Buscar

Engenharia de Reservatórios de Petróleo - ROSA - Capítulo 07

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 3, do total de 34 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 6, do total de 34 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 9, do total de 34 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Prévia do material em texto

7-2
Balanço de Materiais em Reservatórios de Gás
7.
Balanço de Materiais em Reservatórios de GÁS
Antes de se iniciar o estudo do tópico específico deste capítulo será apresentada uma intro­dução geral ao balanço de materiais, abordando tanto o caso de reservatórios de gás quanto o de óleo (Capítulo 8).
	Introdução ao Balanço de Materiais
O balanço de materiais em reservatórios de petróleo nada mais é do que um balanço das massas dos fluidos existentes no interior dos poros da rocha-reservatório. Matematicamente o balanço de materiais é representado através de uma equação, denominada equação de balanço de materiais (EBM).
A massa de fluidos existente no reservatório em um determinado instante é a diferença en­tre a massa original e a massa produzida. Como os volumes dos fluidos produzidos são geralmente medidos em uma determinada condição-padrão de pressão e de temperatura, a equação de balanço de materiais é comumente escrita de tal maneira que, em um instante qualquer, o volume de fluidos existente no reservatório seja a diferença entre o volume inicialmente existente e o produzido, ambos medidos nessa condição-padrão.
A equação de balanço de materiais será estudada para reservatórios de gás e de óleo sujei­tos aos mais diversos mecanismos de produção, tais como, expansão de fluidos, gás em solução, capa de gás e influxo de água.
Como principais utilizações práticas da equação de balanço de materiais podem ser citadas:
	Determinação do volume original de gás;
	Determinação do volume original de óleo;
	Determinação do influxo de água proveniente de aqüíferos;
	Previsão do comportamento de reservatórios.
Inicialmente, neste capítulo e no próximo, a EBM será utilizada para a determinação dos volumes originais de gás e/ou de óleo existente(s) em um reservatório de petróleo, enquanto no Capítulo 10 ela será a base para os estudos de previsão de comportamento utilizando métodos analíticos.
7-1
Conhecendo-se o volume do reservatório, a porosidade da rocha e a saturação de água co- nata, podem ser calculados os volumes originais de gás e de óleo através do chamado método volumétrico. O volume de gás, medido em condições-padrão, é dado por:
^ Vr^Sgi
G = ~^~ {1A)
Bgi
ou
G =	,	(1.2)
Bgi
onde Vr é o volume total do reservatório, ^ a porosidade da rocha, Sg a saturação de gás, Bg o fator volume-formação do gás, Sw a saturação de água e o índice i se refere às condições iniciais. O volume original de óleo, em condições-padrão, é calculado por:
N = VBSo^,	(1.3)
Boi
ou ainda:
N = W-S*),	(1.4)
Boi
onde Soi é a saturação inicial de óleo e Boi é o fator volume-formação inicial do óleo.
Os fatores volume-formação do gás (Bg) e do óleo (Bo), assim como outras propriedades dos fluidos e da rocha-reservatório, podem ser determinados em laboratório ou estimados através de equações de estado, cartas, ábacos e correlações empíricas, conforme discutido no Capítulo 1.
Em muitos casos a porosidade, a saturação de água conata e/ou o volume do reservatório não são conhecidos com a precisão desejada e o método volumétrico, portanto, não pode ser aplicado. Nessas situações, a EBM pode ser empregada.
A utilização do método do balanço de materiais exige a existência de um histórico de pro­dução do reservatório em estudo. A qualidade dos resultados a serem obtidos depende muito da qualidade dos dados registrados no histórico de produção. Isso significa que as quantidades de água, gás e óleo produzidas em um campo de petróleo, bem como as pressões do reservatório, devem ser medidas com o máximo de rigor possível, já que são instrumentos valiosos para o estudo dos reservatórios portadores desses fluidos.
O balanço de materiais deve ser aplicado ao reservatório como um todo e não permite, co­mo no caso do método volumétrico, o cálculo dos volumes de gás e de óleo somente em determina­das porções do reservatório. Isso se deve ao fato de que há migração de fluido de uma parte para outra no interior do meio poroso, que só pode ser levada em conta através do balanço total de massa ou de volume.
	Equação de Balanço de Materiais Generalizada
A equação de balanço de materiais pode ser obtida a partir do princípio da conservação de massa no interior do reservatório, representado pela expressão:
massa produzida = massa inicial - massa atual.	(1.5)
Se a composição do gás produzido é constante, os volumes produzido e restante no reser­vatório são diretamente proporcionais às massas, já que pela equação de estado dos gases tem-se:
7.
Balanço de Materiais em Reservatórios de GÁS
Antes de se iniciar o estudo do tópico específico deste capítulo será apresentada uma intro­dução geral ao balanço de materiais, abordando tanto o caso de reservatórios de gás quanto o de óleo (Capítulo 8).
	Introdução ao Balanço de Materiais
O balanço de materiais em reservatórios de petróleo nada mais é do que um balanço das massas dos fluidos existentes no interior dos poros da rocha-reservatório. Matematicamente o balanço de materiais é representado através de uma equação, denominada equação de balanço de materiais (EBM).
A massa de fluidos existente no reservatório em um determinado instante é a diferença en­tre a massa original e a massa produzida. Como os volumes dos fluidos produzidos são geralmente medidos em uma determinada condição-padrão de pressão e de temperatura, a equação de balanço de materiais é comumente escrita de tal maneira que, em um instante qualquer, o volume de fluidos existente no reservatório seja a diferença entre o volume inicialmente existente e o produzido, ambos medidos nessa condição-padrão.
A equação de balanço de materiais será estudada para reservatórios de gás e de óleo sujei­tos aos mais diversos mecanismos de produção, tais como, expansão de fluidos, gás em solução, capa de gás e influxo de água.
Como principais utilizações práticas da equação de balanço de materiais podem ser citadas:
	Determinação do volume original de gás;
	Determinação do volume original de óleo;
	Determinação do influxo de água proveniente de aqüíferos;
	Previsão do comportamento de reservatórios.
