Buscar

aplicaesdasleisdenewton2-110717110134-phpapp02

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 3, do total de 35 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 6, do total de 35 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 9, do total de 35 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Prévia do material em texto

Aplicações das Leis de Newton
Exercícios
 
01-(UCS-RS) Uma força de intensidade 20N atua sobre os blocos A e 
B, de massas mA=3kg e mB=1kg, como mostra a figura.
 A superfície sobre a qual desliza o conjunto é horizontal e sem atrito. 
Considere g=10m/s2 e determine:
a) a intensidade da força que A aplica em B
b) a intensidade da força que B aplica em A
c) a intensidade da força resultante sobre cada bloco.
 
02-(UFB) Os três blocos P, Q e R da figura abaixo encontram-se em 
repouso sobre uma superfície plana, horizontal e perfeitamente lisa.
Suas massas são mP=6kg, mQ=4kg e mR=2kg. Uma força de 
intensidade F=48N é aplicada sobre o bloco P. Considere g=10m/s2 e 
determine a intensidade, direção e sentido da força que o bloco R 
aplica no bloco Q.
 
1
03-(FCC-BA) Quatro blocos M, N, P e Q deslizam sobre uma superfície 
horizontal, empurrados por uma força , conforme o esquema 
abaixo.
A força de atrito entre os blocos e a superfície é desprezível e a 
massa de cada bloco vale 3,0kg. Sabendo-se que a aceleração 
escalar dos blocos vale 2,0m/s2, a força do bloco M sobre o bloco N é, 
em newtons, igual a:
a) zero b) 6,0 c) 12 d) 18 e) 
24 
 
04-(FATEC-SP) Dois blocos A e B de massas 10 kg e 20 kg, 
respectivamente, unidos por um fio de massa desprezível, estão em 
repouso sobre um plano horizontal sem atrito. Uma força, também 
horizontal, de intensidade F = 60N é aplicada no bloco B, conforme 
mostra a figura.
 
O módulo da força de tração no fio que une os dois blocos, em 
newtons, vale
a) 60. b) 50. c) 40. d) 
30. e) 20.
 
05-(F.M.Itajubá-MG) Três blocos são atados por fios ideais e puxados 
no espaço interestelar, onde inexiste gravidade, com uma aceleração 
 de módulo 10m/s2.
2
Quais as intensidades T1, T2 e T3 das forças tensoras nos fios?
 
06-FUVEST-SP) Dois corpos A e B de massas mA=3kg e mB=1kg 
estão ligados por um fio flexível, como mostra a figura,a mover-se 
sob a ação da gravidade, sem atrito. (considere g=10m/s2).
a) Determine a aceleração do conjunto e a intensidade da força de 
tração no fio.
b) Supondo que num certo instante, após iniciado o movimento, o fio 
de ligação se rompa, o que acontecerá com os movimentos dos 
corpos A e B
 
07-(UFMG-MG) Na montagem abaixo, sabendo-se que F=40N, 
m1=m2=1,0kg e que g=10m/s2, qual é o valor de T? Despreze 
qualquer atrito.
08-(UFB) Na figura abaixo os blocos 1, 2 e 3 tem massas m1=40kg, 
m2=20kg e m3=60kg. Considere os fios A e B e a polia ideais, 
despreze todos os atritos e calcule:
3
a) a aceleração do sistema b) a intensidade da força de tração 
no fio B
 
09-(ITA-SP) O arranjo experimental esquematizado na figura consiste 
de uma roldana por onde passa um fio perfeitamente flexível e sem 
peso. Este fio sustenta em uma de suas extremidades a massa de 
10kg e na outra, um dinamômetro no qual está pendurada uma 
massa de 6kg. A roldana pode girar sem atrito e sua massa, bem 
como a do dinamômetro, é desprezível em relação àquela do sistema. 
O sistema, a partir do repouso, vai se movimentar pela ação da 
gravidade. Sendo g=10m/s2, determine:
a) o módulo da aceleração de cada bloco b) a intensidade da força 
, em newtons, indicada pelo dinamômetro.
 
10- (UNIFESP-SP) Na representação da figura, o bloco A desce 
verticalmente e traciona o bloco B, que se movimenta em um plano 
horizontal por meio de um fio inextensível. Considere desprezíveis as 
massas do fio e da roldana e todas as forças de resistência ao 
movimento.
4
 
Suponha que, no instante representado na figura, o fio se quebre. 
Pode-se afirmar que, a partir desse instante,
a) o bloco A adquire aceleração igual à da gravidade; o bloco B pára.
b) o bloco A adquire aceleração igual à da gravidade; o bloco B passa 
a se mover com velocidade constante.
c) o bloco A adquire aceleração igual à da gravidade; o bloco B reduz 
sua velocidade e tende a parar.
d) os dois blocos passam a se mover com velocidade constante.
e) os dois blocos passam a se mover com a mesma aceleração.
 
11- (FGV-SP) Dois carrinhos de supermercado podem ser acoplados 
um ao outro por meio de uma pequena corrente, de modo que uma 
única pessoa, ao invés de empurrar dois carrinhos separadamente, 
possa puxar o conjunto pelo interior do supermercado. Um cliente 
aplica uma força horizontal de intensidade F, sobre o carrinho da 
frente, dando ao conjunto uma aceleração de intensidade 0,5 m/s2.
 
Sendo o piso plano e as forças de atrito desprezíveis, o módulo da 
força F e o da força de tração na corrente são, em N, 
respectivamente:
a) 70 e 20. b) 70 e 40. c) 70 e 50. d) 60 
e 20. e) 60 e 50.
 
