambos os títulos obtidos também na 
UFRGS, em 2004 e 2007, respectivamente. Espe-
cialização em materiais de construção, especifica-
mente em dosagem de concretos auto-adensáveis 
(CAA). Foi distinguido com diversas premiações, 
entre as quais. Prêmios Falcão Bauer, Categoria 
Novos Materiais nos anos de 2005 e 2006; Prê-
mio Sinduscon RS - Case Acadêmico, em 2006; 
Prêmio Melhores Práticas da Comunidade da Cons-
trução, em 2007. Ex-bolsista da JICA (Japanease 
International Cooperation Agency) em dois cursos 
internacionais de especialização, sendo o primeiro 
no México, em 2005, com enfoque em ensaios 
não destrutivos, e o segundo no Japão, em 2007, 
focado em produção mais limpa com ênfase em 
tecnologias e técnicas ambientais. Atualmente é 
professor universitário nas Universidades de Caxias 
do Sul (UCS), na Universidade do Vale do Taquari 
(UNIVATES) e na Universidade do Vale dos Sinos 
(UNISINOS) em tecnologias construtivas e siste-
mas estruturais. Também é orientador de trabalhos 
de conclusão de curso. 
Concreto 
Auto-Adensável 
Bernardo Fonseca Tutikian 
Denise Carpena Dal Molin 
Concreto Auto-Adensável 
© COPYR1GIIT L Dl TORA Pl\l LIDA 
Iodos os direitos reservados. 
E proibida a reprodução cotai ou parcial deste 
voluine.de qualquer forma ou por quaisquer 
meios, sem o consentimento expresso da editora. 
Coordetia(ão de \ Utnuah Téaikos 
Josiani Souza 
Rcrisão 
Marcelo Fontana 
Did£r(imti(<io 
Triall Composição Editorial Ltda. 
Este livro foi catalogado na Câmara Brasileira do Livro. 
Dados Internacionais de Catalogação na Publicação (CIP) 
(Câmara Brasileira do Livro, SP, Brasil) 
Tutikian, Bernardo Fonseca 
Concreto auto-adcnsávcl / Bernardo Fonseca 
Tutikian, Denise Carpena Dal Molin. — São Paulo: 
Pini, 2008 . 
Bibliografia. 
ISBN 9 7 8 - 8 5 - 7 2 6 6 - 2 1 1 - 6 
1. Concreto auto-adensável 2. Construção de concreto 
Carpena. II.Título. 
I. Dal Molin, Denise 
0 8 - 0 8 8 3 6 C D D - 6 2 0 . 1 3 6 
índice para catálogo sistemático: 
1. Concreto auto-adcnsávcl: Engenharia civil 
6 2 0 . 1 3 6 
EDITORA PINI LTDA 
Rua Anhaia, 964 - 01130-900 - São Paulo - SP - Brasil 
Telefone: (11)2173-2300 Fax: (11) 2173-2466 
www.piniweb.com - manuais@pini.com.br 
l J edição, 1J tiragem. 2 .000 exemplares, otitubro/08 
http://www.piniweb.com
mailto:manuais@pini.com.br
Prefácios 
O livro CONCRETO AUTO-ADENSÁVEL vem suprir uma lacuna exis-
tente no Brasil sobre essa tecnologia, já bastante difundida em outros países 
face a sua importancia técnica, econômica e ambiental. Não se trata de um 
tipo diferente de concreto e sim de uma técnica utilizada para a aplicação do 
material, trazendo inúmeras vantagens, tal como descrito no capítulo 1. 
Os autores adotaram uma abordagem prática e aplicada, descrevendo com 
propriedade as vantagens, limitações e dificuldades encontradas tanto in situ 
como em pré-moldados, fornecendo explicações científicas para escolha dos 
materiais constituintes, propriedades no estado fresco e endurecido, resistência, 
durabilidade e outras propriedades tecnológicas para esse tipo de técnica do 
concreto. 
No capítulo 5 são apresentados métodos de dosagem desenvolvidos pelos 
autores, o que representa um avanço de grande importancia tanto para estu-
dantes quanto para profissionais da engenharia de concreto. Trata-se de um 
passo único para a utilização e divulgação da técnica, possibilitando a amplia-
ção de seu uso. 
Essa primeira edição do livro, também traz um capítulo abrangente so-
bre a viabilidade econômica do uso do concreto auto-adensável. A documen-
tação fotográfica e explicativa torna o texto fácil e ilustrativo quanto aos 
tópicos discutidos. A linguagem escrita mesmo sendo técnica é de fácil com-
prensão e absorção, tornando a leitura agradável. 
Vale ressaltar que trata-se de um livro voltado ao mercado brasileiro, 
podendo ser utilizado igualmente por graduandos, pós-graduandos, projetis-
tas de estruturas e engenheiros em geral. 
A prof. Denise Dal Molin é muito conhecida e reconhecida tanto pelos pes-
quisadores e como pelos profissionais do ramo e o prof. Bernado Tutikian despon-
ta como uma promessa entre os jovens profissionais na engenharia brasileira. 
Prof. Dr. André Geyer 
Os professores Denise Dal Molin e Bernardo Tutikian fazem renascer, no 
Brasil, a tecnologia do Concreto Auto-adensável. 
Conhecido há muito e utilizado em larga escala nos países desenvolvi-
dos, o CAA é apresentado no livro de forma acessível, sustentável e mais hu-
mana ao trabalhador que o aplica. 
Fazer de um material, que tem comprovadas qualidades técnicas, um 
produto fácil de dosar, com custos próximos aos concretos convencionais e 
com desempenho superior são algumas das inovações possíveis a partir desta 
obra. 
A Denise Dal Molin, nossa orientadora e amiga, com sua grande compe-
tência, em uma linguagem clara e didática, torna sofisticados conceitos cien-
tíficos da tecnologia do concreto de fácil compreensão, possibilitando o 
conhecimento das propriedades do material. 
Bernardo Tutikian, um brilhante jovem doutor, mostra no seu trabalho 
ser possível adaptar a tecnologia do CAA às condições e materiais brasileiros 
e sua utilização em larga escala, contribuindo assim com a melhoria da quali-
dade das nossas estruturas. 
Prof. Dr. Vladimir Paulon 
Sumário 
INTRODUÇÃO 7 
1.1 Definição 9 
1.2 Vantagens da Utilização do CAA 10 
1.3 Utilização no Brasil e no Mundo 12 
1.3.1 Aplicação do CAA em pré-moldados 13 
1.3.2 Aplicação do CAA in situ 15 
MATERIAIS CONSTITUINTES 27 
2.1 Cimento 28 
2.2 Adições Minerais 28 
2.2.1 Quimicamente ativas 29 
2.2.2 Sem atividade química 33 
2.3 Agregados 33 
2.3.1 Miúdos 33 
2.3.2 Graúdos 35 
2.4 Aditivos 35 
2.4.1 Plastificantes e superplastificantes 36 
2.4.2 Modificadores de viscosidade 39 
2.5 Água 39 
CW NO ESTADO FRESCO 41 
3.1 Reologia 42 
3.2 Pressão nas fôrmas 43 
3.3 Ensaios para Controle da Trabalhabilidade 45 
3.3.1 SlumpJlow test 47 
3.3.2 Slump Jlow T50cm test 50 
3.3.3 J-ring test 50 
3.3.4 V-funnel test 52 
3.3.5 L-box test 54 
3.3.6 U-box test 56 
3.3.7 Fill-boxtest 58 
3.3.8 U-shaped pipe test 60 
3.3.9 Orímet test 62 
3.3.10 Considerações finais 63 
3.4 Limitações e Dificuldades 63 
CAA NO ESTADO ENDURECIDO 67 
MÉTODOS DE DOSAGEM 71 
5.1 Método de Dosagem Proposto por Tutikian 72 
5.1.1 Passo 1 - Escolha dos materiais 72 
5.1.2 Passo 2 - Determinação do teor ideal de argamassa seca 74 
5.1.3 Passo 3 - Determinação dos traços rico, intermediário e pobre 77 
5.1.4 Passo 4 - Colocação do aditivo superplastificante e conseqüente 
segregação 78 
5.1.5 Passo 5 - Acerto dos finos por substituição 78 
5.1.6 Passo 6 - Ensaios de trabalhabilidade até o CCV virar CAA 80 
5.1.7 Passo 7 - Comparação do CAA com e sem VMA 80 
5.1.8 Passo 8 - Ensaios da resistência à compressão nas idades 
determinadas 81 
5.1.9 Passo 9 - Desenho do diagrama de dosagem 81 
5.1.10 Exemplo de dosagem pelo método Tutikian 81 
5.1.11 Considerações finais sobre o método de dosagem proposto por Tutikian ....90 
5.2 Método de Dosagem Proposto por Tutikian <5í Dal Molin 91 
5.2.1 Escolha dos materiais 92 
5.2.2 Determinação do esqueleto granular 93 
5.2.3 Determinação da relação água/cimento ou teor do aditivo 
superplastificante 97 
5.2.4 Mistura dos traços rico, intermediário e pobre 98 
5.2.5 Ensaio das propriedades mecânicas e de durabilidade nas idades 
determinadas 100 
5.2.6 Desenho dos diagramas de dosagem e desempenho 100 
5.2.7 Exemplo de dosagem utilizando o método Tutikian <Sí Dal Molin 105 
VIABILIDADE ECONÔMICA DO USO DO CAA 1 17 
6.1 Indústria de Pré-Moldados 118 
6.2 Aplicações Convencionais 120 
6.3 Aplicações Especiais 123 
TENDÊNCIAS FUTURAS DO USO DO CAA 131 
REFERÊNCIAS BIBLIOGRÁFICAS 133 
Introdução 1 
pesar de o concreto sero material de construção mais utilizado 
no mundo, atualmente nào se pode mais considerar apenas o 
estudo de concretos convencionais (CCV). O mercado e as técnicas 
construtivas exigem concretos que apresentem características espe-
ciais, como os concretos de alta resistência, de alto desempenho, auto-
adensáveis, com fibras, com altos teores de adições pozolânicas, 
aparentes, coloridos, brancos e sustentáveis, entre outros. 
Para suprir essa demanda, um avanço na área da tecnologia de 
concreto tem ocorrido nas últimas décadas. Dentro desse contexto, foi 
desenvolvido no Japão, em 1988, o concreto auto-adensável (CAA), 
que é capaz de se moldar nas fôrmas por conta própria e preencher, 
sem necessidade nenhuma de vibração ou compactação externa de 
qualquer natureza, os espaços destinados a ele. 
O CAA é claramente uma das áreas da tecnologia do concreto que 
tem o maior potencial de desenvolvimento. O CAA não é apenas um 
Amanda
Realce
Amanda
Nota
DEFINIÇÃO
novo lipo de concreto senão uma tecnologia que, quando aplicada cor-
retamente, proporciona propriedades diferentes e, principalmente, no-
vas oportunidades. Com a utilização do CAA, a estrutura deve ser 
analisada de uma forma integral, em que tanto o processo construtivo 
quanto a concepção arquitetônica possam ser otimizados. 