Inicialmente, neste capítulo e no próximo, a EBM será utilizada para a determinação dos volumes originais de gás e/ou de óleo existente(s) em um reservatório de petróleo, enquanto no Capítulo 10 ela será a base para os estudos de previsão de comportamento utilizando métodos analíticos.
7-1Adalberto J. Rosa, Renato de S. Carvalho e José A. Daniel Xavier	7-#
Adalberto J. Rosa, Renato de S. Carvalho e José A. Daniel Xavier	7-#
Balanço de Materiais em Reservatórios de Gás
7-#
Conhecendo-se o volume do reservatório, a porosidade da rocha e a saturação de água co- nata, podem ser calculados os volumes originais de gás e de óleo através do chamado método volumétrico. O volume de gás, medido em condições-padrão, é dado por:
^ Vr^Sgi
G = ~^~	(7.1)
Bgi
ou
G = ^<^*2,	(7.2)
Bgi
onde Vr é o volume total do reservatório, ^ a porosidade da rocha, Sg a saturação de gás, Bg o fator volume-formação do gás, Sw a saturação de água e o índice i se refere às condições iniciais. O volume original de óleo, em condições-padrão, é calculado por:
N = VBSo^,	(7.3)
Boi
ou ainda:
N = MCÍzSw) ,	(7.4)
Boi
onde Soi é a saturação inicial de óleo e Boi é o fator volume-formação inicial do óleo.
Os fatores volume-formação do gás (Bg) e do óleo (Bo), assim como outras propriedades dos fluidos e da rocha-reservatório, podem ser determinados em laboratório ou estimados através de equações de estado, cartas, ábacos e correlações empíricas, conforme discutido no Capítulo 1.
Em muitos casos a porosidade, a saturação de água conata e/ou o volume do reservatório não são conhecidos com a precisão desejada e o método volumétrico, portanto, não pode ser aplicado. Nessas situações, a EBM pode ser empregada.
A utilização do método do balanço de materiais exige a existência de um histórico de pro­dução do reservatório em estudo. A qualidade dos resultados a serem obtidos depende muito da qualidade dos dados registrados no histórico de produção. Isso significa que as quantidades de água, gás e óleo produzidasem um campo de petróleo, bem como as pressões do reservatório, devem ser medidas com o máximo de rigor possível, já que são instrumentos valiosos para o estudo dos reservatórios portadores desses fluidos.
O balanço de materiais deve ser aplicado ao reservatório como um todo e não permite, co­mo no caso do método volumétrico, o cálculo dos volumes de gás e de óleo somente em determina­das porções do reservatório. Isso se deve ao fato de que há migração de fluido de uma parte para outra no interior do meio poroso, que só pode ser levada em conta através do balanço total de massa ou de volume.
	Equação de Balanço de Materiais Generalizada
A equação de balanço de materiais pode ser obtida a partir do princípio da conservação de massa no interior do reservatório, representado pela expressão:
massa produzida = massa inicial - massa atual.	(7.5)
Se a composição do gás produzido é constante, os volumes produzido e restante no reser­vatório são diretamente proporcionais às massas, já que pela equação de estado dos gases tem-se:
Massa ZRT
	= ™;	,	(7.6)
Massa molecular p
onde Z é o fator de compressibilidade do gás, R a constante universal dos gases, T a temperatura e p a pressão. O Apêndice B apresenta métodos, cartas e correlações para a determinação de Z.
Dada a massa molecular do gás (obtida a partir da sua composição), o volume de gás (me­dido numa certa condição de pressão e de temperatura) depende apenas da massa. Portanto, a equação de conservação da massa pode ser expressa através de um balanço de volumes medidos numa condição p e T qualquer de referência:
volume produzido = volume inicial — volume atual.	(7.7)
Ao se aplicar a Eq. (7.7), geralmente são utilizadas como referência as chamadas condições- standard ou padrão de pressão e temperatura.
Uma outra maneira de se expressar o balanço de massa é através do balanço do número de mols de gás:
np = ni — n,	(7.8)
onde np, ni e n são os números de mols produzidos, iniciais e restantes no reservatório, respectiva­mente.
O	número de mols pode ser calculado através da equação de estado dos gases reais,
pV = ZnRT .	(7.9)
Assim,
poGp
np =	— ,	(7.10)
p ZoRTo
onde Gp é o volume de gás produzido acumulado, medido nas condições-padrão, e o índice “0” representa as condições-padrão. Como nestas condições o fator Zo é aproximadamente igual a 1, a Eq. (7.10) se transforma em:
_ poGp
RT„	(7I1)
Analogamente,
piVi
n = ZRt '	(7J2)
onde Vi é o volume inicial de gás no reservatório, medido à pressão pi e à temperatura T. Normal­mente admite-se que a temperatura do reservatório permanece constante durante a sua vida produti­va.
O	número de mols existente no reservatório em um instante qualquer, quando a pressão média é igual a p, é:
pV
n = ^—,	(7.13)
ZRT
onde V é o volume ocupado pelo gás, medido nas condições de reservatório.
Substituindo-se as Eqs. (7.11), (7.12) e (7.13) na Eq. (7.8), obtém-se a equação de balanço de materiais generalizada para um reservatório de gás:Balanço de Materiais em Reservatórios de Gás
7-#
Adalberto J. Rosa, Renato de S. Carvalho e José A. Daniel Xavier	7-#
Balanço de Materiais em Reservatórios de Gás
7-#
(7.14)
Z
0
p,ví T po
Gp
Zi
	Reservatórios Volumétricos de Gás Seco
Reservatório volumétrico é aquele que produz somente por depleção, ou seja, por expansão da massa de gás existente no meio poroso, não havendo, portanto, influxo de água proveniente de aqüífero. Neste tipo de reservatório normalmente não há produção de água, e as variações do volume poroso (devidas à compressibilidade da rocha) e da água conata (devidas à compressibilida- de da água) são desprezíveis quando comparadas com a expansão do gás. Assim, o volume V ocupado pelo gás, numa pressão média p qualquer, é igual ao volume inicial Vi e a equação de balanço de materiais generalizada, Eq. (7.14), reduz-se a:
p = p, tpo g	(7 ,5)
z-zrw«G’ ,	(715)
que é a equação de balanço de materiais para um reservatório volumétrico de gás seco. Note que p/Z e Gp são as variáveis desta equação.