5
12-(UFRJ-RJ) Um bloco de massa m é abaixado e levantado por meio 
de um fio ideal. Inicialmente, o bloco é abaixado com aceleração 
constante vertical, para baixo, de módulo a (por hipótese, menor do 
que o módulo g da aceleração da gravidade), como mostra a figura 1.
Em seguida, o bloco é levantado com aceleração constante vertical, 
para cima, também de módulo a, como mostra a figura 2. Sejam T a 
tensão do fio na descida e T' a tensão do fio na subida.
Determine a razão T'/T em função de a e g.
 
13- (UNESP-SP) Dois blocos, A e B, de massas m e 2m, 
respectivamente, ligados por um fio inextensível e de massa 
desprezível, estão inicialmente em repouso sobre um plano horizontal 
sem atrito. Quando o conjunto é puxado para a direita pela força 
horizontal aplicada em B, como mostra a figura, o fio fica sujeito à 
tração T1. Quando puxado para a esquerda por uma força de mesma 
intensidade que a anterior, mas agindo em sentido contrário, o fio 
fica sujeito à tração T2.
 
Nessas condições, pode-se afirmar que T2‚ é igual a
 a) 2T1. b) Ö2 T1 c) T1 
 d) T1/Ö2 e) T1/2.
 
14-(UNESP-SP) Uma barra AC homogênea de massa m e 
comprimento L, colocada numa mesa lisa e horizontal, desliza sem 
6
girar sob ação de uma força , também horizontal, aplicada na sua 
extremidade esquerda. 
Mostre que a força com que a fração BC de comprimento 2L/3, 
atua sobre a fração AB é igual a - 2 /3.
 
15- (UFRJ-RJ) O sistema representado na figura é abandonado sem 
velocidade inicial. Os três blocos têm massas iguais. Os fios e a 
roldana são ideais e são desprezíveis os atritos no eixo da roldana. 
São também desprezíveis os atritos entre os blocos (2) e (3) e a 
superfície horizontal na qual estão apoiados.
O sistema parte do repouso e o bloco (1) adquire uma aceleração de 
módulo igual a a. Após alguns instantes, rompe-se o fio que liga os 
blocos (2) e (3). A partir de então, a aceleração do bloco (1) passa a 
ter um módulo igual a a'.
Calcule a razão a' / a.
 
16-(UFRJ-RJ) Analise as figuras a seguir e leia com atenção o texto.
 
Dois blocos de massas m e M, sendo M>m estão em repouso e em 
contato um ao lado do outro, sobre uma superfície plana. Se 
empurrarmos um dos blocos com uma força F, paralela à superfície, o 
conjunto irá mover-se com uma dada aceleração.
7
Determine se faria diferença para as magnitudes da aceleração do 
conjunto e das forças de contato entre os blocos, se tivéssemos 
empurrado o outro bloco.
 
17- (Ufrrj) Em uma obra, realizada na cobertura de um prédio, há um 
sistema para subir e descer material entre o térreo e o último andar 
através de baldes e cordas. Um dos operários, interessado em Física, 
colocou um dinamômetro na extremidade de uma corda. Durante o 
transporte de um dos baldes, ele percebeu que o dinamômetro 
marcava 100 N com o balde em repouso e 120 N quando o balde 
passava por um ponto A no meio do trajeto.(considere g=10m/s2)
a) Determine a aceleração do balde nesse instante em que ele passa 
pelo ponto A.
b) É possível concluir se, nesse instante, o balde está subindo ou 
descendo? Justifique.18- (Ufpb) Uma locomotiva desenvolvendo uma aceleração de 2m/2, 
puxa três vagões ao longo de uma ferrovia retilínea, conforme a 
figura. (g=10m/s2).
 
Se o vagão 3 pesa 2 × 103 N, determine a intensidade da força a 
força exercida sobre ele pelo vagão 2.
 
19-(UFRJ-RJ) Um sistema é constituído por um barco de 100 kg, uma 
pessoa de 58 kg e um pacote de 2,0 kg que ela carrega consigo. O 
8
barco é puxado por uma corda de modo que a força resultante sobre 
o sistema seja constante, horizontal e de módulo 240 newtons.
Supondo que não haja movimento relativo entre as partes do 
sistema, calcule o módulo da força horizontal que a pessoa exerce 
sobre o pacote.
 
20-(UERJ-RJ) Os corpos A e B, ligados ao dinamômetro D por fios 
inextensíveis, deslocam-se em movimento uniformemente acelerado. 
Observe a representação desse sistema, posicionado sobre a bancada 
de um laboratório.
A massa de A é igual a 10 kg e a indicação no dinamômetro é igual a 
40 N.
Desprezando qualquer atrito e as massas das roldanas e dos fios, 
estime a massa de B.(g=10m/s2).
 
21-(UNESP-SP) Um bloco de massa mA deslisa no solo horizontal, sem 
atrito, sob ação de uma força constante, quando um bloco de massa 
mB é depositado sobre ele. 
Após a união, a força aplicada continua sendo a mesma, porém a 
aceleração dos dois blocos fica reduzida à quarta parte da aceleração 
que o bloco A possuía. Pode-se afirmar que a razão entre as massas, 
mA/mB, é
a) 1/3. b) 4/3. c) 3/2. d) 
1. e) 2.
 
9
22-(MACKENZIE-SP) O conjunto abaixo, constituído de fios e polias 
ideais, é abandonado do repouso no instante t=0 e a velocidade do 
corpo A varia em função do tempo segundo o diagrama dado.
Desprezando o atrito e admitindo g=10m/s2, calcule a relação entre 
as massas de A (mA) e de B (mB).
 