No Brasil, o estudo e principalmente a utilização do CAA ainda 
estão muito aquém do potencial desse material, por uma série de ques-
tões que serão abordadas ao longo do livro. Porém, equacionar uma 
cias principais razões - que é o desconhecimento dos profissionais a 
respeito do assunto - é a grande motivação dos autores. Com este tra-
balho, pretende-se divulgar o material desde sua introdução, passan-
do por métodos de dosagens e até exemplos reais de aplicação para 
dirimir quaisquer dúvidas e anseios do público em geral. 
As duas propriedades mais importantes do CAA são a trabalhabi-
lidade e a estabilidade. As características desse concreto têm de ser 
determinadas e mantidas. Assim, as propriedades dos materiais e, 
principalmente, o proporcionamento destes, passam a ser os fatores 
mais importantes para a otimização da mistura. 
O CAA atrai cada vez mais interesse no Brasil, e tem sido utilizado 
em indústrias de pré-moldados e em obras correntes e especiais. Porém, 
os principais estudos atualmente focam as propriedades mecânicas, a 
durabilidade e a possibilidade de utilização com determinados tipos de 
materiais locais. A dosagem, que é um dos aspectos mais importantes 
desse concreto, vem sendo estudada superficialmente, prejudicando to-
dos os temas anteriores. 
É surpreendente que, ainda hoje, pesquisadores e profissionais res-
ponsáveis pela mistura do CAA ainda utilizem métodos de dosagem pro-
postos há mais de 20 anos com o intuito de iniciar o desenvolvimento 
desse concreto. Sabe-se que, nos últimos tempos, foram propostos mé-
todos de dosagem eficazes já comprovados que permitem o proporcio-
namento de CAA econômicos como os de Tutikian (2004) , de Comes 
(2002) , de Melo-Repette (2005) e de Tutikian & Dal Molin (2007) . 
Pesquisas mostram que, erroneamente, profissionais tomadores de 
decisão escolhem outro tipo de concreto ao CAA por seu custo ser, teo-
ricamente, mais elevado. Ou então, justificam eles, deixam de utilizar 
esse concreto - já que algumas propriedades no estado endurecido po-
dem comprometer o desempenho da estrutura - como o módulo de 
elasticidade. Sabe-se, no entanto, que o CAA só pode ser diferente do 
Amanda
Realce
Amanda
Realce
Amanda
Realce
Amanda
Realce
Amanda
Realce
Amanda
Realce
Amanda
Realce
Amanda
Realce
Amanda
Nota
PROPRIEDADES IMPORTANTES
CCV até que a mistura passe cio estado fresco para o endurecido. Assim, 
suas propriedades mecânicas e de durabilidade serão, simplesmente, o 
efeito do proporcionamento dos materiais constituintes. Os materiais 
são parecidos com os do CCV assim como as propriedades no estado 
endurecido, quando não superiores. 
Por se tratar de um material relativamente novo no mercado e ainda 
desconhecido do grande público, a parte inicial do livro detalhará o co-
nhecimento existente sobre o CAA englobando definição, vantagens, 
aplicações conhecidas, os materiais constituintes e suas propriedades no 
estado fresco e endurecido. Porém, a intenção principal é divulgar os 
dois métodos de dosagens propostos pelos autores, que visam facilitar a 
difusão do material e assim evitar uma série de problemas como os des-
critos nos parágrafos anteriores. Pretende-se, assim, possibilitar a viabi-
lização econômica do CAA, por utilizar conceitos testados e aprovados 
por diversos profissionais. 
1.1 Definição 
Um concreto só será considerado auto-adensável se três proprieda-
des forem alcançadas simultaneamente: fluidez, coesão necessária para 
que a mistura escoe intacta entre barras de aço (ou habilidade passante) 
e resistência à segregação (EFNARC, 2002). 
Fluidez é a propriedade que caracteriza a capacidade do CAA de fluir 
dentro da fôrma e preencher todos os espaços. Habilidade passante é a 
propriedade que caracteriza a capacidade da mistura de escoar pela fôr-
ma, passando por entre as armaduras de aço sem obstrução do fluxo ou 
segregação. E resistência à segregação é a propriedade que define a capa-
cidade do CAA de se manter coeso ao fluir dentro das fôrmas, passando 
ou não por obstáculos. 
A habilidade do concreto fresco, seja um CAA ou não, de preen-
cher as fôrmas sem a presença de bolhas de ar ou falhas de concreta-
gem (ninhos), é um dos principais fatores que influem na qualidade 
final do concreto endurecido. O CAA não pode depender de nenhum 
tipo de ajuda externa para cumprir seu papel. O uso de vibradores de 
imersão, réguas vibratórias ou qualquer outra forma de compactação é 
estritamente proibida em um CAA. A única ferramenta disponível para 
esse concreto é seu próprio peso, ou seja, a ação da força da gravidade 
em sua massa. 
Amanda
Realce
Amanda
Realce
Amanda
Realce
Amanda
Realce
Amanda
Realce
Porém, é importante ressaltar os que devem ser tomados cuidados 
com sua homogeneidade. O CAA, ao 'caminhar sobre as fôrmas 
envolvendo obstáculos (eletrodutos, barras de aço, e outros), não deve 
segregar, ou seja, ter o agregado graúdo separado da argamassa. Uma 
mistura mal dosada pode até parecer coesa, mas ao ser lançada nas 
fôrmas iniciará o processo da segregação. Por isso, os CAA devem ser 
testados previamente por meio de equipamentos que simulem as 
condições reais, como será visto no capítulo 3. 
Vantagens da Utilização do CAA 
O CAA é descrito como uma das grandes revoluções ocorridas na 
tecnologia do concreto para a construção nas últimas décadas, e por 
meio de sua utilização é possível obter vários ganhos diretos e indiretos, 
entre os quais: 
a) acelera a construção, já que seu lançamento é muito rápido e 
dispensa o adensamento; 
b) reduz a mão-de-obra no canteiro porque elimina a vibração e 
facilita o espalhamento e o nivelamento do concreto; 
c) melhora o acabamento final da superfície; 
d) pode aumentar a durabilidade por ser mais fácil de adensar e 
evita, assim, que ocorram falhas de concretagem e grandes va-
zios resultantes da má vibração; 
c) permite grande liberdade de formas e dimensões; o CAA preen-
che fôrmas curvas, esbeltas, com altas taxas de armadura e de 
difícil acesso; 
D permite concretagens em peças de seções reduzidas; 
g) elimina o barulho de vibração, o que é muito importante em 
grandes centros urbanos, concretagens noturnas ou obras perto 
de escolas e hospitais; 
h) torna o local de trabalho mais seguro em função da diminuição 
do número de trabalhadores; 
i) permite obter um ganho ecológico porque utiliza em sua compo-
sição altos teores de resíduos industriais como cinza volante, es-
cória alto forno ou cinza de casca de arroz; 
j) pode reduzir o custo final do concreto e/ou da estrutura caso sejam 
computados economicamente todos os ganhos citados acima. 
1 . 2 
Amanda
Realce
Amanda
Realce
O CAA possui uma grande deformabilidadeno estado fresco, ou 
seja, pode ser moldado facilmente nas mais diversas formas sob a ação 
da gravidade. Tal propriedade permite que o CAA percorra até dez me-
tros de distância horizontal, mesmo com obstáculos no caminho. 
A grande resistência à segregação, aliada à fluidez do CAA, permite a 
eliminação de macro defeitos, bolhas de ar e falhas de concretagem, que 
são responsáveis diretos por perdas de desempenho mecânico do con-
creto e durabilidade da estrutura. 
A possibilidade da eliminação da vibração é muito interessante 
uma vez que, além da economia de energia elétrica e mão-de-obra, a 
vibração produz ruído, e pode causar doenças nos operários. Bartos e 
Sôderlind (2000 ) concluíram em estudo experimental que o ruído cap-
tado por trabalhadores e pelo entorno da edificação quando utilizado 
o CAA, é de aproximadamente um décimo do ruído - em decibéis -
comparado ao recebido quando o CCV é utilizado. Além disso, a vibra-
ção também desgasta e exerce forte pressão nas fôrmas, que podem 
ceder se não estiverem bem presas. 
A adição de materiais finos no CAA melhora diversas propriedades, 
tanto no estado fresco como no endurecido. Os finos atuam como pon-
tos de nucleaçào, ou seja, quebram a inércia do sistema, fazendo com 
que as partículas de cimento reajam mais rapidamente com a água. Ob-
tém-se, assim, ganhos de resistência nas primeiras idades da mesma for-
ma que, ao aumentar o pacote de partículas finas, cresce a compacidade 
da pasta, dificultando a penetração de agentes externos agressivos, me-
lhorando a zona de transição. 
Ao mesmo tempo em que resíduos da construção podem funcionar 
como finos, dando coesão ao CAA, a viabilidade de sua utilização pode 
ser uma solução para os problemas gerados em sua disposição. O cimen-
to, que é um material mais caro, poderá ser usado com a única função de 
dar resistência ao concreto. 
Resultados experimentais mostraram que o CAA apresentou redu-
ções significativas no coeficiente de permeabilidade e absorção capilar se 
comparado ao CCV referência de faixas de resistência similares (ZHU e 
BARTOS, 2003) . Esses autores também concluíram que a penetração de 
cloretos depende das adições utilizadas, ou seja, CAA e CCV de mesmas 
resistências à compressão e com os mesmos materiais cimentícios elevem 
ter os mesmos valores de penetração de íons cloretos. 
Amanda
Realce
Amanda
Realce
Amanda
Realce
Amanda
Realce
Amanda
Realce
Amanda
Realce
Por todos esses motivos, o CAA tem se tornado uma excelente opção 
para o setor da construção e, como será visto, sua utilização e estudos 
crescem rapidamente. 
Utilização no Brasil e no Mundo 
O CAA pode ser utilizado tanto moldado in loco como na indústria de 
pré-moldados, pode ser dosado no canteiro-de-obras ou em centrais 
de concreto e depois transportado por meio de caminhão-betoneira 
para as construções. Também pode ser lançado com bombas de 
concreto, gruas ou simplesmente espalhado. Ou seja, o CAA é tão 
versátil quanto o CCV. 
Há poucas referências publicadas a respeito da utilização do CAA em 
obras de engenharia. Normalmente, as utilizações são em estruturas es-
peciais, complicadas de se concretar com o CCV 
Domone (2006) fez um levantamento das publicações que relatavam 
o uso do CAA entre 1993, desde a primeira aplicação divulgada (ocorri-
da no Japão) - que foi a concretagem in loco de colunas e paredes de um 
edifício - e 2003. O autor observou diversas curiosidades na pesquisa, 
entre elas que 6 7 % das obras que utilizaram o CAA o fizeram por conta 
das vantagens técnicas do material em comparação ao CCV (como a 
impossibilidade de acesso ao local ou dificuldade de vibração); 14% de-
cidiram pelo CAA por motivos econômicos pela redução do número de 
trabalhadores ou do tempo de construção; por fim, os outros 10% utili-
zaram o CAA porque o material é uma inovação. Em todos os casos, 
verificou-se a trabalhabilidade do CAA com o slumpjlow test, com cerca 
de 9 0 % do número de casos usando a faixa de 600-750mm como a ideal. 