Alternativamente, o volume inicial (Vi) pode ser escrito em função do volume original de gás G (medido nas condições-padrão):
Vi = GBgi,	(7.16)
onde o fator volume-formação inicial do gás (Bgi) é dado por:
Z,Tp0
Bg, =	•	(7.17)
T0 pi
Assim, utilizando as Eqs. (7.16) e (7.17), a equação de balanço de materiais para um reservatório volumétrico de gás seco, Eq. (7.15), pode também ser escrita como:
p = P±_	pi_
z z, zg
A Eq. (7.15) ou a Eq. (7.18) sugere que um gráfico de p/Z contra Gp resultará em uma linha reta, com a seguinte equação:
Z = a — bGp ,	(7.19)
onde:
pi
a =	(7.20)
e
b = Ipl = _pl
V,To ZG	V ’
A partir de um histórico de pressão versus produção acumulada pode-se traçar um gráfico seme­lhante ao mostrado na Figura 7.1, de onde b é obtido a partir da inclinação da reta.
P
Z
Figura 7.1 - Reservatório volumétrico de gás seco.
O	cálculo do volume original de gás G pode ser feito de duas maneiras:
	Graficamente, extrapolando-se a produção acumulada (Gp) para p/Z = 0, já que todo o gás originalmente existente teria sido produzido quando a pressão no interior dos po­ros fosse nula (na prática isso não ocorre, mas, estabelecido um limite econômico, ou seja, uma pressão de abandono, pode-se prever através da extrapolação qual será a produção acumulada até o instante de abandono).
	Analiticamente, a partir da Eq. (7.21):
G =
Pi
(7.22)
Zib
Uma outra forma de apresentar a EBM para reservatórios de gás volumétricos, que pode ser útil em algumas aplicações práticas, é através do balanço volumétrico V = Vi, isto é,
(7.23)
(G - Gp) Bg = GBg
Resolvendo a Eq. (7.23) para G, obtém-se:
G=
(7.24)
GPBg
Bg - Bg
As equações de balanço de materiais apresentam forte dependência dos chamados parâme­tros PVT. Nos casos de reservatórios de gás o parâmetro PVT importante é o fator volume-formação do gás (Bg). Como os valores de Bg são normalmente números pequenos e estes aparecem muitas vezes no denominador de frações que compõem a equação de balanço de materiais, é necessário que sejam medidos com precisão, para que sejam evitados erros significativos nos cálculos. Na equação anterior, por exemplo, a situação é ainda pior, já que o que aparece no denominador da fração é uma diferença (Bg - Bgi) entre dois números muito pequenos.
	Reservatórios volumétricos anormalmente pressuriza­dos
No caso de reservatórios de gás, as hipóteses de que os efeitos das compressibilidades da rocha e da água conata são desprezíveis geralmente são válidas pois o gás possui compressibilidade muito maior que as compressibilidades da rocha e da água. No entanto, podem ocorrer casos de
reservatórios anormalmente pressurizados, onde a rocha em geral é inconsolidada e portanto altamente compressível. Além disso, em reservatórios altamente pressurizados a compressibilidade do gás é menor que a usual.
Reservatórios anormalmente pressurizados podem apresentar gradientes de pressão da or­dem de 0,20 kgflcm2lm, sendo que valores normais situam-se em torno de 0,10 kgflcm2/m (o que reduziria a compressibilidade do gás a aproximadamente a metade da usual). No primeiro caso, compressibilidades da rocha de até 430x10-6 (kgf cm2)-1 são encontradas, comparadas a valores da ordem de 70x10-6 (kgf cm2)-1 para rochas consolidadas. Isso significa que os seus efeitos não devem ser desprezados, principalmente no início da vida produtiva do reservatório, quando a compressibi­lidade do gás é menor. Ramagost (1981) apresentou um método para se efetuar o balanço de materiais em reservatórios de gás anormalmente pressurizados.
Considerando-se os efeitos das compressibilidades da rocha e da água, e admitindo que não haja produção de água, o volume ocupado pelo gás em um instante qualquer é dado por:
V = Vi - AV ,	(7.25)
onde:
AV = (cwVwi + cfVpi )AP ,	(7.26)
cw e cf são as compressibilidades da água e da rocha, Vwi o volume inicial da água conata, Vpi o volume poroso inicial e Ap = pt - p a queda de pressão no reservatório em relação à pressão inicial Pi. Portanto:
	= Vi - (cwVwi + cfVpi )AP .	(7.27)
Utilizando-se a definição de saturação de fluidos pode-se escreverque:
Vwi = SwiVpi	(7.28)
e
Vpí =T-r~.	(7.29)
A
	- SWi
Substituindo-se a Eq. (7.28) na Eq. (7.27) obtém-se:
	= Vi - (cwSwi + cf )VpiAP .	(7.30)
(cwSwi + cf )Ap
1			
1 - Swi
A substituição das Eqs. (7.29) e (7.30) na Eq. (7.14) produz:
El -Gp .	(7.31)
Zi ViT0 p
(cwSwi + cf )Ap
1			
1 - Swi
Utilizando as Eqs. (7.16) e (7.17), a Eq. (7.31) pode também ser escrita como:
Pi Gp.	(7.32)
Zi ZiG
Definindo-se a compressibilidade efetiva do sistema água-formação como:
cwSwi + c f
cewf = 1 S	(7.33)
	- Swi
e
i Pi
b=ZG ,	(7-34)
a Eq. (7.32) reduz-se a:
Z(l-c„f Ap)= p-bGp -	(7.35)
Um gráfico de (1 - cewf Ap) p / Z versus Gp deve resultar em uma linha reta com coeficiente angular igual a -b.