23-(PUC-SP) Uma caminhonete de 2.000kg tenta resgatar um caixote 
a partir de um precipício, usando um cabo inextensível que liga o 
veículo ao objeto, de massa 80kg. Considere a polia ideal. Se o 
caixote sobe com aceleração de 1m/s2, responda: (g=10m/s2)
a) Qual a força que movimenta a caminhonete?
b) O cabo suporta no máximo uma tração de 2.000N. Será possível o 
resgate com essa aceleração sem que ele arrebente?
 
24-(FUVEST-SP) Uma esfera de massa mo está pendurada por um fio, 
ligado em sua outra extremidade a um caixote, de massa M=3 mo, 
sobre uma mesa horizontal. Quando o fio entre eles permanece não 
esticado e a esfera é largada, após percorrer uma distância Ho, ela 
atingirá uma velocidade Vo, sem que o caixote se mova. Na situação 
em que o fio entre eles estiver esticado, a esfera, puxando o caixote, 
após percorrer a mesma distância Ho, atingirá uma velocidade V. 
Determine V em função de Vo.
10
 
25-(UNESP-SP) Dois blocos estão suspensos em um campo 
gravitacional de aceleração g, por duas cordas A e B de massas 
desprezíveis, como indica a figura.
Determine as tensões em cada corda nos seguintes casos:
a) os corpos são mantidos suspensos em repouso pela força .
b) os corpos são submetidos a uma força tal que os acelera a 2,0m/
s2, para cima.
 
26-(FUVEST-SP) Um carrinho A de 20kg de massa é unido a um bloco 
B de 5kg por meio de um fio leve e inextensível, conforme a figura.
Inicialmente o sistema está em repouso, devido à presença do 
anteparo C que bloqueia o carrinho A. (g=10m/s2).
a) Qual o valor da força que o anteparo C exerce sobre o carrinho A
b) Retirando C, com que aceleração o carrinho A se movimenta?
11
 
27-(MACKENZIE-SP) O sistema abaixo é constituído por fios e polias 
ideais, num local onde g=10m/s2.
 Desprezando-se qualquer tipo de resistência e abandonando-se o 
conjunto quando o corpo A se encontra na posição X, a sua 
velocidade, ao passar por Y, é, em m/s:
a) 0,50 b) 2,5 c) 5,0 d) 
50 e) 7,0 
 
28-(MACKENZIE-SP) No sistema abaixo, o corpo 1, de massa 6,0kg, 
está preso na posição A. O corpo 2, tem massa de 4kg. Despreze os 
atritos e adote g=10m/s2.
Abandonando o corpo 1, a sua velocidade, em m/s, ao passar pela 
posição B será de:
a) 0,50 b) 1,0 c) 2,0 d) 
Ö5 e) 4,0
 
12
29-(Ceub-DF) Na figura a seguir temos dois blocos, A e B, de massas 
respectivamente iguais a mA=4,0kg e mB=6,0kg, que deslizam, sem 
atrito, em uma superfície plana e horizontal, sob ação de uma força 
horizontal e constante e de intensidade F. Os blocos estão ligados por 
fios ideais a um dinamômetro também ideal (massa desprezível), 
calibrado em newtons.
Não considere o efeito do ar e admita que os blocos tem uma 
aceleração horizontal, para a direita, constante e de módulo igual a 
2,0m/s2.
Julgue os itens a seguir.
(1) a força tensora no fio (1) tem intensidade igual a 12N.
(2) O valor de F é 20N.
(3) como o dinamômetro tem massa desprezível, as forças que 
tracionam os fios (1) e (2) tem intensidades iguais.
(4) o dinamômetro indica 12N.
 
30-(FUVEST-SP) Um sistema mecânico é formado por duas polias 
ideais que suportam três corpos A, B e C de mesma massa m, 
suspensos por fios ideais como representado na figura.
 
O corpo B está suspenso simultaneamente por dois fios, um ligado a 
A e outro a C. Podemos afirmar que a aceleração do corpo B será:
13
a) zero b) (g/3) para baixo c) (g/3) para cima 
d) (2g/3) para baixo e) (2g/3) para cima
 
31-(Aman-RJ) No sistema apresentado na figura, não há forças de 
atrito e o fio tem massa desprezível. (g=10m/s2).
São dados F=500N; mA=15kg e mB=10kg. Determine a intensidade 
da força de tração no fio e a aceleração do sistema.
 
32-(UFMG) A figura mostra uma corrente formada por três elos. A 
massa de cada elo é de 100g e uma força vertical puxa essa 
corrente para cima. A corrente sobe com uma aceleração de 3,0m/s2.
Considerando essas informações calcule:
a) o módulo da força que puxa a corrente.
b) o módulo da força resultante que atua sobre o elo do meio.
c) o módulo da força que o elo do meio faz sobre o elo de baixo. 
 
33-(UFRJ) O sistema ilustrado na figura abaixo é uma máquina de 
Atwood. A roldana tem massa desprezível e gira livremente em torno 
de um eixo fixo perpendicular ao plano da figura, passando pelo 
centro geométrico da roldana. Uma das massas vale m e a outra 2m. 
14
O sistema encontra-se inicialmente na situação ilustrada pela figura 
a, isto é, com as duas massas no mesmo nível. O sistema é então 
abandonado a partir do repouso e, após um certo intervalo de tempo, 
a distância vertical entre as massas é h (figura b).
Calcule o módulo da velocidade de cada uma das massas na situação 
mostrada na figura (b).
 