Quase a metade dos casos relatou também o uso do T 5 0 , do v-funnel e do 
Orimet test, enquanto que o l-box, u-box ej-ring raramente serviram como 
parâmetro. Os ensaios citados serão descritos no capítulo 3. Outro dado 
interessante é que apenas três casos de aplicação do CAA na América do 
Sul foram relatados no período. Também há outras características da 
aplicação do CAA na publicação. 
Para fins didáticos, as aplicações do CAA foram divididas em dois 
ambientes: na indústria de pré-moldados e em construções em que o 
concreto é moldado in loco. No primeiro setor, o desenvolvimento do 
CAA é maior devido à sensibilidade a variações em relação ao CCV, que 
é mais fácil de se controlar em um ambiente como uma indústria. Ainda 
1.3 
Amanda
Realce
há outras vantagens do ambiente industrial em relação ao de edificações 
in sita convencionais (WALRAVEN, 2005) : 
• no caso de falha total de adensamento do CAA, as conseqüências 
da aplicação in situ são mais severas, já que pode ser necessário 
demolir uma estrutura ou parte dela; na indústria de pré-
moldados, porém, basta descartar a peça; 
• normalmente, é complicado realizar complexos controles de 
qualidade de recebimento de materiais em edificações; 
ca as características de auto-adensabilidade são mais facilmente 
alcançáveis e com menor custo para concretos de resistência à 
compressão superiores, que são comuns em indústrias de pré-
moldados; 
• a indústria de pré-moldados tem melhor entendimento sobre 
seus custos (Pacios, 2005) . 
1.3.1 Aplicação do CAA em pré-moldados 
A seguir, serão apresentados exemplos de aplicação do CAA na indústria 
de pré-moldados, segundo Walraven (2005) . 
A Figura 1.1 mostra elementos arquitetônicos que utilizam concreto 
auto-adensável branco (CAAB). Devido à melhor homogeneização da 
elementos arquitetônicos com concreto auto-adensável branco (Ponte: Walraven, 2005) 
Amanda
Realce
massa de concreto, a cor ficou bem distribuída, algo importante para a 
estética do painel. 
Um tabuleiro de concreto pré-moldado pré-tensionado, utilizado 
na estação de metrô do Amsterdã Arena (estádio de futebol do Ájax), 
também foi executado com o CAA. A estação possui quatro pistas de 
135 metros de comprimento, totalizando 1,4 km. Como cada painel 
possui um comprimento de 23 ,30 m, foram executadas 60 unidades 
- todas com resistência à compressão de 55 MPa. Um dos motivos para 
a utilização do CAA foi o alto número de repetições da fôrma. Com 
esta solução, aumentou-se a vida útil das fôrmas e obteve-se ganho 
econômico. 
Na Figura 1.2 pode-se observar pilares de fundação que eram execu-
tados com CCV por meio de um sistema local chamado de choque. Para 
uma boa compactação do concreto, deixava-se cair os pilares de uma 
altura de 50 mm. Com o uso de CAA não foi mais necessário utilizar este 
mecanismo, o que aumentou a vida útil das fôrmas e diminuiu o tempo 
de produção de uma peça de 7,5 minutos para 1,5 minutos. 
Uma série de arcos executada com o CAA pode ser vista na Figura l .3. 
Esses arcos são compostos por cinco peças de 13 metros, totalizando 65 
Pilares de fundação executados com CAA (Fonte: Walraven, 2005) 
Amanda
Realce
Arcos compostos por cinco peças executadas em CAA (Fonte: Walraven, 2005) 
metros de comprimento. Sua seção transversal é em forma de caixa va-
zada, que era movida com a vibração quando se utilizava o CCV. Por 
isso, o sistema de concretagem foi alterado para o CAA, que ainda pro-
porcionou outras vantagens como redução do barulho de vibração e do 
número de trabalhadores (50%). 
O CAA também foi utilizado para a produção de elementos pré-
moldados em Dcnver, Colorado, nos Estados Unidos. Foram testadas 
diversas peças como vigas T , pilares, paredes arquitetônicas e outros. 
Segundo os autores Fernandez et ai (2005) , o uso da tecnologia do CAA 
permitiu 20% de redução do tempo de concretagem, 6 6 % de redução do 
número de trabalhadores, uma drástica melhora no acabamento final, 
eliminação do barulho de vibraçãoe ganho ambiental, uma vez que o 
cimento utilizado no CCV foi substituído em 2 0 % por cinza volante. 
1.3.2 Aplicação do CAA in situ 
Apesar das dificuldades relatadas na aplicação do CAA cm estruturas 
tradicionais, já são muitos os exemplos de utilização, uma vez que tais 
barreiras estão sendo derrubadas ou transpostas pelos tecnologistas de 
concreto, respaldados pelos resultados que estão obtendo. 
Amanda
Realce
Amanda
Realce
Segundo Obras (2000), foi utilizado um concreto estrutural branco, de 
consistência líquida, na obra lA Sagrada Família' (Barcelona, Espanha). Na 
publicação não fica claro se o concreto era auto-adensável, mas foram usa-
dos a sílica ativa (que torna a mistura coesa) e aditivos superplastiPicantes, 
que fluidificam o material. Sabe-se que uma estrutura de concreto branco 
aparente não pode, em hipótese alguma, apresentar falhas de concretagem, 
pois correções futuras ficam visíveis e prejudicam a estética do local. 
Sõderlind e Claeson (2000) descrevem diversas aplicações do CAA. 
Na França, foi usado o CAA na Chamara nele, em 1998. As peças concreta-
das eram longas paredes com 2,30 m de altura, 16 cm de espessura e 30 m 
de comprimento, com colunas altamente reforçadas. O traço do concreto 
está na Tabela 1.1. Observa-se o teor de argamassa de 61,50%, que pode 
elevar o custo do concreto e aumentar as possibilidades de ocorrência de 
manifestações patológicas. Também o traço l :m (aglomerantes:agregados) 
está em 1:2,9, ou seja, é um concreto rico (consumo de aglomerantes em 
500 kg/my) que novamente ajuda a elevar os problemas já citados. 
A obra de Bretonneau, na França, é um teste que foi feito com o CAA 
em 1999 para melhorá-lo e desenvolvê-lo. O CAA também foi utilizado 
em Norrkòping, Suécia (1998) , em um edifício comercial. O edifício pos-
suía sete andares e, nos cinco superiores, foram utilizados pré-moldados. 
Os dois inferiores foram totalmente concretados com CAA, com e sem 
fibras de aço, totalizando cerca de 3000 m \ 
TABELA LI Traço do CAA utilizado cm Chamarande, França 
Cimento 310 kg/m3 
Cinza volante 190 kg/m3 
Agregado 4/10 mm 750 kg/m3 
Areia 0/4 mm 550 kg/m3 
Areia fina 150 kg/m3 
Aditivo superplastiíicante 1.30% 
Aditivo modificador de viscosidade 150% 
Água 200 a 210 l/m3 
(Fome: SÕDERLIND c CLAESON, 2000 ) 
Um edifício comercial construído em Slona, Suécia, em 1999, usou 
o CAA no programa Startboxen. O volume total concretado foi de, apro-
ximadamente, 2200 m 3 . O teste incluiu os seguintes elementos: 
a) seis paredes com e sem fibras de aço, de 2 ,70 a 3 ,40 m de altura 
e 25 a 30 cm de largura; 
b) duas lajes sem revestimento de 30 a 40 cm de espessura; 
c) uma laje com revestimento de pedra ou lâminas de madeira, com 
35 cm de espessura; 
d) dois pilares; 
e) duas lajes de 8 cm, concretadas com concreto-referência. 
Para a concretagem do túnel enclausurado Oresund, utilizou-se o 
CAA porque seria impossível vibrar o concreto devido às condições lo-
cais (BERNABEU e LABORDE, 2000) . A obra foi realizada em 1999, e 
foram utilizados cerca de 80 m 3 de CAA. O túnel possuía 40 m de com-
primento com seções de 1 x lm. O traço utilizado está apresentado na 
Tabela 1.2. Observa-se que a relação aglomerante:agregados está em 
1:3,53. Já a relação a/agl está em 0,29, que, somada à presença da sílica 
ativa, garante elevada resistência à compressão do concreto, bem como 
sua durabilidade. O teor de argamassa está em 55,5%. 
TABELA 1.2 Traço do CAA utilizado no túnel Oresund 
Cimento 380kg/m3 
Cinza volante |70kg/m3 
Sílica ativa 45kg/m3 
Agregado miúdo 0/?mm 750kg/m3 
Agregado graúdo 2/8mm 290kg/m3 
Agregado graúdo 8/16mm |7l0kg/m3 
Água 143 l/m3 
Superplastificante Rheobuild 2000B 14 kg/m3 
Modificador de viscosidade Welan Cum 0.150 l/m3 
(Fonte: BERNABEU e LABORDE, 2 0 0 0 ) 
Em 1999, foi executada uma estrutura em forma de iglu (Figura 1.4). 
Essa edificação possui 5 m de altura, 11,70 m de largura e 22 m de com-
primento. Por conta da dificuldade de vibração imposta pelas suas for-
mas, decidiu-se pela utilização do CAA. A concretagem foi executada em 
duas partes e o volume total foi de, aproximadamente, 200 m \ 
O CAA também foi utilizado na auto-estrada A46 em Lyon, França 
(2000). Como os tubos coletores de água de 150 cm de diâmetro esta-
vam deformando, executou-se novo tubo coletor de água em CAA de 
1 10 cm de diâmetro, interno ao tubo antigo. Foi utilizado um total de 
120 m 3 de CAA. 
Outra auto-estrada em que se aplicou o CAA foi a A85, no trecho de 
uma ponte em V\crzon( França) em 2000. Foram concretadas duas vigas 
*IT com 38 ,50 m de comprimento, 80 cm de altura e 30 cm de largura, 
totalizando cerca de 20 m 3 de CAA. O traço está demonstrado na Tabela 1.3. 
Observa-se, novamente, que o teor de argamassa provavelmente esteja 
elevado em 65%, assim como a relação entre aglomerantes:agregados em 
1:2,83 indica alto consumo de aglomerantes (520 kg/m3). Esse traço 
pode levar a problemas relacionados ao calor de hidratação e conseqüen-
te retração do concreto que, somado ao baixo consumo de agregados graú-
dos, aumenta a probabilidade de ocorrerem fissuras e deformações 
excessivas. 