A Figura 7.2 mostra que, desprezando-se os efeitos de compressibilidade da água e da ro­cha, a extrapolação do volume original de gás poderá tornar-se exageradamente otimista quando o reservatório volumétrico de gás for anormalmente pressurizado.
Figura 7.2 - Reservatório volumétrico de gás seco anormalmente pressurizado.
Exemplo 7.1 - Um reservatório de gás ocorre a 4.050 m de profundidade e possui temperatura de
	oC. Outros dados são: Swi = 22%, cw = 4,3x10-5 (kgf/cm2)-1, Cf = 27,7x10-5 (kgf/cm2)-1 e o histórico de produção apresentado na Tabela 7.1.
Tabela 7.1 - Dados de produção do reservatório de gás do Exemplo 7.1
Gp	p
(106 m3 std)	(kgf/cm2)
0
805
1,496
81
712
1,397
152
651
1,330
220
603
1,280
287
556
1,230
341
519
1,192
411
482
1,154
455
449
1,122
600
Adalberto J. Rosa, Renato de S. Carvalho e José A. Daniel Xavier	7-#
600
Adalberto J. Rosa, Renato de S. Carvalho e José A. Daniel Xavier	7-#
Balanço de Materiais em Reservatórios de Gás
7-#
516
611
696
410
352
293
1,084
1,033
0,988
Pede-se estimar o volume inicial de gás existente no reservatório.
Solução:
A compressibilidade da formação mostra um valor muito acima dos valores considerados normais. Trata-se portanto de um reservatório com pressão anormalmente alta e a estimativa do volume inicial de gás deve ser feita utilizando-se a Eq. (7.35). O valor da compressibilidade efetiva será:
cwSwi + cf 4,3 x 10-5 x 0,22 + 27,7 x10-5 1A-5„,., ^ -1 cewf = , „ f =	r^-22	= 36,7x10 5 (kgf /cm2) 1.
	S wi	1 0,22
Os demais termos da Eq. (7.35) foram calculados e estão mostrados na Tabela 7.2.
Tabela 7.2 - Cálculo dos termos da EBM para o reservatório do Exemplo 7.1
Gp
(106 m3 std)
p
(kgf/cm2)
Z
p/Z
(kgf/cm2)
p í1 - cewf Ap)
(kgf/cm2)
0
805
1,496
538,1
538,1
81
712
1,397
509,7
492,3
152
651
1,330
489,5
461,8
220
603
1,280
471,1
436,2
287
556
1,230
452,0
410,7
341
519
1,192
435,4
389,7
411
482
1,154
417,7
368,2
455
449
1,122
400,2
347,9
516
410
1,084
378,2
323,4
611
352
1,033
340,8
284,1
696
293
0,988
296,6
240,9
Os valores de p/Z e de (p /Z)corr = (1 - cewf Ap)p /Z da Tabela 7.2 foram colocados no gráfico cartesiano da Figura 7.3 em função da produção acumulada de gás.
0	1	1	1	1	1	1	1	1	1	1	1	r^—i	1	1	1—r—i	r
0
500
1000
1500
2000
Produção acumulada, Gp (106 m3 std)
Figura 7.3 - Gráfico para análise de balanço de materiais no Exemplo 7.1.
Conforme esperado, o gráfico com os valores de p/Z resultou em uma curva com concavi­dade para baixo, enquanto os valores de (p / Z)corr produziram uma linha aproximadamente reta. Extrapolando-se essa reta para p/Z = 0 obtém-se:
G = 1.258 x 106 m3 std .
Note que a curva p / ZxGp fornece uma falsa estimativa de G = 1.740x106 m3 std .
	Reservatórios de Gás Seco sob Influxo de Água
Neste tipo de reservatório, à medida que ocorre a retirada de massa através da produção dos poços há influxo de água para o seu interior, proveniente de um aqüífero contíguo à zona de gás. A atuação do aqüífero é função da velocidade com que o gás é produzido.
O volume V ocupado pelo gás não é igual ao volume inicial Vi quando há influxo e/ou pro­dução de água. Desprezando-se a variação do volume poroso devida à compressibilidade da rocha, bem como a expansão da água conata, o volume V pode ser calculado por:
(7.36)
	= Vi - We + BwWp ,
onde We é o influxo acumulado de água (medido em condições de reservatório), Wp é a produção acumulada de água (medida em condições-padrão) e Bw é o fator volume-formação da água.
Substituindo-se a Eq. (7.36) na Eq. (7.14) resulta em:
(7.37)Balanço de Materiais em Reservatórios de Gás
7-#
Adalberto J. Rosa, Renato de S. Carvalho e José A. Daniel Xavier	7-#
Balanço de Materiais em Reservatórios de Gás
7-#
que é a equação de balanço de materiais para um reservatório de gás produzindo sob mecanismo de influxo de água. Note que p/Z, Gp, We e Wp são as variáveis da Eq. (7.37), de modo que um gráfico de p/Z versus Gp resulta em uma curva como mostrada na Figura 7.4.
P
Z
Figura 7.4 - Reservatório de gás seco.
Caso o influxo acumulado de água (We) seja conhecido, o que geralmente não ocorre, o vo­lume inicial de gás em condições de reservatório (V,) pode ser obtido a partir da Eq. (7.37), e o volume original de gás (G), medido nas condições-padrão, calculado com a equação:
V,
— •	(7.38)
G =
A Eq. (7.37) poderá também ser utilizada para calcular o influxo acumulado (We). Neste caso espera-se que o volume inicial de gás (V,) possa ser determinado com precisão através do método volumétrico, apresentado na Seção 7.1.