34-(UFRN) Uma corrente constituída de sete anéis, cada um com 
massa de 200g, está sendo puxada verticalmente para cima, com 
aceleração constante de 2,0m/s2. A força para cima no anel do meio 
é: (g=10m/s2).
a) 16,8N b) 9,6N c) 8,4N d) 2,4N e) 1,6N
 
35-(UNESP-SP) Em uma circular técnica da Embrapa, depois da 
figura,
 
Encontramos uma recomendação que, em resumo, diz:
“No caso do arraste com a carga junto ao solo (se por algum motivo 
não pode ou não deve e ser erguida . . .) o ideal é arrastá-la. . . 
15
reduzindo a porca necessária para movimentá-la, causando menos 
dano ao solo . . . e facilitando as manobras. Mas neste caso o peso da 
tora aumenta. (www.cpafac.embrapa.br/pdficirtec39.pdf.Modificado.)
Pode-se afirmar que a frase destacada é conceitualmente
A) inadequada, pois o peso da tora diminui, já que se distribui sobre 
uma área maior.
B) inadequada, pois o peso da tora é sempre o mesmo, mas é correto 
afirmar que em II a força exercida pela tora sobre o solo aumenta;
 C) inadequada: o peso da tora é sempre o mesmo e, além disso, a 
força a força exercida pela tora sobre o solo em II diminui, pois se 
distribui por uma área maior.
D) adequada,pois nessa situação a tora está integralmente apoiada 
sobre o solo.
E) adequada, pois nessa situação a área sobre a qual a tora está 
apoiada sobre o solo também aumenta 
 
36-(UNESP-SP) Um rebocador puxa duas barcaças pela águas de um 
lago tranqüilo. A primeira delas tem massa de 30 toneladas e a 
segunda, 20 toneladas. Por uma questão de economia, o cabo de aço 
I que conecta o rebocador à primeira barcaça suporta, no máximo, 
6.105N, e o cabo II, 8.104N.
Desprezando o efeito de forças resistivas, calcule a aceleração 
máxima do conjunto, a fim de evitar o rompimento de um dos cabos.
 
 37-(UFSC-SP)) Em repouso, o sistema de vasos comunicantes apresentado está em 
equilíbrio, de acordo com a figura.
Quando o sistema é submetido a um movimento uniformemente variado devido à ação 
de uma força horizontal voltada para direita, o líquido deverá permanecer em uma 
posição tal qual o esquematizado em
16
 
38-(UEL-PR-09) Considere o sistema constituído por três blocos de massas m1, m2 e m3, 
apoiados um sobre o outro, em repouso sobre uma superfície horizontal, como mostra a 
figura a seguir.
Observe que uma força F é aplicada ao bloco de massa m2, conforme a representação. 
Entretanto, esta força é incapaz de vencer as forças de fij entre os blocos mi e mj, onde i 
e j variam de 1 a 3. 
Desprezando a resistência do ar, assinale a alternativa que representa todas as forças que 
atuam no bloco de massa m2, onde os Ni, representam as normais que atuam nos blocos 
e Pi, correspondem aos pesos dos respectivos blocos com i variando de 1 a 3.
 
39-(UFCG-PB-010) Durante uma viagem, Lucinha observou as enormes curvas que os 
cabos das linhas de transmissão de energia 
elétrica apresentavam (figura). Ao comentar a observação, disse que os engenheiros 
poderiam economizar o material dos cabos se os esticassem entre as torres de 
sustentação até que estivessem dispostos horizontalmente.
17
Proponha um modelo, fundamentado nas Leis de Newton, para a situação observada e 
discuta o comentário feito por Lucinha.
 
40-(PUC-RJ-010) Alberto (A) desafiou seu colega Cabral (C) para uma competição de 
cabo de guerra, de uma maneira especial, mostrada na figura. Alberto segurou no 
pedaço de corda que passava ao redor da polia enquanto que Cabral segurou no pedaço 
atado ao centro da polia. Apesar de mais forte, Cabral não conseguiu puxar Alberto, que 
lentamente foi arrastando o seu adversário até ganhar o jogo. Sabendo que a força com 
que Alberto puxa a corda é de 200 N e que a polia não tem massa nem 
atritos:
a) especifique a tensão na corda que Alberto está segurando;
b) desenhe as forças que agem sobre a polia, fazendo um diagrama de corpo livre;
c) calcule a força exercida pelo Cabral sobre a corda que ele puxava;
d) considerando que Cabral foi puxado por 2,0 m para frente, indique quanto Alberto 
andou para trás. 
 
41-(UFT-TO-011) Uma pequena esfera de chumbo com massa igual a 50 g é amarrada 
por um fio, de comprimento igual a 10 cm e massa desprezível, e fixada no interior de 
um automóvel conforme figura. O carro se move horizontalmente com aceleração 
constante. Considerando-se hipoteticamente o ângulo que o fio faz com a vertical igual 
a 45 graus, qual seria o melhor valor para representar o módulo da aceleração do carro? 
Desconsidere o atrito com o ar, e considere o módulo da aceleração da gravidade igual a 
9,8 m/s2.
18
a) 5,3 m/s2 b) 8,2 m/s2 c) 9,8 m/s2 d) 7,4 m/s2 e) 6,8 m/s2
 
42-(UFLA-MG-2011) Um corpo, ao se deslocar em um meio fluido (líquido ou gasoso) 
fica sujeito a uma força de resistência, 
que é expressa por: FR = kv2, em que k é uma constante de proporcionalidade e v a 
velocidade do corpo no meio. Considerando o Sistema Internacional de Unidades (SI), é 
CORRETO afirmar que a constante k é dada pelas unidades:
a) kg/s2 b) N.m/s2 c) N.kg/s d) kg/m
 
