Prévia do material em texto
Acadêmico: Erika Jarutais Lencina (2892233) Disciplina: Cálculo Diferencial e Integral II (MAD103) Avaliação: Avaliação Final (Objetiva) - Individual Semipresencial ( Cod.:668771) (peso.:3,00) Prova: 29352160 Nota da Prova: 10,00 Legenda: Resposta Certa Sua Resposta Errada 1. Domínio e imagem são conceitos importantes na análise de funções. O primeiro se refere ao conjunto de saída, enquanto que o segundo é o conjunto de chegada. Neste sentido, determine o domínio para a função a seguir e assinale a alternativa CORRETA: a) A opção II está correta. b) A opção IV está correta. c) A opção III está correta. d) A opção I está correta. Anexos: Formulário - Equações Diferenciais (Saulo) Formulário - Equações Diferenciais (Saulo) 2. O estudo de funções de várias variáveis tem como objetivo identificar propriedades das funções, por exemplo, se uma função é contínua, diferenciável, entre outras propriedades. Considere a função de duas variáveis: https://portaldoalunoead.uniasselvi.com.br/extranet/layout/request/imag_prova_ead_anexo_n2.php?action1=MjkzNTIxNjA=&action2=NzIzMjU3 https://portaldoalunoead.uniasselvi.com.br/extranet/layout/request/imag_prova_ead_anexo_n2.php?action1=MjkzNTIxNjA=&action2=NzIzMjU3 a) I e III. b) III, apenas. c) I, apenas. d) II, apenas. 3. No cálculo, a integral de uma função foi criada originalmente para determinar a área sob uma curva no plano cartesiano e também surge naturalmente em dezenas de problemas de Física. Calcule a área limitada por y = 2x, o eixo x e as retas x = 1 e x = 4 através da integração. a) Área = 12. b) Área = 10. c) Área = 15. d) Área = 16. Anexos: Formulário - Cálculo Diferencial e Integral (MAD) - Paulo 4. Antes de trabalhar com funções dadas, é muito importante verificarmos os pontos onde a função admite definição. Estes pontos são chamados pontos do domínio da função. Ao trabalhar com funções de várias variáveis, muitas vezes, o domínio da função é dado por uma relação entre estas variáveis. Baseado nisto, dada a função a seguir, analise as sentenças sobre qual é o seu conjunto domínio condizente e assinale a alternativa CORRETA: a) Somente a opção IV está correta. b) Somente a opção I está correta. c) Somente a opção II está correta. d) Somente a opção III está correta. https://portaldoalunoead.uniasselvi.com.br/extranet/layout/request/imag_prova_ead_anexo_n2.php?action1=MjkzNTIxNjA=&action2=NzIzMjU4 5. As operações inversas: adição e subtração, multiplicação e divisão, potenciação e radiciação, exponenciação e logaritmação, já são bastante conhecidas. A integração indefinida é basicamente a operação inversa da diferenciação. Assim, dada à derivada de uma função, o processo que consiste em achar a função que a originou, ou seja, achar a sua primitiva denomina-se de antiderivação. Baseado nisto, analise as opções que apresentam f(x), sendo que f'(x) = x³ - x + 2 para todo x e f(1) = 2 e assinale a alternativa CORRETA: a) III, apenas. b) IV, apenas. c) II, apenas. d) I, apenas. 6. Resolva a questão a seguir e assinale a alternativa CORRETA: a) Somente a opção III está correta. b) Somente a opção II está correta. c) Somente a opção IV está correta. d) Somente a opção I está correta. Anexos: Formulário - Cálculo Diferencial e Integral (MAD) - Paulo Formulário - Cálculo Diferencial e Integral (MAD) - Paulo 7. No cálculo, a integral de uma função foi criada originalmente para determinar a área sob uma curva no plano cartesiano e também surge naturalmente em dezenas de problemas de Física. Resolva a questão a seguir e assinale a alternativa CORRETA: a) Somente a opção I está