A equação de balanço de materiais pode ser expressa de outra forma, utilizando-se os fato­res volume-formação do gás. Em condições de reservatório pode-se escrever:
Produção de Gás = Expansão do Gás + Influxo de Água - Produção de Água. (7.39)
Esta igualdade pode ser traduzida matematicamente por:
(7.40)
GpBg =(GBg -GBg,)+ We -WpBw
ou, explicitando-se o valor de G:G=
(7.41)
GpBg - We + WpBw
Bg - Bgi
Em qualquer instante do histórico de produção, o cálculo do volume original de gás (G) deve fornecer o mesmo resultado. Observa-se através da Eq. (7.41) que se for calculado o valor de G em diversos instantes da vida produtiva de um reservatório com influxo de água, ignorando-se a existência do influxo, serão obtidos, sucessivamente, valores mais altos que o verdadeiro.
	Linearização da equação de balanço de materiais
A Eq. (7.37) não fornece uma linha reta quando são colocados em um gráfico os valores de p/Z em função da produção acumulada de gás Gp, o que impede a extrapolação para se obter o volume original de gás G. O método descrito a seguir permite a determinação simultânea dos valores de G e do influxo acumulado de água We.
A Eq. (7.41) pode ser escrita como:We
(7.42)
= G + -
Bg - Bg
GpBg + WpBw Bg - Bgi
cuja forma mais geral é:
(7.43)
y = G + x,
onde:
(7.44)
y =
GpBg + WpBw
Bg - Bgi
e
(7.45)
We
x = -
Bg- Bg
Um gráfico de y versus x fornece uma linha reta, com coeficiente angular unitário e coefi­ciente linear igual a G. O influxo acumulado We deve ser calculado admitindo-se um modelo para o aqüífero, ou seja, utilizando-se uma lei de influxo de água em função do tempo, cujo estudo detalha­do foi apresentado no Capítulo 6. A escolha correta desse modelo fornece uma linha reta no gráfico de y versus x, a qual pode ser extrapolada para a obtenção de G, enquanto valores incorretos de We resultam em desvios da linha reta, conforme pode ser visualizado na Figura 7.5.
Figura 7.5 - Reservatório de gás seco sob influxo de água.
Como se pode observar, a determinação simultânea de G e de We é feita por tentativas. Ob­tida a linha reta, estão determinados o volume original de gás (G) e o modelo de aqüífero que permite o cálculo correto do influxo acumulado (We).
Exemplo 7.2 - O arenito "M" é um pequeno reservatório de gás com uma pressão inicial de 225 kgf/cm2 e temperatura de 104 °C. O histórico de produção e os fatores volume-formação são apresentados na Tabela 7.3.
Tabela 7.3 - Dados do reservatório do Exemplo 7.2
Gp
(106 m3 std)
p
(kgf/cm2)
Bg
(m3/m3 std)
0
225,00
0,0052622
2,237
205,70
0,0057004
6,258
177,57
0,0065311
12,799
149,44
0,0077360
Pedem-se:
	Calcular o volume original de gás para cada um dos dados do histórico de produção, admitindo comportamento de reservatório volumétrico.
	Explicar porque os cálculos do item anterior indicam a presença de influxo de água.
	Traçar o gráfico de p/Z em função da produçãoacumulada de gás.
	Admitindo que o volume original de gás seja de 28,826x106 m3 std e que a produção acumulada de água tenha sido desprezível, calcular o influxo acumulado de água (medido em condições de reservatório) ao final de cada período do histórico de produção.
Solução:
Parte (a):
Admitindo comportamento de reservatório volumétrico, os valores do volume original de
gás (G) podem ser calculados pela Eq. (7.24), ou seja, G = GpBg /(Bg -Bgi). Os resultados estão
mostrados na coluna 4 da Tabela 7.4.
Tabela 7.4 - Valores de G e We no Exemplo 7.2
(1)
(2)
(3)
(4)
(5)
(6)
p
Gp
B
G
p/Z
We
(kgf/cm2)
(106 m3 std)
(m3/m3 std)
(106 m3 std)
(kgf/cm2)
(m3)
225,00
0
0,0052622
-
256,44
-
205,70
2,237
0,0057004
29,100
236,72
120
177,57
6,258
0,0065311
32,210
206,61
4.294
149,44
12,799
0,0077360
40,025
174,43
27.703
Parte (b):
Conforme pode ser observado na coluna 4 da Tabela 7.4, os cálculos resultaram em valores crescentes para o volume original de gás G. Isso ocorreu porque os valores usados no numerador da
EBM, G = GpBg /(Bg - Bgi), foram maiores que os valores reais, ou seja, os valores de Gp do
histórico são maiores do que os que poderiam ter sido produzidos com a hipótese de reservatório volumétrico. Em outras palavras, para resultar sempre no mesmo valor de G os valores do numera- dor da EBM devem ser continuamente reduzidos ao longo do tempo, indicando a possível presença de influxo de água no reservatório. Como não há relato de produção de água no histórico de produção, a equação de balanço de materiais aplicável a este caso, Eq. (7.41), reduz-se para:
g = GpBg - We .
Bg - Bgi
Como o influxo acumulado é crescente com o tempo, os valores do numerador desta equação poderiam então gerar resultados constantes para os cálculos de G.
Parte (c):
Os valores de p/Z, apresentados na coluna 5 da Tabela 7.4, foram calculados através da ex­pressão de Bg obtida a partir da lei dos gases reais, conforme apresentada no Capítulo 1:
ZT p0
Bg =
T0 p
ou seja,
p = Tp0 Z T0 Bg ‘
Admitindo-se p0 = 1,033 kgf/cm2 (1 atm) e T0 = 15,6 °C (288,6 K) como sendo as condi- ções-padrão de pressão e temperatura, os valores de p/Z são calculados por:
p f / 2n t(k)p0(kgf/cm )
Z (W / cm ) = t )D (m3 / m3
1,3494
(104 + 273) x 1,033
T0(K)Bg (m3 /m3std) 288,6Bg (m3/m3std) Bg (m3 /m3std)
A Figura 7.6 mostra o gráfico de p/Z em função da produção acumulada de gás (Gp). A concavidade para cima da curva indica que o comportamento é de reservatório submetido ao influxo de água.