43-(UFRN-RN-011) É muito comum observarmos nas fachadas de edifícios em 
construção andaimes constituídos por uma tábua horizontal sustentada por cordas que 
passam por roldanas presas no topo da edificação. O fato de um dos operários se 
deslocar sobre o andaime em direção ao outro, por exemplo, quando vai entregar 
alguma ferramenta ao companheiro, afeta a distribuição de forças sobre as cordas. Nesse 
sentido, considere a situação mostrada na Figura abaixo. Nela, um dos operários se 
encontra na 
extremidade esquerda do andaime, enquanto o outro, após ter caminhado em direção a 
ele, conduzindo uma marreta, encontra-se parado no meio do andaime. 
Considerando a situação mostrada na Figura, pode-se afirmar que a 
A) força resultante sobre o andaime é diferente de zero e a tensão na corda Y é maior 
que na corda X. 
B) força resultante sobre o andaime é igual a zero e a tensão na corda Y é maior que na 
corda X. 
C) força resultante sobre o andaime é diferente de zero e a tensão na corda X é maior 
que na corda Y. 
19
D) força resultante sobre o andaime é igual a zero e a tensão na corda X é maior que na 
corda
 
44-(UFV-MG-011) Nas extremidades de um fio inextensível e de massa desprezível, 
que passa por uma polia, estão pendurados dois blocos maciços A e B, feitos de um 
mesmo material de densidade de massa ρ. O bloco B se encontra suspenso no ar, 
enquanto que o bloco A esta com a metade de seu volume imerso em um liquido, 
conforme a figura.
 Sabe-se que o volume do bloco A é três vezes maior que o do bloco B. Desprezando 
qualquer tipo de atrito e qualquer influencia do ar sobre os blocos, e CORRETO afirmar 
que a densidade de massa do liquido é:
 
 
 
Aplicações das Leis de Newton
Resoluções
01- a) Como não existe atrito, por menor que seja a massa do 
sistema e a força aplicada o sistema sempre se moverá no caso, para 
a direita. Colocando as forças que agem sobre cada bloco apenas na 
direção do movimento (forças horizontais).
20
NAB – intensidade da força que A aplica em B. NBA – intensidade 
da força com que B reage em A. Como N AB e NBA constituem par ação 
e reação elas tem a mesma intensidade que chamaremos de N.
Bloco A --- FR=mA.a --- 20 – N=3.a I Bloco B --- 
FR=mB.a --- N=1.a II
Somando I com II, obtemos --- 20=4a --- a=5m/s2 (é a mesma 
para cada bloco, pois se movem juntos).
b) Substituindo a=5m/s2 em I ou em II obtemos --- N=5N.
c)
 
