Buscar

SLIDE 5 - LEIS DE NEWTON

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 3, do total de 32 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 6, do total de 32 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 9, do total de 32 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Prévia do material em texto

Leis de Newton 
Introdução às Leis de Newton
-Um dos principais legados deixados por Isaac Newton foi a precisa explicação matemática para o movimento dos corpos. 
-A Mecânica Newtoniana mostrou-se capaz de predizer a trajetória de asteróides e o surgimento das marés, tornando-se um dos marcos da Física por trazer equações matemáticas para a explicação de fenômenos naturais.
-Juntas, as três leis de Newton são usadas para descrever a dinâmica dos corpos, isto é, as causas que podem alterar seu estado de movimento.
-Quando um corpo está sujeito a inúmeras forças que se cancelam, dizemos que ele encontra-se em equilíbrio estático ou dinâmico.
1ª Lei de Newton
A Primeira Lei de Newton é chamada de Lei da Inércia. Seu enunciado original encontra-se traduzido abaixo:
“Todo corpo continua em seu estado de repouso ou de movimento uniforme em uma linha reta, a menos que seja forçado a mudar aquele estado por forças aplicadas sobre ele.”
 Essa lei diz que, ao menos que haja alguma força resultante não nula sobre um corpo, esse deverá manter-se em repouso ou se mover ao longo de uma linha reta com velocidade constante. 
A Lei de Inércia também explica o surgimento das forças inerciais, isto é, as forças que surgem quando os corpos estão sujeitos a alguma força capaz de produzir neles uma aceleração. 
Por exemplo: ao pisar no acelerador do carro, um motorista pode sentir-se comprimido em seu banco, como se houvesse uma força puxando-o para trás. Na verdade, o que ele sente é a expressão de sua inércia, ou seja, a tendência que seu corpo tem de permanecer parado ou em velocidade constante.
Além disso, quanto maior for a massa de um corpo, maior será sua inércia. Assim, alterar o estado de movimento de um corpo de massa grande requer a aplicação de uma força maior. Corpos de massa pequena têm seu estado de movimento alterado facilmente com a aplicação de forças menos intensas.
2ª Lei de Newton
A Segunda Lei de Newton, também conhecida como Lei da Superposição de Forças ou como Princípio Fundamental da Dinâmica, traduzida de sua forma original, é apresentada abaixo:
“A mudança de movimento é proporcional à força motora imprimida e é produzida na direção de linha reta na qual aquela força é aplicada.”
Essa lei informa que o módulo da aceleração produzida sobre um corpo é diretamente proporcional ao módulo da força aplicada sobre ele e inversamente proporcional à sua massa. Essa lei é apresentada na equação abaixo:
As forças são grandezas vetoriais, portanto, são escritas com uma seta apontada sempre para direita acima de seu símbolo. Essa seta não indica o módulo ou a direção da grandeza vetorial, indica somente que elas são vetoriais. De acordo com a Segunda Lei de Newton, a força resultante aplicada sobre um corpo produz nele uma aceleração na mesma direção e sentido da força resultante:
Força resultante
 Pelo Princípio da Superposição, a força resultante, pode ser calculada pela soma vetorial de todas as forças que atuam sobre o corpo:
 