Figura 7.6 - Gráfico p/Z versus Gp - Exemplo 7.2.
Parte (d):
A coluna 6 da Tabela 7.4 apresenta os valores de We, os quais foram calculados com a e­quação de balanço de materiais, Eq. (7.40), escrita na forma:
We(m3) = GpBg -G(Bg - Bgi) = GpBg - 28,826x 106(Bg - 0,0052622).
	Reservatórios de Gás Condensado Não-Retrógrado
No caso de reservatórios de gás condensado que não apresentem o fenômeno da condensa­ção retrógrada, a aplicação da EBM pode ser feita normalmente de maneira similar ao caso de gás seco, desde que sejam calculados os volumes equivalentes de gás e de água produzidos, correspon­dentes às parcelas que se encontram no estado líquido após o processo de separação dos fluidos na superfície mas que no reservatório estavam no estado gasoso. Essas parcelas devem ser adicionadas ao volume de gás medido na superfície antes da utilização da EBM.
	Cálculo do volume de gás equivalente ao condensado produzido
O volume de gás equivalente ao condensado produzido é obtido aplicando-se a equação de estado dos gases, admitindo-se comportamento de gás ideal:
.. nRT
=		(7.46)
p
ou
(GE)c = ncR° ,	(7.47)
p0
onde T0 e p0 são as condições-padrão de temperatura e pressão, nc é o número de mols de condensa­do produzido e (GE)c é o volume de gás equivalente.
O número de mols de condensado produzido pode ser determinado empregando-se a defi­nição:
massa de condensado
nc =	.	(7.48)
massa molecular do condensado
Como a massa específica da água é de 1.000 kg/m3, o número de mols em 1 m3 std de condensado produzido é dado por:
1.000dc
nc =~M~,	(7.49)
c
onde dc e Mc são, respectivamente, a densidade e a massa molecular do condensado.
Admitindo-se 1,033 kgf/cm2 (1 atm) e 15,6 °C (60 °F) como sendo as condições-padrão (ou standard), e considerando que a constante universal dos gases para o sistema de unidades em questão vale 0,08478 (kgf / cm2) • m3/(mol - kg K), o volume de gás equivalente a 1 m3 std de condensado produzido, dado pela Eq. (7.47), será:
í^\ 1.000dc 0,08478 x (15,6 + 273)
(GE )c =	- x-	—			(7.50)
c Mc	1,033	K J
ou simplesmente:
23.686dc
(GE )= =^m~^ ,	<7-51>
c
onde (GE)c é obtido em m3 std/m3 std.
Quando não disponível a partir de análises de laboratório, a massa molecular do condensa­do pode ser estimada pela correlação de Cragoe (Craft & Hawkins, 1959, p. 67):
6.084
c = (°API)c - 5,9 .	(7.52)
Como:
141,5
(° API )c = —^~ -131,5	(7.53)
pode-se utilizar também a equação:
44,29dc
Mc =		 .	(7 54)
c 1,03 - dc	U )
	Cálculo do volume de vapor de água equivalente à água produzida
O volume de gás (vapor d’água) equivalente à água produzida, que nas condições de reser­vatório se encontrava vaporizada, é dado por:
(GE )w = nwR°,	(7.55)
p0
onde nw é o número de mols de água produzida.
Usando-se o fato de que a densidade da água é igual à unidade, que a sua massa molecular é 18 e que a constante universal dos gases para o sistema de unidades em questão vale 0,08478 (kgf / cm2) • m3/(mol - kg K), o volume equivalente de vapor d’água, para 1 m3 std de água produzida, é dado pela expressão:
/ \ 1.000 x 1 0,08478 x (15,6 + 273)
(GE )w =1T- x	iS		a56)
ou simplesmente:
(GE)w = 1.316 m3 std / m3 std .	(7.57)
Então, cada m3 std de água produzida na superfície equivale a 1.316 m3 std de vapor d’água, os quais devem ser adicionados ao volume de gás produzido no estudo de balanço de materiais.
	Cálculo da densidade do fluido do reservatório
O uso de correlações para a determinação de propriedades do fluido do reservatório requer o conhecimento da sua densidade.
Considere como base de cálculo 1 m std de condensado (líqüido) produzido e uma razão gás/líquido de produção igual a Rg-l (m3 std/ m3 std).
A massa de fluido produzido é dada pela soma das massas produzidas de gás e de conden­sado:
mf = mg + mc.	(7.58)
A massa de gás produzido é obtida de:
mg = ngMg = ngdgMar ,	(7.59)
onde o número de mols de gás é calculado pela lei dos gases ideais:
p0Vç 1,033Rg , ng (mol - kg) = L°-^ =	U	= 0,04222Rg l.	(7.60)
PpVg = 1,033Rg -
RT0 0,08478 x (15,6 + 273)
Então,
mg (kg) = 0,04222Rg-i dgMar.	(7.61)
Como a massa de condensado é dada por:
mc (kg) = Vc pc = Vcdc págua = 1 m3 std x dc x1.000(kg / m3) = 1.000dc,	(7.62)
a massa de fluido produzido é:
mf (kg) = 0,04222Rg-l dgMar + 1.000dc.	(7.63)
O número total de mols produzidos é:
nt (mol - kg) = ng + nc = 0,04222Rg-l + = 0,04222Rg-l +	.	(7.64)
A massa molecular do fluido produzido é determinada por:
mf 0,04222Re-ldeMar + 1.000dc
M f =-L- =						(7 65)
f nt 0,04222Rg-l + 1.000dc / Mc	K J
e portanto a densidade do fluido produzido, ou seja, do fluido existente no reservatório, é dada por:
f 0,04222Rg-l dgMar + 1.000dc A
(7.66)
f M M
ar	ar
df = Ml .a
0,04222Rg-l + 1.000dc / Mc
ou
0,04222Rgdg + 1.000dc/28,97
df =	gJ—g	c	,	(7 67)
f 0,04222Rg_t + 1.000dc / Mc	K n
que finalmente resulta em:
Rp-l dg + 818dc d =	U-*	.	(7 68)
f Rg-l + 23.685dc / Mc	K J
Aplicação da equação de balanço de materiais
Conhecendo-se os volumes equivalentes totais de gás (GE)ct e (GE)wt, correspondentes às produções acumuladas de condensado e de água, respectivamente, que encontravam-se no estado
gasoso no reservatório, o volume total de gás produzido, medido em condições-padrão, é dado pela soma de três parcelas:
(Gp )t = Gp +(GE)ct +(GE)wt,	(7.69)
onde Gp é o volume de gás produzido que na superfície permanece no estado gasoso.