Observe nas figuras acima que FRA=20 – 5=15N e que FRB=5N.
02- Colocando as forças que influem no movimento:
Bloco P --- FR=mP.a --- F – N1=6.a I --- bloco Q --- FR=mQ.a 
--- N1 – N2=4.a II --- bloco R --- N2 = mR.a --- 
N2 = 2.a III --- somando I com II com III, obtemos 48=12ª --- 
a=4m/s2. A força pedida tem intensidade N2=2.a ---
N2=2.4 --- N2=8N
21
03- Vamos achar a intensidade de , considerando os 4 blocos como 
um só, de massa M=12kg e aplicar a lei fundamental --- FR=m.a 
--- F=12.2 --- F=24N
Colocando as forças apenas sobre o bloco M que são F=24N e a 
reação a entre N e M que é N:
Bloco M --- FR=mM.a --- 24 – N = 3.2 --- N =18N
04- Em fios a força é de tração :
Bloco A --- FR=mA.a --- T=10.a I bloco B --- FR=mB.a --- 
F – T=mB.a --- 60 – T=20.a II --- Somando I com II ---
60 = 30.a --- a=2m/s2, que, substituído em I ou II, fornecerá --- 
T=20N R- E
05- Bloco A --- FR=m.a --- T1 – T2=1.10 --- T1 - T2=10 
Bloco B --- FR=m.a --- T2 – T3=2.10 --- T2 – T3=20
Bloco C --- FR=m.a --- T3=3.10 --- T3=30N, que substituído em 
T2 – T3=20 --- T2 -30=20 --- T2=50N
T1 – T2=10 --- T1 – 50=10 --- T1=60N
06- (a) Colocando as forças que influem no movimento:
Bloco A --- FR=mA.a --- T=3.a I --- Bloco B --- FR=mB.a 
--- PB – T=mB.a --- mB.g – T=mB.a --- 1.10 – T=1.a
22
10 – T=a II --- somando I com II --- 10=4.a --- a=2,5m/
s2
T=3.a --- T=3.2,5 --- T=7,5N
b) Sobre o bloco A deixa de existir a força de tração, a força 
resultante sobre ele torna-se nula, ele fica em equilíbrio dinâmico
e segue em MRU com velocidade constante , até se chocar com a 
polia.
Sobre o bloco B deixa de existir a força de tração e a força 
resultante sobre ele fica sendo apenas seu peso --- Fr =PB ---
mB.a = mB.g --- a = g --- ele cai em queda livre com aceleração da 
gravidade.
07- Colocando o peso do bloco m2 --- P=1.10 ---P=10N
O sistema se move no sentido anti-horário, pois F>P, ou seja, m2 
sobe e m1 se desloca para a esquerda.
23
Bloco m1 --- FR=m.a --- F – T=m1.a --- 40 – T=1.a --- 40 – 
T=a I Bloco m2 --- T – P=m.a --- T – 10=1.a ---
T – 10=a II --- somando I com II --- 40 – 10=2.a --- 
a=15m/s2 --- T – 10=1.a --- T=10 + 15 --- 
T=25N 
08- a)Colocando as forças:
bloco 1 --- FR=m1.a --- TA=40.a I bloco 2 --- 
FR=m2.a --- TB - TA=20.a II bloco 3 --- FR=m3.a ---
TB – P=m3.a --- TB – 600=60.a III --- somando I com II com 
III --- 600=120.a --- a=5m/s2, que, substituído em III nos 
fornece --- TB=600 + 60.5 --- TB=900N
09- a) PA=mA.g --- PA=6.10 --- PA=60N PB=mB.g --- 
PB=10.10 --- PB=100N
Colocando as forças que agem sobre cada bloco e tirando o 
dinamômetro, pois sua massa é desprezível.
Observe que, como PB>PA, o sistema se move no sentido anti-horário 
(A sobe e B desce).
bloco A --- FR=mA.a --- T – 60=6.a I bloco B --- 
FR=mB.a --- 100 – T=10.a II somando I com II --- 
24
100 – 60=16.a --- a=40/16 --- a=2,5m/s2
b) o dinamômetro indica a intensidade da força de tração no fio no 
qual ele está inserido, ou seja, indica T --- T – 60=6.a ---
T=60 + 6.2,5 --- T=75N
10- R- B (veja teoria 
11- primeiro carrinho --- F – T=40.0,5 --- F – T=20 
segundo carrinho --- T=100.0,5 --- T=50N --- F – 50=20 --- 
F=70N R- C
12- Considerando o princípio fundamental da Dinâmica, F(resultante) 
= massa x aceleração temos: --- Na descida: mg - T = ma
Na subida: T' - mg = ma --- Isolando as trações --- T = mg - ma 
= m(g - a) --- T' = mg + ma = m(g + a)
Então --- T'/T = (g + a)/(g - a)
13- A aceleração de cada bloco em cada caso é a mesma, pois F é a 
mesma e a massa do sistema (3m) é a mesma.
Primeira situação --- bloco m --- T1=m.a I segunda situação 
--- bloco2 m --- T2=2m.a II
comparando I com II --- T2 = 2T1 --- R- A
14- A proporção de comprimento é válida também para massa. 
Separando as frações:
Considerando o sistema todo --- FR=(m/3 + 2m/3).a --- 
F=(3m/3).a --- F=m.a I
Sobre a massa m/3 --- FR=m/3.a --- F – N=m/3.a --- 3F – 
3N=m.a --- veja em I que F=m.a --- 3F – 3N=F --- 3N=2F ---
N=2F/3 
15- Colocando as forças:
25
bloco3 --- T1=ma I bloco 2 --- T2 – T1=ma II 
bloco 1 --- P1 – T2=ma III somando I, II e III --- 
P1=3ma --- mg=3ma --- a=g/3
Quando o fio que une 2 e 3 se rompe, teremos: 
bloco 2 --- T=ma’ I bloco 1 --- P1 – T=ma’ II 
somando I com II --- P1=2ma’ --- mg=2ma’ --- a’=2g
dividindo membro a membro a=g/3 por a’=2g, obtemos --- 
a’/a=3/2 
16- A aceleração é a mesma nas duas situações, pois as massas e a 
força aplicada são as mesmas.. A força de contato será maior na 
situação do conjunto 1, pois o bloco da esquerda terá que empurrar 
uma massa maior.
17- a) As forças que atuam no balde são a tração do fio, T, e o peso 
P. Quando o balde está em repouso, temos T = P = 100 N. Como P = 
mg --- 100=m.10 --- m=10kg. . Já quando o dinamômetro acusa 
T = 120 N, temos, FR=ma --- T - P = ma, ou seja, a = (120 - 100)/
10 = 2 m/s2.
b) Não é possível concluir, pois só conhecemos a aceleração, e não a 
velocidade. Apenas sabemos que T>P, ou seja, ele pode estar 
subindo acelerado ou descendo retardado.
18-
 
26
FR=ma --- T=2.102.2 --- T=4.102N
19- Vamos calcular a aceleração do sistema (barco + pessoa + 
pacote) --- Pela segunda lei de Newton, FR = m.a --- 240 = (100 
+ 58 + 2).a --- 240 = 160.a ==> a = 240/160 = 1,5 m/s2.
 
Apenas sobre o pacote de 2 kg
F = m.a = 2.1,5 = 3,0 N
20- O dinamômetro indica a tração no fio que é de 40N e as forças 
sobre o sistema estão indicadas na figura.
Observe no bloco A que, como PA>T, ele deve descer e 
consequentemente B deve subir. 
Assim, considerando que A desça acelerado, pelo princípio 
fundamental da dinâmica temos, para o corpo A, que: --- FR=mA.a 
---
100 - 40 = 10.a ==> a = 60/10 = 6 m/s2.
Para o corpo B: --- FR=mB.a --- 40 - m.10 = m.6 --- 40 = 16.m 
--- m = 40/16 = 2,5 kg
21- Bloco A 
FR=mA.a --- F=mA.a I 
 Bloco B sobre o bloco A
27
 
FR=(mA + mB).a/4 ---- F==(mA + mB).a/4 --- 4F=mAa + mBa --- 
4F=F + mBa --- 3F=mBa II 
Dividindo membro a membro II por I --- 3mA=mB --- mA/mB=1/3
22- Calculando a aceleração do sistema pelo gráfico --- a=DV/Dt 
--- a=24/6 --- a=4m/s2
Bloco A --- PA – T=mAa --- 10mA – T=4mA --- T=6mA I 
blobo B --- T=mBa --- T=mB.4 II --- igualando I com II -- 
6mA=4mB --- mA/mB=2/3
23- a) caminhonete --- FR=mc.a --- F – T=2.000X1 --- F – 
T=2.000 I caixote --- T – 800=80X1 --- T=880N II
substituindo II em I --- F – 880=2.000 --- F=2.880N
b) Sim, será possível, pois a tração máxima que o cabo suporta é 
2000N e a tração aplicada é de 880N
 