Estrutura em forma de iglu concretada com CAA (fonte: BERNABEU e LABORDE, 
2000) 
Amanda
Realce
TABELA 1.3 Traço do CAA utilizado na ponte da auto-estrada de Vierzon, 
França 
Cimento 480 kg/m3 
Sílica ativa 40 kg/m3 
Areia 0/3 mm 770 kg/m3 
Pedrisco 3/6 mm 700 kg/m * 
Água 234 kg/m3 
Superplastificante 2.80% 
(Fonte: BERNABEU e LA BORDE, 2000) 
O CAA lambem foi utilizado na construção da ponte de Motala, na 
Suécia. A obra foi realizada em 1999, e foram gastos cerca de 90 nv* para 
um vão de 23 m. Outra ponte executada com o CAA foi a Arboga U955, 
Suécia. Essa travessia de pedestres e bicicletas consumiu cerca de 52 m 3 
de CAA. 
Um típico exemplo de aplicação do CAA (OKAMURA, 1997) são as 
duas ancoragens da ponte suspensa Akashi-Kaikyo, aberta em abril de 
1998. Essa ponte linha, na época, o maior vão do mundo (1.991 m), e 
foram lançados 290 .000 m 5 de CAA. O concreto foi misturado em um 
local perto da construção e bombeado em tubos com 200 m de compri-
mento alé o local da aplicação. A utilização do CAA proporcionou uma 
economia de tempo da ordem de 20%, e a obra foi executada em 2 anos 
em vez dos 2,5 anos previstos. 
O CAA também foi utilizado nas paredes de um tanque LNG perten-
cente à Osaha Cas Company, que consumiram 12.000 m de CAA e fo-
ram entregues em 1998. A utilização do CAA permitiu: 
a) diminuir o número de etapas de 14 para 10, porque permitiu 
aumentar a altura das paredes; 
b) reduzir o número de trabalhadores de 150 para 50; 
c) diminuir o tempo de construção da estrutura de 22 para 18 
meses. 
Campion e Jost (2000) relatam a utilização do CAA na reparação da 
ponte de Rempenbruecke, na Suíça. A ponte foi construída no início dos 
Amanda
Realce
anos 60, mas sofreu uma séria deterioração devido à corrosão das arma-
duras, induzida pela penetração de íons cloretos no concreto. Assim, 
foram reparados os problemas nas barras de aço. Mas para reforçar a 
estrutura como um lodo, foi criada uma nova viga, a qual era densamen-
te armada e de difícil acesso. A solução encontrada para aplicar o concre-
to foi a utilização do CAA, com resistência à compressão de 40 MPa. 
Na Figura 1.5 (Walravem, 2005) , está o primeiro exemplo de aplica-
ção em obras convencionais do CAA na Holanda. Em 1998, uma impo-
nente fachada foi executada para o Teatro Nacional no Hague que 
possuía, por razões estéticas, uma série de estreitas janelas, com lados de 
8 cm. O CAA utilizado para preencher todos os espaços - sem segrega-
ção dos agregados graúdos - foi com elevada fluidez (diâmetro de espa-
lhamento do slump flow lest de 730 milímetros) e baixa viscosidade 
(baixo tempo de escoamento do V-Fimncl). 
O CAA também pode ser utilizado com sucesso em recuperações de 
estruturas antigas - em que não é aconselhável a existência de vibração 
- porque pode ocasionar falhas maiores ou atémesmo ruptura do ele-
mento. Um exemplo é a ponte The Katelbridge na Holanda, - ilustrada na 
Figura 1.6 - que foi recuperada em 2002 , com 45 anos de idade na épo-
ca. As manifestações patológicas apresentadas foram aberturas entre os 
tabuleiros da ponte devido à sobrecarga, já que com as sucessivas reno-
vações esses tabuleiros aumentaram sua espessura dos 50 mm originais 
para 180 mm - além do aumento de tráfego já previsto no período. O 
CAA de resistência à compressão de 35 MPa foi transportado por meio 
de uma pequena janela exterior (pois não era possível o desvio do tráfe-
go) para a fôrma interior na ponte. A Figura 1.7 ilustra a densidade das 
armaduras por onde o concreto leve de penetrar. 
Fachada em CAA com detalhes arquitetônicos (Fonte: Walraven, 2005) 
Amanda
Realce
Ponte recuperada com CAA. (Fonte: Walraven, 2005) 
Vista da armadura da estrutura. (Fonte: Walraven, 2005) 
Outro exemplo de aplicação do CAA ocorreu na Universidade de 
llinois, que comandava um projeto da Rede de Trabalho em Engenha-
ria para Simulação de Terremotos (Grace, 2005) . O projeto consistia 
em construir uma parede, densamente armada em forma de T , que 
seria indestrutível para simulação de diversos terremotos com diferen-
tes amplitudes. Uma série de tubos horizontais foi posicionada para 
futuras medições, e não poderiam ter sua posição alterada devido à 
vibração de um CCV (como se visualiza na Figura 1.8). Ou seja, não 
poderia haver situação mais desfavorável à concretagem do que essa. 
Por fim, moldou-se o CAA com sucesso e, depois da desfôrma, a pare-
de pôde ser utilizada sem que fossem feitos reparos ou que os tubos 
tivessem sido danificados. 
Pacios (2005) descreve uma aplicação em Madri, Espanha, em que 
executou-se um edifício com 220 apartamentos de 3 dormitórios em 
CAA. A utilização do CAA como tecnologia, em conjunto com outros 
sistemas construtivos de ponta, permitiu que se fizesse um apartamento 
de aproximadamente 80 n r de área útil a cada 3 dias. A Figura 1.9 mos-
tra a evolução da obra em um intervalo de 11 meses (março de 2003 a 
fevereiro de 2004) . 
Chai e Yang (2005) relatam a utilização do CAA para a reabilitação 
de prédios escolares em Taiwan. Os prédios foram parcialmente danifi-
cados por terremotos e, conseqüentemente, tiveram de ser recuperados, 
uma vez que não foram totalmente destruídos. Porém, as estruturas exis-
Parcde dc simulação de terremotos (Fonte: Grace, 2005) 
a) 
b) 
Evolução da edificação em duas datas 
(Fonte: Pacios, 2005) 
- (a) março dc 2003 c (b) fevereiro de 2004 
lentes apresentavam uma alta taxa de armadura - que teve de ser refor-
çada - e pouco espaço para concretagens. Por esses motivos, e por 
utilizarem primeiramente um CCV, falhas de concretagem ficaram visí-
veis, razào pela qual foi decidida a utilização do CAA como mostra a 
preparação de um pilar na Figura 1.10. 
Destacam-se também algumas aplicações recentes no Brasil, descri-
tas em artigo da Revista Téchne ( 2008) Foram citadas várias vantagens 
para a definição pelo CAA. 
D 
O 
Pilar sendo reforçado para concretagem com CAA (Fonte: Chai e Yang, 2005) 
Algumas dessas vantagens podem ser verificadas no caso da cons-
trutora BKO, que diminuiu o tempo de lançamento pela metade utili-
zando o mesmo número de trabalhadores. Foi possível, também, realizar 
a concretagem simultânea de pilares, vigas e lajes, o que era impensável 
com o CCV A mesma motivação levou à utilização desse material nas 
obras de ampliação de Shopping Center Flamboyant, de Goiânia - GO. 
Outro exemplo de aplicação do CAA foi na obra do metrô de São Paulo 
- SP, devido à alta taxa de armadura de uma laje de 8 .000 nr* de volume, 
conforme se observa na Figura 1.11. 
A Incorporadora Mosmann decidiu pelo material para agilizar seu 
cronograma de obra, já que o menor tempo de concretagem proporcionou 
162 horas livres dos funcionários por andar em Novo Hamburgo - RS. 
Também foi utilizado o CAA para o reforço estrutural de um edifício em 
Porto Alegre - RS, pois o material precisaria preencher todos os espaços 
de forma homogênea. 
Alta taxa dc armadura concretada com o CAA (fonte: Téchne, 2008) 
Materiais 2 
Constituintes 
s materiais utilizados para a elaboração do CAA, na prática, 
são os mesmos utilizados para o CCV, porém com maior 
quantidade de finos (adições minerais quimicamente ativas ou fí-
lers) e de aditivos plastificantes, superplastificantes e/ou modifica-
dores de viscosidade. 
A seleção dos materiais para produção de CAA não é simples, pois 
existem cimentos e agregados com grandes variações nas suas compo-
sições e propriedades. A situação é agravada pelo fato de que inúmeros 
aditivos químicos e adições minerais podem ser utilizados simultane-
amente, e não existem regras totalmente objetivas que permitam reali-
zar a escolha dos materiais mais adequados. 
Entretanto, existe consenso no meio técnico de que algumas carac-
terísticas e propriedades dos materiais constituintes afetam o compor-
tamento das misturas, permitindo otimizar as propriedades reológicas, 
mecânicas e de durabilidade do concreto. 
Amanda
Realce
Amanda
Realce
Amanda
Realce
Apresentam-se, a seguir, algumas considerações a respeito dos 
materiais utilizados para a produção de CAA, e não se eleve esquecer 
esse material no estado fresco é muito mais sensível às variações de 
qualidade e uniformidade dos constituintes que o compõem do que 
o CCV. 
2.1 Cimento 
Para a confecção de CAA podem ser utilizados os mesmos cimentos já 
adotados para a produção de concretos estruturais convencionais, sendo 
idênticas as prescrições referentes à durabilidade e aos usos adequados. 
Não existem critérios científicos que especifiquem o cimento mais ade-
quado para CAA. O melhor cimento é aquele que apresenta a menor 
variabilidade em termos de resistência à compressão. 
GJORV (1992 ) atribui importância ao tipo de cimento no que tan-
ge à necessidade de água e trabalhabilidade da mistura, para as quais 
os fatores de controle são o conteúdo de aluminato tricálcico (C3A) e a 
granulometria do cimento. Na medida em que a reologia de um cimen-
to em particular é determinada principalmente pelo controle do C3A 
(por meio da formação da etringita), quanto menor for a quantidade de 
C3A, mais fácil será seu controle reológico - bem como o enrijecimen-
to da mistura se dará em um período mais longo. Na prática, cimentos 
com teores de C3A maiores do que 10% podem resultar em rápida 
perda da fluidez, dificultando a aplicação do CAA em obras. Quando 
se trata de finura e de parâmetros reológicos, quanto maior a superfície 
específica do cimento, maior a quantidade dessas partículas em conta-
to com a água, diminuindo a distância e aumentando a freqüência de 
colisão entre elas, reduzindo a tensão de escoamento e aumentando a 
viscosidade da mistura. Assim, como a demanda por finos para os CAA 
é elevada em virtude da necessidade de aumentar a coesão da mistura, 
cimentos de maior superfície específica são mais apropriados - apesar 
de aumentarem os cuidados necessários com relação ao calor de hidra-
taçào e retração do concreto. 
2.2 Adições Minerais 
Uma das principais características do CAA é a sua elevada resistência à 
segregação, apesar da alta fluidez ou deformabilidade no estado fresco. 
Amanda
Realce
Amanda
Realce
Amanda
Realce
Amanda
Realce
Amanda
Realce
Amanda
Realce
Amanda
Realce
Amanda
Nota
DIMINUINDO a viscosidade!???