Dispondo-se de um histórico de valores de pressão do reservatório e de volume produzido, todas as técnicas descritas em seções anteriores deste capítulo podem ser empregadas, bastando substituir o volume acumulado de gás Gp pelo volume total de gás produzido,(Gp)t, calculado pela Eq. (7.69).
	Reservatórios de Gás Condensado Retrógrado
Nos reservatórios de gás condensado retrógrado há formação de líquido (condensação do gás) no interior do reservatório à medida que a pressão do sistema declina. Nesse caso, as técnicas discutidas nas Seções 7.3 e 7.4 também podem ser aplicadas, utilizando-se o valor total de gás produzido, isto é, incluindo-se os valores de gás equivalente, e empregando-se o fator de compressi­bilidade duas fases Z2f no lugar do fator de compressibilidade Z. O valor de Z2f pode ser obtido através de análises PVT ou de correlações empíricas, conforme descritas no Apêndice C.
Uma questão que se apresenta é como saber se o reservatório de gás apresenta o fenômeno de condensação retrógrada quando não se dispõe de análise PVT. Uma solução é obter a curva de pressão de orvalho utilizando a correlação de Nemeth & Kennedy (1967) e comparar as condições de pressão e de temperatura do reservatório com essa curva. A correlação de Nemeth & Kennedy pode ser encontrada no Apêndice D.
Exemplo 7.3 - A análise PVT de uma amostra representativa do fluido original de um reservatório de gás condensado retrógrado, cuja temperatura é de 93 °C, apresentou o comportamento mostrado na Figura 7.7.
cn
o
"O
<D
"O
Pressão, p{kgf/cm2)
Figura 7.7 - Resultados da análise PVT do fluido do reservatório - Exemplo 7.3.
A densidade e a massa molecular do líquido condensado durante a análise PVT apresentaram os seguintes valores:
Densidade do líquido	 dl = 0,65
Massa molecular do líquido	 Ml = 70
Construir em um mesmo gráfico as curvas dos fatores de compressibilidade Z e Zf contra a pressão.
Solução:
O fator de compressibilidade duas fases pode ser calculado pela lei dos gases como:pV,
1
(nt / V)’
2f ntRT RT (nt /Vt) 0,08478x(93 + 273) (nt /Vt)
= 0,032227
1
onde:nt
Vt
ng + nl V,
tt
Cálculo do número de mols de gás por volume unitário de fluido (gás + líquido condensado)pS
n V pg
p (1 Sl)	= 0,032227— (1 - St)
n
g
g
Vt ZRT Vt ZRT Z x 0,08478 x (93 + 273)
Z
Cálculo do número de mols de líquido por volume unitário de fluido (gás + líquido condensado) nt _dl P w V _dl P w p 0,65 x 1.000
-St = 9,2875 St
Sl =
70
Vt M l Vt
M
Cálculo de Z
A pressão e a temperatura pseudocríticas são calculadas com as correlações apresentadas no Apêndice B, que nas unidades deste exemplo são dadas por:
ppc (kgf / cm2) = (677 + 15,0dg - 37,5dg )/14,22334
e
Tpc (K) = 95 (168 + 325dg - 12,5dg).
A pressão e a temperatura pseudoreduzidas são calculadas com as equações:
p	14,22334 x p
Ppr = ppC ~ 677 + 15,0dg - 37,5dg
e
= T (o C) + 273 =	93 + 273	=	658,8
Tpc 5 (168 + 325dg - 12,5dg) 168 + 325dg - 12,5dg2
Os valores de Z são obtidos da Figura B.1 em função de ppr e Tpr.
A Tabela 7.5 apresenta o resumo de cálculo para a obtenção do fator de compressibilidade duas fases, onde os valores de dg e Sl vêm dos dados de laboratório apresentados na Figura 7.7. Os valores de pressão da primeira coluna da tabela são arbitrários, e neste caso correspondem às pressões em psia de 5.000, 3.600, 3.000, 2.500, 2.000, 1.500, 1.000 e 500, para as quais foram gerados os dados originais de laboratório.
Tabela 7.5 - Resumo de cálculo do Exemplo 7.3
p
(kgf/cm2)
dg
Si
ppr
T
pr
Z
ng/Vt
(mol-kg/m3)
ni/Vt
(mol-kg/m3)
ntlVt (mol-kg/m3)
Z2 f
351,53
0,800
0
7,52
1,57
0,978
11,58
0
11,58
0,978
253,11
0,800
0
5,41
1,57
0,855
9,54
0
9,54
0,855
210,92
0,780
0,0260
4,51
1,59
0,828
8,00
0,241
8,24
0,825
175,77
0,774
0,0300
3,75
1,60
0,817
6,73
0,279
7,01
0,808
140,61
0,777
0,0308
3,00
1,60
0,825
5,32
0,286
5,61
0,808
105,46
0,784
0,0275
2,25
1,59
0,848
3,90
0,255
4,16
0,818
70,31
0,791
0,0200
1,50
1,58
0,884
2,51
0,186
2,70
0,840
35,15
0,797
0,0063
0,75
1,57
0,938
1,20
0,059
1,26
0,900
0
0,800
0
0
-
1,000
-
-
-
1,000
A Figura 7.8 apresenta as curvas de Z e Z2f contra a pressão.