24-1a etapa --- queda livre da esfera mo, com a=g e a velocidade 
variando de 0 a Vo, numa queda de altura Ho.
Torricelli --- Vo2 = 02 + 2.g.Ho --- Vo2 =2gHo 2a etapa --- 
as duas esferas se movem juntas com aceleração a que vale:
M=3mo, se desloca para a direita puxada por T --- FR=ma --- 
T=3moa I mo, desce de modo que P – T=moa --- 
Mo.g - T=mo.a II --- substituindo I em II --- mog – 3moa=moa --- 
g=4.a --- a=g/4
Queda de mo com aceleração a=g/4 e velocidade variando de Vo a V, 
numa queda de altura Ho
Torricelli --- V2=Vo2 +2.a.DS --- V2= Vo2 + 2.g/4.Ho --- V2=2gHo + 
(2gHo)/4 --- V2=Vo2 + (Vo2)/4 --- V2=(5Vo2)/4 --- V=Ö5Vo/2 --- 
V=2,2.Vo
25- a) equilíbrio estático (força resultante nula)
28
 corda B bloco de baixo --- FR=0 --- T=40N bloco de cima 
--- FR=0 --- F = 20 + T --- F = 20 + 40 --- F=60N
b) os dois blocos sobem com a=2m/s2 e FR¹0
Bloco de baixo --- FR=ma --- T-40=4.2 --- T=48N (tração na 
corda B) bloco de cima --- FR=ma --- F – T – 20=2.2 ---
F – 48 – 20=4 --- F=72N (tração na corda A)
26- a) sistema em repouso --- força que o anteparo exerce sobre 
A, impedindo-o de ir para a direita.
bloco B --- PB=T --- T=50N bloco A --- N=T --- N=50N
b) retirando-se o anteparo C, N deixa de agir sobre A e o sistema se 
move no sentido horário com aceleração a
29
bloco A --- FR=ma --- T=20.a I bloco B --- FR=ma 
--- PB – T =ma --- 50 – T =5.a II substituindo I em II ---
50 – 20.a = 5.a --- a=2m/s2. 
27- Colocando as forças sobre cada bloco:
bloco A – sobe --- FR=ma --- T2 - 40= 4.a I bloco B – 
direita --- FR=ma --- T1 – T2=11.a II bloco C – desce ---
FR=ma --- 50 – T1=ma --- 50 – T1=5.a III Somando I, II e 
III --- 10=20.a --- a= 0,5m/s2 
Bloco A que sobe com aceleração de 0,5m/s2, percorrendo 
DS=25cm=0,25m e tendo Vo=0 em X e V em Y.
Torricelli --- V2 = Vo2 + 2.a.DS --- V2 = 02 + 2.0,5.0,25 --- 
V=Ö0,25 --- V=0,5m/s
28- Colocando as forças e calculando a aceleração do sistema:
30
bloco 1 --- FR=m.a --- T=6.a I bloco 2 --- FR=m.a --- 
 40 – T=4.a II substituindo I em II --- 40 – 6.a=4.a ---
a=4m/s2. Observe na figura que os dois blocos se movem juntos 
enquanto percorrem apenas 0,5m, com aceleração a=4m/s2e, no 
instante em que 2 chega ao solo,eles tem velocidade:
Torricelli --- V2 = Vo2 + 2.a.DS --- V2= 02 + 2.4.0,5 --- V=2m/s. A 
partir daí, 2 não puxa mais 1 e ele segue em MRU com velocidade 
constante de 2m/s, com que chega em B.
29- (1) bloco A --- F – T=m.a --- F – T=4.2 --- F – T=8 I 
bloco B --- T=6.2 --- T=12N II substituindo II em I --- 
F – 12=8 --- F=20N --- está correta
(2) está correta – vide (1)
(3) está correta, pois o dinamômetro é ideal (como se não existisse).
(4) está correta, o dinamômetro indica a tração no fio.
Todas corretas
30- colocando as forças e, como as massas são iguais, a tração (T) 
em cada fio é a mesma. 
Observe na figura acima que o bloco B sobe, pois nele temos 2T para 
cima. Bloco A --- desce --- P-T=ma --- mg-T=ma I --- bloco B 
--- sobe --- 2T-P-ma --- 2T-mg=ma II --- bloco C --- desce 
--- P-T=ma --- mg-T=ma III --- somando I, II e III --- 
mg=3ma --- a=g/3 R- C
31- Colocando as forças:
31
Bloco B --- sobe --- T – PB = mB.a --- T – 100 = 10.a I 
bloco A --- para a esquerda --- F – T=mA.a --- 
500 – T=15.a II --- somando I com II --- a=16m/s2 --- T – 
100=10.16 --- T=260N 
32- a) m=100g=0,1kg --- F-P=m.a --- F – 3=0,3.3 --- F=3,9N.
b) só sobre o elo do meio --- FR=m.a --- FR=0,1.3 --- Fr=0,3N
c) elo de baixo --- T-P=ma --- T-1=0,1.3 --- T=1,3N
33- Cálculo da aceleração do sistema:
Bloco da esquerda --- 2mg – T=2ma bloco da direita --- T – 
mg=ma resolvendo o sistema --- mg=3ma --- a=g/3
Torricelli --- V2= Vo2 + 2.a.DS --- V2= 02 + 2.g/3.h --- V=Ö2.g.h/
3
34- Quem está subindo é o anel do meio mais os três anéis de baixo, 
portanto 4 anéis de peso P=(4X0,2).10 --- P=8N
T – P=m.a --- T – 8=0,8.2 --- T=9,6N R- B
35-Decompondo, na figura I a força de tração T1, observamos que:
32
 