Amanda
Realce
Amanda
Nota
como assim?
Para aumentar a coesão da mistura e evitar a segregação do agregado 
graúdo, normalmente são utilizados aditivos modificadores de viscosi-
dade e/ou adições minerais. 
As adições minerais devem ser escolhidas após uma análise técnica e 
econômica e podem ser diversas, desde que tenham áreas superficiais 
maiores que a do componente que estão substituindo. 
Além de responsáveis pela resistência à segregação da mistura, as 
adições minerais podem desempenhar um papel importante para a resis-
tência e durabilidade do concreto, tantofísica quanto quimicamente. 
O efeito químico das adições minerais ocorre a partir da capacidade 
de reação com o hidróxido de cálcio - Ca(OH)2 composto frágil e 
solúvel que se forma durante a hidratação do cimento Portland. Dele 
deriva um composto resistente, o C-S-H (silicato hidratado de cálcio), 
que ocupa os vazios de maiores dimensões existentes na pasta de cimen-
to ou na zona de transição, aumentando o desempenho mecânico e a 
durabilidade do concreto. Dependendo da superfície específica das par-
tículas e da composição química das mesmas, essas reações pozolânicas 
podem ser lentas ou rápidas. 
Já o efeito físico pode ser desdobrado em três ações principais: o 
efeito fíler, que é o aumento da densidade da mistura resultante do 
preenchimento dos vazios pelas minúsculas partículas das adições; o 
refinamento da estrutura de poros e dos produtos de hidratação do 
cimento, causado pelas pequenas partículas das adições que podem 
agir como pontos de nucleação para os produtos de hidratação; e a 
alteração da microestrutura da zona de transição, reduzindo ou elimi-
nando o acúmulo de água livre que, normalmente, fica retido sob os 
agregados. 
As adições minerais, de acordo com sua ação físico-química, podem 
ser classificadas em dois grandes grupos: adições minerais quimicamen-
te ativas e adições minerais sem atividade química. 
2.2.1 Quimicamente ativas 
As adições minerais quimicamente ativas podem ser tanto material po-
zolânico como material cimentante. O material pozolânico é definido 
pela NBR 1 2 6 5 3 ( 1 9 9 2 ) como um material que reage quimicamente 
com o Ca(OH)2 , produto de hidratação do cimento Portland à tempe-
ratura ambiente para formar compostos resistentes. Ou seja, depende 
Amanda
Realce
Amanda
Realce
Amanda
Realce
Amanda
Realce
Amanda
Realce
Amanda
Realce
Amanda
Realce
Amanda
Realce
Amanda
Realce
da presença do cimento Portland para atuar. Como exemplo, pode-se 
citar a cinza volante com baixo teor de cálcio, a pozolana natural, a 
sílica ativa, a cinza de casca de arroz e o metacaulim. Por outro lado, o 
material cimentante possui, na sua composição, hidróxido de cálcio 
e não necessita do Ca(OH)2 formado durante a hidratação do cimento 
Portland para gerar o C-S-H. No entanto, sua auto-hidrataçào é nor-
malmente lenta e a quantidade de produtos cimentantes formados é 
insuficiente para aplicação do material para fins estruturais. Quando 
usado como adição ou substituição em concretos de cimento Portland, 
a presença de Ca(OH)2 e gipsita acelera sua hidratação, como é o caso 
da escória granulada de alto-forno. 
Os CAA podem ser obtidos tanto com as adições pozolânicas como 
com as cimentantes normalmente utilizadas nos CCV (como cinza vo-
lante ou escória de alto-forno). Entretanto, as adições pozolânicas ul-
tra-finas, como sílica ativa, metacaulim e cinza de casca de arroz, 
mostram-se mais efetivas no aumento da coesão do CAA, bem como 
no aumento da resistência e da durabilidade. Misturas ternárias, que 
fazem uso de combinações de duas adições minerais, também têm sido 
utilizadas com sucesso. 
Com relação às quantidades, Alencar e Helene (2006 ) comentam 
que quanto mais finas forem as adições, menores serão os teores de 
substituição, devido ao aumento da freqüência de contato entre elas e 
em determinado volume, o que influencia no aumento da viscosidade 
e coesão da mistura. Além disso, quanto mais rica for a mistura, meno-
res os teores necessários de substituição por adições, pois essas mistu-
ras já possuem grande quantidade de finos e, consequentemente, são 
mais coesas. 
Um recente avanço na tecnologia do CAA é a nanossílica ou sílica 
coloidal amorfa ultra fina, composta por partículas de 5-50nm de sílica 
ativa, disponíveis em solução ( 1 0 õ 0 % rle sólidos) Silo extremamente 
eficientes para reduzir a exsudação e aumentar a resistência à segregação 
por possuírem elevada área superficial. Sua dosagem mais usual é entre 
3 e 5% da massa dos aglomerantes (COLLEPARDI, 2003) . 
A Tabela 2.1 apresenta as adições minerais quimicamente ativas mais 
utilizadas em concretos, bem como suas principais características e con-
seqüências do seu emprego nas propriedades do CAA. 
Amanda
Realce
Amanda
Realce
Amanda
Nota
Material cimentante precisa estar junto com o cimento para formar quantidade sufuciente de produtos cimentantes e ser aplocadi estruturalmente? Quando não usado com cimento pode ser aplicado como?
Amanda
Realce
Amanda
Realce
Amanda
Nota
TEORES DE SUBSTITUIÇÃO?
QUANTO MAIS RICA EM CIMENTO?
COMO SE DA ESSA SUBSTITUIÇÃO POR ADIÇÕES?
TABELA 2.1 Características e conseqüências do emprego de adições minerais nas propriedades do CAA (complementado a partir de 
Otaviano, 2007) 
Adição mineral Cinza volante 
Escória de 
alto forno Sílica ativa Metacaulim 
Cinza de 
casca de arroz 
Origem Calcinação de 
carvão pulverizado 
em us nas termoe-
létricas (com o 
objetivo de gerar 
energia) 
Subproduto 
náo- metálico 
resultante do 
processo de 
obtenção do ferro 
gusa 
Subproduto 
resultante do 
processo de 
obtenção do 
ferro-silício e do 
silício metálico 
Calcinação de 
alguns tipos 
especiais de argila 
ou obtido através 
do tratamento do 
resíduo da indústria 
de papel 
Calcinação da casca 
de arroz 
Aspecto visual 
MEV 5.000 X MEV 1.000 X MEV 20.000 X MEV 7.500 X MEV 8 0 0 X 
Forma e textura Esférica e lisa Prismática e áspera Esférica e lisa Prismática e áspera Alveolar e áspera 
Massa específica 
(kg/dm3) 
2.35 xxxx 2.20 2.40 2.20 a 2.60 
Superfície específica 
(m2/kg) 
300 a 700 300 a 700 13.000 a 30.000 Variável em função 
da moagem 
50.000 a 100.000 
TABELA 2.1 Características e conseqüências do emprego de adições 
Otaviano, 2007) (comimiíiçdo) 
minerais nas propriedades do CAA (complementado a partir de 
Adição mineral Cinza volante 
Escória de 
alto forno Sílica ativa Metacaulim 
Cinza de 
casca de arroz 
Tamanho médio 
das partículas 
Variável em 
função da moagem 
Variável em 
função da moagem 0.1 a 0.2pm 
Variável em 
função da moagem 
Variável em 
função da moagem 
Efeito no CAA Aumento da coesão Aumento da coesão Elevadíssimo Grande aumento da Elevadíssimo 
fresco quando Redução da Redução da aumento da coesão coesão aumento da coesão 
utilizado como exsudação e exsudação e Redução acentuada Redução acentuada Redução acentuada 
substituição ao segregação segregação da exsudação e da exsudação e da exsudação e 
cimento Melhores condições Não contribui para segregação segregação segregação 
de fluidez em a fluidez em função Melhores condições Não contribui para Piores condições de 
função do formato da forma e textura de fluidez em função a fluidez em função fluidez em função 
esférico das das partículas do fònnato esférico da forma e textura da forma e textura 
partículas Pouco altera o das partículas das partículas das partículas 
Normalmente reduz consumo de Aumento no Aumento no Elevado aumento 
o consumo de superplastificante consumo de consumo de no consumo de 
superplastificante superplastificante. 
teores acima de 5% 
da massa do cimento 
superplastificante superplastificante 
Efeito no C M Pequena alteração da Pequena alteração da Melhoria notável da Melhoria notável da Melhoria notável da 
endurecido quando resistência à com- resistência à com- resistência à resistência à resistência à 
utilizado como substi- pressão e aumento pressão e aumento compressão e da compressão e da compressão e da 
tuição ao cimento da durabilidade da durabilidade durabilidade durabilidade durabilidade 
8 Z n 73 
3 
| 
> 0 rn 
Z 
1 m 
Fome: Silva ei al. ( 2 0 0 2 ) Abreu e da S i lva— Mehta e Monteiro ( 1 9 9 4 ) ; Dal Molin ( 1 9 9 5 ) 
2.2.2 Sem atividade química 
O fíler é uma adição mineral finamente dividida sem atividade química, 
ou seja, sua ação se resume a um efeito físico de empacotamento granu-
lométrico e ação como pontos de nucleação para a hidratação dos grãos 
de cimento. A incorporação dos fílers nos CAA deve ser feita pela subs-tituição do agregado miúdo, já que apresenta maior finura do que esse, 
o que melhora as condições de compacidade do esqueleto granular e 
coesão da mistura. 
Os fílers podem ser materiais naturais ou materiais inorgânicos pro-
cessados. O essencial é que possuam uniformidade e, principalmente, 
sejam finos. 
Calcário e a areia fina têm sido os mais tradicionais fílers usados para 
a produção de CAA. Além desses, outras adições minerais têm sido con-
sideradas, como, por exemplo, o pó granílico. 
Agregados 
2.3.1 Miúdos 
De uma forma geral, todas as areias são adequadas para a produção do 
CAA, e pode-se utilizar tanto areias naturais (depósitos eólicos e beira de 
rio) quanio areias obtidas de processos industriais. As primeiras são mais 
recomendadas por possuírem forma mais arredondada e textura mais 
lisa. Deve-se ler um cuidado especial ao usar areias industriais, pois nor-
malmente apresentam composição granulométrica com descon-
tinuidades, ou seja, lacunas nas frações intermediárias. Isso pode ser 
corrigido por meio de composição com outra areia, por exemplo, areia 
média de rio. 
A seleção do agregado miúdo está condicionada à demanda de água, 
fator essencial por sua influência sobre a coesão e fluidez do concreto. 
Agregados miúdos com partículas arredondadas e lisas são preferíveis 
para produção de CAA porque aumentam a fluidez da mistura para uma 
mesma quantidade de água. Segundo Okamura e Ouchi (2003) , quanto 
mais angulosas forem as partículas do agregado miúdo, maior será a re-
sistência ao cisalhamento das argamassas, dificultando a deformabilida-
de do concreio. A Figura 2.1 mostra a influência da forma do agregado 
miúdo sobre tensão de cisalhamento do CAA. 