3ª Lei de Newton
A Terceira Lei de Newton recebe o nome de Lei da Ação e Reação. Essa lei diz que todas as forças surgem aos pares: ao aplicarmos uma força sobre um corpo (ação), recebemos desse corpo a mesma força (reação), com mesmo módulo e na mesma direção, porém com sentido oposto. O enunciado original da Terceira Lei de Newton encontra-se traduzido abaixo:
“A toda ação há sempre uma reação oposta e de igual intensidade: as ações mútuas de dois corpos um sobre o outro são sempre iguais e dirigidas em sentidos opostos.”
Essa lei permite-nos entender que, para que surja uma força, é necessário que dois corpos interajam, produzindo forças de ação e reação. Além disso, é impossível que um par de ação e reação forme-se no mesmo corpo.
Outra informação contida no enunciado da Terceira Lei de Newton indica que os pares de ação e reação têm a mesma intensidade, mesma direção, porém sentidos opostos. Assim, se produzirmos uma força direcionada para baixo sobre um corpo, receberemos dele uma força de reação direcionada para cima. 
 Por exemplo: se estivermos usando patins e empurrarmos um carrinho de supermercado lotado de compras, seremos empurrados para trás, em decorrência da fraca intensidade da força de atrito entre as rodas dos patins e o piso.
Força 
 Força é o agente da dinâmica responsável por alterar o estado de repouso ou movimento de um corpo. Quando se aplica uma força sobre um corpo, esse pode desenvolver uma aceleração, como estabelecem as leis de Newton, ou se deformar. Exemplos:
Força de atrito
Força normal
Força de tração
Força gravitacional
Força Normal
A força normal (Fn), também chamada de “força de apoio”, é um tipo de força de contato exercida por um corpo sob uma superfície.
 Como exemplo, podemos pensar num bloco em repouso numa mesa, onde ambas exercem a força normal uma na outra, perpendicular às superfícies de contato.
 Além da força normal, temos a força peso que atua na direção vertical sob a atração da gravitação da Terra. Nesse caso, a força normal será de mesma intensidade da força peso, no entanto, em sentido oposto. 
Para calcular a força normal de um objeto que está em repouso numa superfície plana, utiliza-se a seguinte expressão:
N = m . g
Sendo,
N: força normal
m: massa do objeto
g: gravidade
Força normal em um plano inclinado
No entanto, se esse objeto estiver num plano inclinado, a fórmula é a seguinte:
N = m . g . cos (x)
Sendo,
 N: força normal
m: massa do objeto
g: gravidade
x: ângulo de inclinação do objeto
Força gravitacional: também conhecida como força peso, é o tipo de força que faz com que dois corpos que tenham massa atraiam-se mutuamente. A força peso é responsável por nos manter presos à Terra e também pela órbita de todos os planetas em torno do Sol.
Para calcular a força peso, utiliza-se a seguinte fórmula:
P = m . g (em módulo) (em vetor)
Onde,
P: força peso (N)
m: massa (Kg)
g: aceleração da gravidade (m/s2)
Observe, a charge abaixo:
Exemplo: 
1. Qual o peso de um corpo de massa 30 kg na superfície de Marte, onde a gravidade é igual a 3,724m/s2?
P = m . G
P = 30 . 3,724
P = 111,72 N
 Qual seria o peso deste corpo na superfície da terra(Considere a gravidade da terra 9,8m/s²)?
Força de Atrito
Quando empurramos ou puxamos um determinado objeto tentando movê-lo, percebemos que existe certa dificuldade para colocá-lo em movimento. Essa dificuldade deve-se à força de atrito, que é uma força que se opõe ao movimento de objetos que estão sob a ação de uma força. Ela age paralelamente à superfície de contato e em sentido contrário à força aplicada sobre um corpo. Veja o exemplo de um bloco sobre uma superfície na figura abaixo:
 Exemplo 1: (FATEC) O bloco da figura, de massa 5 Kg, move-se com velocidade constante de 1,0 m/s num plano horizontal, sob a ação da força F, constante e horizontal.
Bloco sendo puxado por uma força F
 Se o coeficiente de atrito entre o bloco e o plano vale 0,20, e a aceleração da gravidade, 10m/s2, então o módulo da força F, em Newtons, vale:
a) 25
b) 20
c) 15
d) 10
e) 5
Exemplo 2: Sobre a superfície da Terra, onde g = 10 m/s2, um astronauta apresenta peso igual a 700 N. Em uma expedição à Lua, onde g = 1,6 m/s2, a massa desse astronauta será igual a:
a) 70 kg e ele pesará 112 N.
b) 70 kg e ele pesará 700 N.
c) 112 kg e ele pesará 112 N.
d) 112 kg e ele pesará 700 N.
e) 700 kg e ele pesará 112 N.
Um objeto que pesa 650 N na Terra tem peso igual a 1625 N em Júpiter. Determine a gravidade desse planeta, em m/s2, sabendo que a gravidade da Terra é de 10 m/s2.
a) 15
b) 22
c) 25
d) 28
e) 12

Continue navegando