 
figura I --- T1X + N1=P --- N1=P – T1X figura II --- N2=P 
--- portanto N2>N1 --- R-B
36-Colocando as forças nas barcaças:
Barcaça A --- FR=mA.a --- TII =30.103.a --- TII=20.103.a --- 
8.104=20.103.aA --- aA=4m/s2 qualquer aceleração acima desse 
valor arrebenta o cabo II
O cabo I puxa as duas barcaças de massa mA+B=50.103kg --- 
FR=mA+B.aB --- TI= mA+B.aB --- 6.105=50.103.aB --- aB=12m/s2 --- 
qualquer aceleração acima desse valor arrebenta o cabo I.
Como a aceleração das duas barcaças deve ser a mesma, para que os 
dois cabos não arrebentem temos que pegar o menor valor de a, ou 
seja, a=4m/s2.
 
37- De uma maneira bem simples e prática --- quando o recipiente é acelerado para a 
direita, o líquido, por inércia, tende a permanecer em repouso, ou seja, fica contrário ao 
deslocamento dos recipientes --- R- B
38- O bloco m2 está sujeito a 6 forças. Seu próprio peso e a força de ação F são duas 
delas --- as outras quatro são devidas aos contatos com os outros dois corpos, sendo 
duas delas para cada corpo --- a ação na direção da gravidade em função do peso 
destes corpos e ações na direção do movimento, mas no sentido oposto, por resistência a 
ação de F --- R- B
39- Considere o sistema abaixo em repouso em relação a um referencial inercial em que 
o bloco de massa M representa o peso do cabo (aplicado em seu centro de gravidade) e 
as cordas representam o cabo, e q o ângulo que o cabo faz com a horizontal do lugar.
33
Observe na seqüência das figuras acima que, como o sistema está em equilíbrio, FR=0 
--- 2Tsenθ=Mg --- senq = Mg/2T --- 
assim, se q = 0 --- sen(q) = 0 o que significa que as forças exercidas pela corda sobre o 
bloco devem ser infinitas --- ou, deve existir uma força de módulo infinito para que, 
somada ao peso do bloco (aqui modelando a massa do cabo), resulte zero --- como isso 
não é possível, não há como se ter q = 0, isto é, deverá sempre existir, num campo 
gravitacional, a “curva” observada por Lucinha.
40- a) A tensão (ou tração, que é o termo mais adequado) na corda corresponde à 
intensidade da força aplicada por Alberto --- 
 T = 200 N.
b) : força de tração no centro da polia, aplicada por Cabral --- : forças aplicadas 
pela corda que passa pela polia --- 
c) Como a polia não tem massa (ou seja, sua massa é desprezível) e, além disso, ela está 
sendo arrastada quase que estaticamente (ou seja, com velocidade constante --- a = 0) 
--- princípio fundamental --- FR=ma --- F – 2 T = m a --- F – 2 T = 0 --- 
 F = 2 T = 2 (200) --- F = 400 N.
d) A figura a seguir mostra que quando a ponta da corda desloca D (do ponto P até o 
ponto P’ ), o centro da polia desloca D/2. 
Se corda que Alberto puxa enrola D, essa distância é distribuída nos dois braços da 
polia, fazendo com o seu centro desloque D/2 --- portanto, se Carlos avança 2 m, 
Alberto recua 4 m.
41- As forças que agem sobre a esfera são seu peso ( ), vertical e para baixo e a força 
de tração no fio ( ), conforme figura --- 
34
somando vetorialmente com você obtém a força resultante --- tg45o = cateto 
oposto/cateto adjacente --- tg45o=FR/P --- 1=ma/mg --- a=g=9,8m/s2 --- R- C
42- FR=KV2 --- K=FRV2=m.aV2=(m.V/t)/V2 --- K=(m/t)/V --- K=(kg/s)/(m/s) --- 
K=kg/s x s/m --- K=kg/m --- R- D
43- Como o andaime se encontra parado (equilíbrio estático) a resultante das forças que 
agem sobre ele ê nula --- observe que os pesos sobre o andaime encontram-se no meio 
(peso de um operário + peso do andaime, supondo-o homogêneo) e na extremidade 
esquerda (peso do outro operário) --- assim, a tensão na corda X é maior que a na 
corda Y --- R- D
44- Colocando as forças que agem sobre cada bloco (pesos de A e de B, PA e PB, 
verticais e para baixo; tração T em cada bloco, 
verticais e para cima e o empuxo E sobre o bloco A devido ao líquido, vertical e para 
cima) --- E=ρliq.Vliq.g --- E= ρliq.3(V/2).g --- PB=m.g --- PB= ρbloco.Vbloco.g --- PB= 
ρbloco.Vg --- PA=3mg=3.ρbloco.V.g --- o sistema está em equilíbrio (FR=0) --- bloco B 
--- T=PB --- T= ρbloco.Vg --- bloco A --- Vliq=Vbloco/2 --- V=2V --- E + T = PA --- 
ρliq.3(V/2).g + ρbloco.Vg = 3.ρbloco.V.g --- ρliq.3(V/2).g = ρbloco.2.(2V).g --- 3ρliq/2 = 
2.ρbloco.2 --- ρliq=4 ρbloco/3 --- R- D
 
 
 
 
 
35

Outros materiais