2.3 
Amanda
Realce
Amanda
Realce
Amanda
Realce
Amanda
Realce
Amanda
Realce
Amanda
Realce
f ormato das areias 
Influência de três tipos de areia sobre a tensão de cisalhamento da mistura de CAA 
quando em movimento, onde T É a tensão de cisalhamento e a a tensão normal. 
(Fonte: Okamura e Ouchi, 2003) 
Deve-se levar em conta ainda que os CAA necessitam adição de finos 
e, quanto menor o módulo de finura do agregado miúdo, mais adequado 
para a produção de concretos de elevada coesão. Bartos (2000) alerta 
que areias muito grossas (módulo de finura superior a 3) podem levar à 
segregação, e devem ser evitadas em CAA. O módulo de finura do agre-
gado miúdo não deve ter variações superiores a ±0.20 para garantir a 
estabilidade das propriedades reológicas durante a produção (GÓMES e 
MAESTRO, 2005) . 
Normalmente, o agregado que passa na peneira 0 ,125 mm é consi-
derado como um aporte adicional de fíler para efeitos de dosagem e, 
junto com as partículas dos finos e dos aglomerantes, podem aumentar 
a viscosidade e coesão da mistura (EFNARC, 2002). 
Otaviano (2007 ) ainda chama a atenção para a necessidade de rea-
lizar um controle rigoroso na umidade do agregado miúdo, que consis-
te em uma das principais causas de variação da fluidez da mistura. 
Segundo Domone (2003) , erros de 0 , 5 % na estimativa da umidade dos 
agregados podem alterar o consumo de água em até 8 kg/m> de con-
creto e, com isso, modificar o resultado do ensaio de espalhamento em 
até 45 mm, além de afetar negativamente as propriedades mecânicas e 
a durabilidade. 
Amanda
Realce
Amanda
Realce
Amanda
Realce
Amanda
Realce
2.3.2 Graúdos 
Para garantir a passagem do concreto por todos os obstáculos durante o 
lançamento e reduzir a tendência à segregação, as exigências quanto à 
dimensão máxima característica do agregado graúdo são mais restritivas. 
GÓMES e MAESTRO (2005) recomendam que a dimensão máxima ca-
racterística do agregado graúdo seja inferior a 2/3 do espaçamento entre 
barras ou grupos de barras e a 3/4 do cobrimento mínimo de concreto às 
armaduras. Na prática, isso implica em não utilizar tamanhos máximos 
superiores a 19 mm, sendo habituais os tamanhos compreendidos entre 
12,5 e 19 mm. 
Na composição do concreto, a aderência agregado-pasta de cimento 
exerce um papel importante para a interação entre os dois componentes. 
Assim, a forma e textura superficial do agregado são fatores relevantes no 
comportamento mecânico. Embora agregados angulares com superfícies 
ásperas apresentem melhor aderência com a pasta de cimento que agre-
gados lisos e arredondados, podem surgir efeitos opostos no aumento do 
consumo de água e redução da trabalhabilidade se a angulosidade for 
muito acentuada. Por isso, indica-se para CAA agregados que possuam 
coeficiente de forma o mais próximo possível de 1. 
A distribuição granulométrica do agregado influencia o empacota-
mento dos grãos e, como resultado, pode alterar a fração volumétrica das 
britas que serão incorporadas em uma mistura de concreto. A fração 
volumétrica está relacionada, principalmente, ao módulo de elasticidade 
do concreto e à retração por secagem, sendo menos deformáveis e com 
menores possibilidades de fissurarem por retração na secagem os con-
cretos com mais agregados e, conseqüentemente, com menor teor de 
argamassa (MEHTA e MONTEIRO, 2006) . 
2.4 Aditivos 
Outro diferencial do CAA para o CCV são os aditivos. São dois os prin-
cipais tipos de aditivos usados: os superplastificantes e os modificadores 
de viscosidade. Os aditivos superplastificantes permitem que se alcance 
alta fluidez nas misturas, enquanto os aditivos modificadores de viscosi-
dade oferecem um aumento da coesão, prevenindo a exsudação e segre-
gação do concreto. 
Amanda
Realce
Amanda
Realce
Amanda
Realce
Amanda
Realce
Amanda
Realce
2.4.1 Plastificantes e superplastificantes 
De um modo geral, os superplastificantes podem ser agrupados em qua-
tro categorias, de acordo com sua composição química (HARTMANN, 
2002): 
a) lignossulfonatos ou lignossulfonatos modificados (LS). Os lig-
nossulfonatos geralmente incorporam ar e retardam, com diver-
sas intensidades, a pega do cimento; 
b) sais sulfonatos de policondensado de naftaleno e formaldeído, 
usualmente denominados de naftaleno sulfonato ou apenas de 
naftaleno (NS). Estes compostos nào incorporam ar e pratica-
mente não interferem no tempo de pega do cimento; 
c) sais sulfonatos de policondensado de melamina e formaldeído, 
usualmente denominados de melamina sulfonato ou apenas de 
melamina (MS). A melamina pode apresentar uma tendência a 
retardar a pega do cimento e, eventualmente, incorporar peque-
na quantidade de ar; 
d) policarboxilatos (PC). 
Os lignossulfonatos (LS) são conhecidos como aditivos plastificantes 
de primeira geração, utilizados como redutores de água normais e, em 
alguns casos, como superplastificantes. O naftaleno (NS) e a melamina 
(MS) são conhecidos comercialmente como aditivos superplastificantes 
de segunda geração, e permitem a redução em até 2 5 % da quantidade de 
água na mistura quando usados como redutores de água. E, finalmente, 
os policarboxi latos (PC) são os aditivos mais aconselhados para a utiliza-
ção no CAA, por serem aditivos superplastificantes de alta eficiência que 
dispersam e desfloculam as partículas de cimento. Assim, permitem a 
redução da água das misturas em até 40%, mantendo a mesma trabalha-
bilidade. Também são poliméricos. 
Pode-se afirmar que os aditivos superplastificantes à base de policar-
boxilatos são os mais utilizados nos CAA, pois melhoram sensivelmente 
a dispersão das partículas de cimento quando comparados aos aditivos 
de primeira e segunda geração. Isso ocorre porque os superplastificantes 
tradicionais são baseados em polímeros que as partículas de cimento 
absorvem e que acumulam-se em sua superfície. Como esses polímeros 
aumentam a carga negativa (desbalanceando) do cimento, fazem com 
que suas partículas se dispersem por repulsão elétrica, exigindo menos 
Amanda
Realce
Amanda
Realce
água para íluidificar a pasta. As cadeias dos superplastificantes de tercei-
ra geração, constituídas de polímeros de éter carboxílico com largas ca-
deias laterais, realizam a dispersão das partículas de cimento da mesma 
forma, porém com maior eficiência.Isso ocorre porque suas cadeias são 
ramificadas, aumentando a área superficial. Além disso, ainda geram 
uma energia que estabiliza a capacidade de refração e dispersão das par-
tículas de cimento. A Figura 2.2 mostra as etapas de ação do aditivo su-
perplastificante a base de policarboxilatos. 
Pocle-se citar ainda um novo tipo de aditivo superplastificante de-
senvolvido recentemente, o aditivo superplastificante sintético (BURY e 
CHR1STENSEN, 2002) , que possui as mesmas funções dos policarboxi-
latos mas com desempenho melhorado. 
A maior dificuldade à propagação do uso desses aditivos tem sido a taxa 
relativamente alta de perda de consistência com o tempo em comparação 
aos CCV, tornando-se um problema sério na utilização dos concretos em 
obra. A consistência obtida pelo superplastificante, dependendo das condi-
ções, se mantém apenas por um período de 30 a 60 minutos. A máxima 
Amanda
Realce
Amanda
Realce
Amanda
Realce
Amanda
Realce
trabal hábil idade alcançada normalmente permanece por 10 a 15 minutos, e 
é seguida por uma perda relativamente rápida do espalhamento (MAILVA-
GANAN, 1979). Por esse motivo, a incorporação do superplastificante na 
mistura deve ser feita momentos antes do seu lançamento na obra. 
Alguns dos fatores que afetam a consistência inicial e a taxa de perda 
de consistência em concretos com aditivos superplastificantes incluem 
tipo de aditivo, dosagem e momento de colocação na mistura, temperatu-
ra, umidade, procedimento de mistura (tempo total de mistura, tipo de 
betoneira e velocidade de mistura), tipo cie cimento, consistência inicial 
do concreto e presença de outros aditivos além do superplastificante. 
Todos os tipos de cimento Portland apresentam aumento de traba-
lhabilidade com a adição de superplastificante embora a eficiência, para 
cada um deles, não seja a mesma. De forma geral, quanto maior a finura 
do cimento, menor a eficiência do aditivo devido à diminuição da con-
centração específica das moléculas absorvidas na superfície dos grãos de 
cimento (BUCHER, 1989). A composição química do cimento também 
possui papel relevante no comportamento da mistura quanto à consis-
tência inicial e perda com o tempo. COLLEPARDI (1984) atribui as dife-
renças de comportamento ao conteúdo de C3A, gesso e álcalis, bem 
como à forma do sulfato de cálcio utilizado como regulador de pega do 
cimento. Quanto maior o conteúdo de álcalis, maior a velocidade das 
reações e, conseqüentemente, maior a perda de consistência. Da mesma 
forma, a presença de superplastificante acelera as reações entre o C3A e 
o gesso. Cimentos contendo maior quantidade de C3A perdem mais ra-
pidamente a consistência inicial na presença de superplastificantes (AC1 
2 1 2 , 1993) . Além do tipo, o consumo de cimento no concreto influen-
cia a taxa de perda de consistência com o tempo, que é tanto menor 
quanto mais elevado for o consumo. 
Vários estudos sobre aditivos superplastificantes mostram que, nor-
malmente, quanto menor a trabalhabilidade inicial representada por en-
saios de consistência, mais rápida é sua perda com o tempo. Por esse 
motivo, Tutikian et al. (2007) sugerem que, quando se deseja obter tem-
pos de lançamento compatíveis com a prática de obra, é recomendável 
utilizar abatimentos iniciais mais altos, que podem ser obtidos com o 
uso de aditivos plastificantes. 
A variação da temperatura de mistura produz um efeito marcante na 
taxa de perda da consistência com o tempo nos concretos com super-
plastificantes, sendo que ocorre uma perda drástica do abatimento em 
temperaturas acima de 32°C (MAILVAGANAM, 1979). É desejável, nes-
Amanda
Realce
Amanda
Realce
Amanda
Realce
Amanda
Realce
Amanda
Realce
Amanda
Realce
Amanda
Realce
sa situação, utilizar água gelada ou lascas de gelo para manter a tempe-
ratura do concreto mais baixa, ou acrescentar um aditivo retardador ou 
estabilizador de pega cuja dosagem e compatibilidade devem ser deter-
minadas previamente. 