correta. b) Somente a opção IV está correta. c) Somente a opção III está correta. d) Somente a opção II está correta. Anexos: https://portaldoalunoead.uniasselvi.com.br/extranet/layout/request/imag_prova_ead_anexo_n2.php?action1=MjkzNTIxNjA=&action2=NzIzMjU4 https://portaldoalunoead.uniasselvi.com.br/extranet/layout/request/imag_prova_ead_anexo_n2.php?action1=MjkzNTIxNjA=&action2=NzIzMjU4 Formulário - Cálculo Diferencial e Integral (MAD) - Paulo Formulário - Cálculo Diferencial e Integral (MAD) - Paulo Formulário - Cálculo Diferencial e Integral (MAD) - Paulo 8. As funções delimitam os espaços que serão analisados pelo conceito de integral. Deste modo, calcule a área da região limitada pelas funções y = x, y = 3x e x + y = 4. a) Área = 0. b) Área = 3. c) Área = 2. d) Área = 1. Anexos: Formulário - Equações Diferenciais (Saulo) 9. O estudo da derivação parcial permite que estendamos os conceitos estudados no Cálculo Diferencial e Integral para duas dimensões, para o espaço tridimensional. Com isto, podemos generalizar vários casos existentes e que antes não eram acessados. Baseado nisto, dada a função f(x,y) = 3x²y, analise as sentenças a seguir: I- f(x,y) é diferenciável em todos os pontos do plano. II- A soma de suas derivadas parciais é x.(6y + 3x). III- A soma de suas derivadas parciais é 6xy² + y². IV- O limite da função quando (x,y) tende a (0,0) é zero. Assinale a alternativa CORRETA: a) As sentenças III e IV estão corretas. b) As sentenças II e III estão corretas. c) As sentenças I e III estão corretas. d) As sentenças I, II e IV estão corretas. 10.No cálculo, a integral de uma função foi criada originalmente para determinar a área sob uma curva no plano cartesiano e também surge naturalmente em dezenas de problemas de Física. Resolva a questão a seguir e assinale a alternativa CORRETA: a) Somente a opção III está correta. b) Somente a opção IV está correta. c) Somente a opção II está correta. d) Somente a opção I está correta. Anexos: https://portaldoalunoead.uniasselvi.com.br/extranet/layout/request/imag_prova_ead_anexo_n2.php?action1=MjkzNTIxNjA=&action2=NzIzMjU4 https://portaldoalunoead.uniasselvi.com.br/extranet/layout/request/imag_prova_ead_anexo_n2.php?action1=MjkzNTIxNjA=&action2=NzIzMjU4 https://portaldoalunoead.uniasselvi.com.br/extranet/layout/request/imag_prova_ead_anexo_n2.php?action1=MjkzNTIxNjA=&action2=NzIzMjU4 https://portaldoalunoead.uniasselvi.com.br/extranet/layout/request/imag_prova_ead_anexo_n2.php?action1=MjkzNTIxNjA=&action2=NzIzMjU3 Formulário - Cálculo Diferencial e Integral (MAD) - Paulo Formulário - Cálculo Diferencial e Integral (MAD) - Paulo Formulário - Cálculo Diferencial e Integral (MAD) - Paulo Formulário - Cálculo Diferencial e Integral (MAD) - Paulo 11.(ENADE, 2005) a) Estará sempre aumentando durante todo o percurso. b) Atingirá o seu maior valor no centro da bola. c) Estará sempre diminuindo durante todo o percurso. d) Será máxima nos pontos da fronteira da bola. 12.(ENADE, 2014). https://portaldoalunoead.uniasselvi.com.br/extranet/layout/request/imag_prova_ead_anexo_n2.php?action1=MjkzNTIxNjA=&action2=NzIzMjU4 https://portaldoalunoead.uniasselvi.com.br/extranet/layout/request/imag_prova_ead_anexo_n2.php?action1=MjkzNTIxNjA=&action2=NzIzMjU4 https://portaldoalunoead.uniasselvi.com.br/extranet/layout/request/imag_prova_ead_anexo_n2.php?action1=MjkzNTIxNjA=&action2=NzIzMjU4 https://portaldoalunoead.uniasselvi.com.br/extranet/layout/request/imag_prova_ead_anexo_n2.php?action1=MjkzNTIxNjA=&action2=NzIzMjU4 a) R$ 2950,00. b) R$ 2100,00. c) R$1100,00. d) R$ 3750,00. Prova finalizada com 11 acertos e 1 questões erradas.