2.4.2 Modificadores de viscosidade 
Os aditivos modificadores de viscosidade (VMA) são produtos à base de 
polissacarídeos com cadeias poliméricas de alto peso molecular ou de 
base inorgânica. Quando adicionados ao concreto, melhoram a coesão 
da massa no estado fresco, impedindo a segregação e limitando a perda 
de água por exsudação, o que permite diminuir os efeitos negativos da 
falta de uniformidade na dosagem da quantidade de água e da granulo-
metria dos agregados. 
O VMA substitui componentes finos do concreto. Assim, a mistura 
contém poucas partículas pequenas, fazendo com que diminua a área 
superficial do material e, conseqüentemente, o consumo de água. Ou 
seja, concretos similares podem ter relações a/agl menores ou a mesma 
relação, mas com maior íluidez sem que ocorra a segregação. Segundo 
Poon e Ho (2004), em algumas regiões - o que não é ainda o caso do 
Brasil - os VMA são freqüentemente usados, uma vez que podem dis-
pensar ou reduzir o uso de adições minerais que, em alguns casos, pos-
suem alto custo ou indisponibilidade no local de produção do CAA. 
Ainda que seu emprego em CAA não seja imprescindível, quando 
utilizados de forma conjunta com os superplastificantes de última gera-
ção, os VMA permitem obter misturas estáveis e de grande íluidez. De 
toda forma, devem ser feitos ensaios prévios antes do uso, para verificar 
a compatibilidade entre aditivos e, especialmente em relação ao cimento. 
Otaviano (2007) alerta que é necessário maior controle quanto ao teor 
do VMA no CAA, bem como a sua compatibilização com o superplasti-
ficante, para evitar problemas como retardamento da pega, alteração no 
desenvolvimento de resistência nas primeiras idades, coesão excessiva e 
aumento da retração por secagem. 
Água 2.5 
Os requisitos de qualidade da água para CAA são os mesmos que para 
CCV. 
Amanda
Realce
Amanda
Realce
Amanda
Realce
Amanda
Realce
CAA no 3 
Estado Fresco 
trabalhabilidade do concreto auto-adensável (CAA) no estado fres-
co é essencial para sua correta aplicação, pois como o adensamen-
to desse concreto independe da ação humana, correções no local não 
serão possíveis. Assim foram desenvolvidos equipamentos para medir 
a trabalhabilidade do CAA no estado fresco. Quando o CAA está sendo 
produzido em obra, apenas se utilizam equipamentos para confirmar 
as propriedades reológicas definidas no estudo de dosagem, pois adi-
cionar ou retirar materiais em um caminhão-betoneira, por exemplo, é 
uma tarefa árdua. 
Para dosar e trabalhar corretamente com o CAA, deve-se entender 
algumas peculiaridades do material, que o tornam diferente dos CCV 
A primeira grande característica desse material é que é extrema-
mente fluido. Mas, ao mesmo tempo, deve ser capaz de carregar gran-
des partículas de agregado graúdo em todo o trajeto. Ou seja, é um 
concreto que deve ser fluido e viscoso simultaneamente, unindo duas 
propriedades completamente distintas. Para melhor compreensão dessa 
característica, serão apresentados alguns conceitos de reologia como 
Amanda
Realce
Amanda
Realce
a pressão que o CAA exerce nas fôrmas (que é uma pressão hidrostática 
exercida por um material com massa específica de cerca de 2400 kg/m3). 
Com isso, será possível descrever os equipamentos especiais desenvolvi-
dos exclusivamente para os CAA no final do capítulo. 
3.1 Reologia 
Reologia é o estudo da deformação e do fluxo. Do ponto de vista reoló-
gico, o comportamento do CAA pode ser entendido pelo modelo de 
Bingham (ROUSSEL et ai, 2005) , que é a classificação aceita pela maio-
ria dos autores. Tal fluido é caracterizado por dois parâmetros: a viscosi-
dade plástica e a tensão de cisalhamento. O primeiro é a medida da taxa 
de fluxo do material, enquanto a tensão de cisalhamento é uma medida 
de força, necessária para o movimento do concreto. O CAA apresenta 
alta fluidez sem segregação - graças à baixa tensão de cisalhamento e à 
alta viscosidade - quando comparado ao CCV (OH et ai, s/d). A visco-
sidade plástica é conferida pelo aditivo superplastificante e pela água,e 
a tensão de cisalhamento é resultado da ação dos materiais finos, in-
cluindo o cimento. Porém, a água aumenta a fluidez do concreto e dimi-
nui consideravelmente sua viscosidade, ao contrário do aditivo 
superplastificante que tem por característica aumentar a fluidez com 
desprezível diminuição da viscosidade (OKAMURA, 1997). 
Segundo a Figura 3.1 de Billberg (2005) , para que se inicie o movi-
mento do CAA é necessária uma tensão de corte inicial (T0), a qual é 
fO 
D 
O 
2 c o E 
r-
U O T5 
O -<0 
c 
Bingham 
r = r o + / y "í 
Newton 
r = / / - 7 
Velocidade de corte (7) 
Modelos reológicos (Fonte: Billberg, 2005) 
Amanda
Realce
Amanda
Realce
Amanda
Realce
pequena, próxima do zero, em que com a viscosidade plástica (pp|) - que 
também pode ser determinada pela inclinação cia reta - e com a veloci-
dade de corte faz com que se defina a equação linear de comporta-
mento reológico do CAA, relacionando a tensão de corte no eixo y e a 
velocidade de corte no eixo *x\ 
Se o CAA apresentar uma viscosidade plástica baixa, igual ou menor 
de 40 Pa.s, a tensão cie cisalhamento deverá ser elevada, e poderá ocorrer 
a segregação do concreto já que a mistura não terá condições de manter 
dispersão homogênea de seus constituintes (KHAYAT e DACZKO, 2002). 
Porém, se o CAA apresentar alta viscosidade, ou seja, maior de 70 Pa.s, 
a tensão de cisalhamento será próxima de zero. A característica da mis-
tura que identifica a viscosidade é o valor do slump Jlow test. Com um 
alto valor de slump Jlow test, sendo baixa a tensão de cisalhamento, a 
pressão que o CAA exercerá nas fôrmas será próxima da hidrostática. 
3.2 Pressão nas Fôrmas 
Este item é importante, já que a utilização do CAA faz com que aumente 
a pressão exercida nas fôrmas em comparação com o CCV, fazendo com 
que elas cedam se não houver cuidados extras. 
Proske e Graubner (2002) enumeram 18 itens que influenciam na 
pressão exercida pelo concreto nas fôrmas, relacionados na Tabela 3.1. 
Os autores dividiram em três graus de importância cada um dos itens 
gerais para todos os tipos de concreto. Para o CAA, os parâmetros 1.3, 
1.4 e 2.4 não são aplicáveis. 
Segundo Walraven (2005) , é indiscutível que a velocidade de con-
cretagem influi diretamente na pressão nas fôrmas. Um CAA com uma 
velocidade de concretagem de 2 m por hora (m/h) exerce pressão seme-
lhante à hidrostática. Porém, a partir desse ponto até os 10 m/h, a pres-
são não varia consideravelmente e não ultrapassa essa medida. Por isso, 
afirma-se que é recomendável utilizar a pressão hidrostática para o cál-
culo da resistência deis fôrmas. A recomendação de se utilizar a pressão 
hidrostática para o cálculo da resistência é aceita pela norma francesa NF 
P93-350/89. 
Isso, porém, pode ser um problema já que seria um material na 
forma líquida com massa específica de cerca de 2400 kg/m5 exercendo 
uma pressão hidrostática nas fôrmas. Uma das grandes vantagens do 
CAA frente ao CCV é o aumento da velocidade de concretagem, fazendo 
com que a capacidade dos equipamentos de lançamento do concreto 
Amanda
Realce
Amanda
Realce
Amanda
Realce
Amanda
Realce
Amanda
Realce
Amanda
Realce
TABELA 3.1 Parâmetros Que Influem na Pressão das Fôrmas 
1. Primeiro grau 2. Segundo grau 3. Terceiro grau 
l.l velocidade de lançamento 2.1 tempo de endurecimento 3.1 tipo de moldagem 
1.2 densidade do concreto 2.2 compatibilidade entre 
cimento e aditivo 
3.2 tipo e dimensão 
máxima dos agregados 
1.3 tipo de compactação 2.3 pressão dos poros de 
água 
3.3 tipo de cimento 
1.4 tipo e profundidade de 
vibração 
2.4 tempo de vibração 3.4 temperatura ambiental 
1.5 consistência do concreto 2.5 projeto da fôrma 3.5 altura de lançamento 
e altura total 
1.6 temperatura do concreto 
no estado fresco 
2.6 permeabilidade da 
fôrma 
3.6 armadura de reforço 
(Fonte: Proskc c Graubncr, 2 0 0 2 ) 
seja a limitação da vazão de concretagem. Quanto mais rápido for possí-
vel lançar a mistura, melhor para todos os envolvidos no processo. As-
sim, uma das maiores vantagens do CAA se tornou um grande risco, 
conhecido como colapso de fôrmas (B1LLBERG, 2003) . 
Desde o início dos anos 90, diversas aplicações do CAA na Suíça têm 
ocasionado o colapso de fôrmas ou simplesmente as deformado (LEE-
MANN e HOFFMANN, 2003) . Na maioria das aplicações, o CAA é in-
troduzido pela parte inferior das fôrmas por conta das condições de 
produtividade. Brameshubere Uebachs (2003) mostraram que a pressão 
exercida pelo CAA é aproximadamente o dobro de quando é bombeado 
pela parte inferior de uma estrutura vertical em comparação ao bombe-
amento pela parte superior com as mesmas velocidades de lançamento 
do concreto. As pressões podem, pontualmente, também, superar as hi-
drostáticas. 
Porém, muitas publicações relatam que a pressão exercida nas fôr-
mas pelo CAA é menor que a hidrostática, j á que a mistura apresenta um 
comportamento tixotrópico (DOUGLAS et a/., 2005) . Tixotropia é defi-
nida como a diminuição de viscosidade sob tensão ou velocidade de 
Amanda
Realce
Amanda
Realce
Amanda
Realce
Amanda
Realce
Amanda
Realce
Amanda
Realce
corte constante, seguida de recuperação gradual quando essa tensão ou 
velocidade de corte é removida. Essa recuperação gradual de viscosidade 
afeta a trabalhabilidade do concreto, bem como uma série de etapas do 
processo de concretagem como a mistura, transporte, bombeamento, 
lançamento e pressão desenvolvida nas fôrmas. A pressão exercida pelo 
CAA também pode ser diminuída com o controle do tempo de concre-
tagem, executando uma segunda camada apenas quando a primeira já 
iniciou o processo de pega. 
Djelal et al. (2004) propõem a utilização da equação de Janssen 
adaptada para CAA para o cálculo da pressão. Essa equação depende da 
aceleração gravitacional; das características do concreto, como a massa 
específica e a tensão de cisalhamento; das características da fôrma como 
o espaçamento entre as paredes, da altura e do comprimento; das intera-
ções entre a mistura e a fôrma, na forma de um ângulo de fricção interna 
determinado experimentalmente; e do coeficiente de fricção. É evidente 
a dificuldade de determinação da pressão pela equação; porém, deve-se 
considerar a importância do atrito entre o CAA e as paredes, ainda mais 
quando houver estruturas longas e circulares como a tubulação de bom-
beamento. Há casos em que é necessário o bombeamento por 2000 m, 
por exemplo, sendo prudente ter cuidado na dosagem da mistura e es-
pecificação da tubulação. 
Também é possível calcular a tensão de cisalhamento por meio do 
ensaio do L-Box (NGUYEN et at.y 2006) . O autor propõe uma equação 
que relaciona as alturas do CAA ' h f e 'h^ extraídas do ensaio com a ten-
são de cisalhamento, a força da gravidade e a massa específica do concre-
to no estado fresco. A forma de parada (h, e h2) do concreto é 
diretamente relacionada à tensão de cisalhamento, possibilitando corre-
lacionar ambas em fórmulas matemáticas. 
Trabalhos mais aprofundados nessa área seriam certamente bem-
vindos, já que modelos matemáticos, usados para o cálculo da pressão 
nas fôrmas exercida pelo CAA, parecem não ser consenso no meio técni-
co e nem esgotaram o assunto, apesar de buscarem maneiras mais preci-
sas de cálculo. 
Ensaios para Controle da Trabalhabilidade 
O conjunto de equipamentos para a avaliação da trabalhabilidade do 
CAA foi totalmente desenvolvido para esse novo tipo de concreto. É 
importante salientar que os ensaios ainda não foram normalizados e, 
3.3 
Amanda
Realce
Amanda
Realce
Amanda
Realce
como qualquer procedimento sem normalização, há muitas divergências 
no meio técnico quanto às especificações e medidas. Logo, o mesmo 
aparelho pode apresentar pequenas diferenças entre uma publicação e 
outra. Mas um fato interessante é que não há muita variação dos tipos 
dos aparelhos, ou seja, a grande maioria dos autores utiliza os mesmos 
testes, porém com medidas e intervalos diferentes, como será mostrado 
na descrição de cada um. 
As trêspropriedades cuja medição se faz necessária CAA são a flui-
dez, a capacidade cie fluir coeso e íntegro entre obstáculos e a resistência 
à segregação. Para cada uma dessas propriedades há um grupo de equi-
pamentos, uns mais aptos e uns mais práticos que outros, conforme 
pode ser observado na Tabela 3.2. Essa tabela, inicialmente apresentada 
por Peterssen (1999) , foi adaptada pelos autores desse livro. 
EFNARC (2002) enumera alguns pontos que devem ser levados em 
consideração na avaliação da trabalhabilidade do CAA: 
TABELA 3.2 Ensaios Para a Avaliação da Trabalhabilidade do CAA 
Ensaios 
Utilização Propriedades Avaliadas 
Ensaios 
Laboratório Canteiro Fluidez Habilidade Pas. Coesão 
Slump flow xxx XXX XXX N X 
Slump flow T 50 XXX XX xxx N X 
V-Funnel XX X XX N X 
V-Funnel 5 min XX X X N XXX 
L-Box XX X N XXX XX 
U-Box XX X N XXX XX 
Fill-Box x N N XX XX 
U-Pipe X N X N xxx 
Orímet XX X XX X X 
J-Ring xxx XXX X xxx XX 
XXX - altamente recomendável; XX - recomendável; X - pouco recomendável; N - não relevante (Fonte: 
PETERSSEN. 1 9 9 9 . adaptado) 
Amanda
Realce
a) uma das principais dificuldades de utilizar tais lestes é que eles 
têm de medir as três propriedades requeridas no CAA, e nenhum 
teste é capaz de medir isoladamente todos os três itens; 
b) ainda não há uma relação clara entre os resultados experimentais 
e o cantei ro-de-obras; 
c) há pouca precisão de dados. Portanto, não há uma direção clara 
na obediência dos limites; 
d) os testes e limites são previstos para concretos com agregado 
graúdo de diâmetro máximo de 20 mm Caso seja necessário di-
âmetro maior, os equipamentos devem ser ajustados; 
e) não se considera o tipo de elemento em que o concreto será lan-
çado - se em estruturas horizontais ou em verticais; 
f) da mesma forma, os equipamentos devem ser ajustados caso as 
armaduras sejam muito densas. 
Muitos dos pontos são discutíveis ou podem ser solucionados. Con-
forme já demonstrado, somente um aparelho não é capaz medir todas as 
propriedades necessárias. Mas como as dimensões dos equipamentos 
não são grandes, pode-se perfeitamente realizar dois ou três testes, tanto 
em laboratório quanto no cantei ro-de-obras. Quanto ao problema do 
diâmetro máximo do agregado graúdo ou da densidade da armadura, 
sabe-se que o CAA deve passar entre as barras da armadura e que o ta-
manho máximo do agregado já está limitado em relação ao espaçamento 
entre elas. Logo, é improvável que seja necessário especificar diâmetros 
maiores que 20 mm. A equivalência entre ensaios e canteiro-de-obras, 
como todo novo material, só será adquirida por meio da experiência 
acumulada com o uso e, por fim, as medidas somente serão definitivas 
quando os equipamentos forem normalizados. 
3.3.1 Slump flow test 
O slump flow lest é utilizado para medir a capacidade do CAA de fluir 
livremente sem segregar. Foi desenvolvido primeiramente no Japão para 
avaliar o uso de concretos submersos. A medida de fluidez a ser obtida 
do CAA é o diâmetro do círculo formado pelo concreto. Para concretos 
convencionais, a trabalhabilidade é medida pela determinação da con-
sistência pelo abatimento do tronco de cone (NBR NM 6 7 ) ou pela 
determinação da consistência pelo espalhamento na mesa de Grajf 
Amanda
Realce
Amanda
Realce
Amanda
Realce
Amanda
Realce
Amanda
Realce
(NBR NM 68) , a qual é aplicável para misturas que atinjam o espalha-
mento mínimo de 350 mm limitado ao tamanho da mesa, 700 mm. 
Pode-se afirmar, a grosso modo, que o slumpflow test é uma adaptação 
destes dois ensaios para um concreto excessivamente fluido. 
O ensaio permite observar visualmente se o concreto está segregan-
do ou não. As Figuras 3.2 e 3.3 ilustram o resultado do ensaio realizado 
com duas misturas: a primeira sem apresentar segregação e a segunda 
com segregação visível. Nota-se que, com o concreto segregando, o agre-
gado graúdo forma uma pilha central, enquanto só a argamassa (ou pas-
ta) flui para as extremidades, formando uma auréola. Se o concreto da 
Figura 3.4 fosse aplicado em estruturas reais, certamente o agregado 
graúdo iria para o fundo das fôrmas e a argamassa e a água subiriam para 
a superfície, o que provocaria grandes falhas de concretagem e diminui-
riam a durabilidade e a resistência mecânica das peças. 
O slumpjlow test pode ser executado por uma pessoa e exige poucos 
materiais, o que o habilita a ser usado em canteiros-de-obra e não so-
mente em laboratórios. É composto por uma base, que deve ser um 
quadrado de 1000 X 1000 mm - que não absorva água e nem provoque 
CAA sem segregação 
Amanda
Realce
Amanda
Realce
fO 
D 
O 
Segregação visível 
atrito com o concreto - e por um tronco de cone com materiais de mes-
mas características da base. Sobre o centro da base deve-se marcar um 
círculo de diâmetro de 200 mm para a colocação do cone, que deve ter 
300 mm de altura, diâmetro interno menor cie 100 mm e diâmetro maior 
de 200 mm. Também são necessárias, para a execução do teste, uma 
espátula, uma concha côncava e uma trena para medir o espalhamento 
do concreto. 
Primeiramente, deve-se umedecer a placa e o tronco de cone para 
que não absorvam água do concreto durante o ensaio. Depois, colocar a 
placa sobre um chão firme e nivelado e o tronco de cone no centro da 
base, segurando-o firmemente sobre o círculo de 200 mm. Aproximada-
mente seis litros de concreto serão necessários para o ensaio. Com a 
concha côncava, preencher com concreto e com a espátula remover o 
excesso do topo do cone. O adensamento deve ser feito pela força da 
gravidade, não devendo ser realizado qualquer tipo de compactação. 
Remover também qualquer excesso de concreto na placa e então erguer 
verticalmente o cone. Permitir que o concreto flua livremente e medir o 
diâmetro do espalhamento em duas direções perpendiculares. A média 
Amanda
Realce
Amanda
Realce
Amanda
Realce
Amanda
Realce
Amanda
Realce
dessas medidas é o valor do slumpjlow. Durante o ensaio é importante a 
observação da ocorrência ou não dc segregação. 
Espalhamentos muito baixos indicam que o concreto está pouco 
fluido. Assim, é necessário íluidificar o material com água ou aditivos 
superplastiíicantes. E, se a medida estiver elevada, deve-se tornar o con-
creto mais coeso, porque estará muito fluido e, provavelmente, segre-
gando. 
3.3.2 Slump flow T5 0 cm test 
O slump flow T 5 0 c m test é uma variação do slump flow, já que o procedi-
mento e os equipamentos são os mesmos. As únicas alterações são a 
marcação de um círculo de 500 mm de diâmetro centrado na base, a 
necessidade de um cronômetro para a realização do teste e a presença de, 
pelo menos, duas pessoas. 
O teste é realizado simultaneamente com o slumpjlow test. Assim que 
o cone for erguido verticalmente, o segundo operador deve acionar o 
cronômetro e marcar o tempo em que o concreto alcança a marca dos 
500 mm. Se o tempo for baixo, indica que o concreto está muito fluido; 
se o tempo for alto, indica que o concreto está muito coeso e deve, em 
ambos os casos, ser corrigido. A Figura 3.4 representa um teste do slump 
flow test com o slum flow T 5 0 c m test. 
Observa-se, pela Figura 3.4, que não há segregação visível uma vez 
que o agregado graúdo está acompanhando a argamassa até as extremi-
dades do círculo sem ficar agrupado no centro. E também porque a mis-
tura está fluindo uniformemente pela placa de base formando, 
aproximadamente, um círculo e não uma forma irregular. Também não 
ocorre o desprendimento de pasta, outra indicação de que o concreto 
está coeso. 
3.3.3 J-ring test 
O j-ring test é uma complementação do slump flow test, do o rimei test ou 
até mesmo do v-funnel test, porque esses testes não tentam simular as 
armaduras de uma estrutura real. É constituído por um anel de barras de 
aço espaçadas conforme a armadura real que se deseja simular. Mas, 
normalmente, o diâmetro é de 300 mm, a altura é de 100 mm e o espa-
çamento entre barras deve ser maior que 3 vezes o diâmetro máximo do 
Amanda
Realce
Amanda
Realce
Amanda

Continue navegando