Pressão, p (kgf/cm2)
Figura 7.8 - Gráfico dos fatores de compressibilidade Z e Z2f contra a pressão - Exemplo 7.3.
	Fator de Recuperação
O fator de recuperação (FR) de um reservatório de gás é definido como o quociente entre a produção acumulada (Gp) e o volume original (G), na condição de abandono:
FR =
( G„ ^
(7.70)
G
' ab
Considere três reservatórios de gás com o mesmo volume original G mas com aqüíferos cu­jas influências nos comportamentos desses reservatórios sejam as mostradas na Figura 7.9. A linha tracejada representaria o comportamento desse reservatório caso não houvesse a presença do aqüífero (reservatório volumétrico).
0
G
Figura 7.9 - Influência do aqüífero e da pressão de abandono no fator de recuperação de um reservatório de gás (Dake, 1978).
Como se pode observar na Figura 7.9, o fator de recuperação é função tanto da pressão de abandono como da natureza do aqüífero (sua dimensão ou intensidade com que atua). Para a relação p/Z de abandono indicada na figura, o reservatório B é o que apresenta o maior FR. Sendo A, B e C os pontos que representam as máximas produções acumuladas possíveis, correspondentes a aqüífe­ros com influências crescentes, concluímos que reservatórios de gás com influxos de água mais atuantes podem apresentar menores fatores de recuperação. Isso se deve ao fato de que, no desloca­mento imiscível de um fluido por outro, neste caso água deslocando gás, sempre permanece no meio poroso uma saturação residual do fluido deslocado, cujo valor pode ser considerado independente da pressão atuante. A saturação residual de gás (Sgr) pode atingir valores da ordem de 30 a 50% do volume poroso (Craft & Hawkins, 1959; Agarwal et alii, 1965).
Para uma dada saturação residual de gás, estará determinado o volume de gás residual no reservatório (Vgr). A partir da equação de estado dos gases pode-se escrever que:
n =,	(7.71)
g ZRT
onde ngr é o número de mols de gás residual. Para uma temperatura do reservatório constante, pode- se dizer que:
ngr - p ,	(7.72)
de onde se conclui que quanto maior a manutenção de pressão proporcionada pelo aqüífero, maior o número de mols de gás restante no reservatório e, conseqüentemente, menor a recuperação final.
	Problemas
Problema 7.1 - Um reservatório volumétrico de gás tem uma pressão inicial de 295 kgf/cm2,
porosidade de 17,2% e saturação de água conata irredutível de 23%. O fator volume-formação do
gás a 295 kgf/cm2 é de 0,003425 m3/m3 std e a 53 kgf/cm2 é de 0,01852 m3/m3 std.
	Calcule o volume original de gás nas condições-padrão para um volume de rocha de 1.000 m3.
	Calcule a reserva original de gás (nas condições-padrão), ou seja, o volume original de gás possível de ser produzido, para um volume de rocha de 1.000 m3, admitindo uma pressão de abandono de 53 kgf/cm2.
	Explique porque o cálculo da reserva depende da pressão de abandono selecionada.
	Calcule a reserva original de gás (nas condições-padrão), admitindo uma área de reservatório de 3x106 m2, espessura média da formação de 170 m e pressão de abandono de 53 kgf/cm2.
	Calcule o fator de recuperação na pressão de abandono de 53 kgf/cm2.
Respostas:
38.672 m3 std /1.000 m3 de rocha	(b) 31.520 m3 std /1.000 m3 de rocha
	16,075x109 m3 std	(e) 0,815 (81,5%)
Problema 7.2 - Os dados de produção de um reservatório volumétrico de gás são: densidade do gás = 0,80; temperatura do reservatório = 65 °C; pressão inicial = 178,44 kgf/cm2. O histórico de produção encontra-se na Tabela 7.6.
Tabela 7.6 - Histórico de produção do reservatório do Problema 7.2
Produção acumulada de gás (106 m3 std)
Pressão do reservatório
(kgf/cm2)
0
178,44
283,168
167,40
566,337
156,29
849,505
146,59
1.132,674
136,40
1.415,843
126,62
Pede-se determinar:
	O volume original de gás.
	O fator de recuperação para uma pressão de abandono de 32 kgf cm2.
	A reserva atual.
Respostas:
4,672x109 m3 std (b) 0,86 (86%)	(c) 2,591x109 m3 std
Problema 7.3 - Os dados da Tabela 7.7 referem-se a um reservatório volumétrico de gás:
Tabela 7.7 - Dados do reservatório do Problema 7.3
0
o\
m p
st
)
p
(kgf/cm2)
Z
0
146,24
0,759
194,622
132,53
0,767
397,059
113,90
0,787
670,741
84,72
0,828
878,077
62,43
0,866
1.025,268
45,35
0,900
	Traçar um gráfico da pressão em função da produçãoacumulada de gás.
	Traçar um gráfico de p/Z versus Gp.
	Estimar o volume original de gás.
	Estimar a reserva atual admitindo uma pressão de abandono de 8,4 kgf/cm2.
Dado adicional: Z = 0,98 para p = 8,4 kgf/cm2.
Respostas:Adalberto J. Rosa, Renato de S. Carvalho e José A. Daniel Xavier
Adalberto J. Rosa, Renato de S. Carvalho e José A. Daniel Xavier
	1,387x109 m3 std	(d) 0,300x109 m3 std
Problema 7.4 - Um reservatório de gás seco apresentou o histórico mostrado na Tabela 7.8.
Tabela 7.8 - Histórico de produção - Problema 7.4
Data
Produção acumulada (106 m3 std)
Pressão estática
(kgf/cm2)
Z
07.01.1965
0
07.01.1966
50,970
243,33
0,796
09.01.1967
110,436
236,93
0,790
10.01.1968
165,654
225,62
0,778
11.01.1969
267,594
212,96
0,765
Outros dados são:
Temperatura do reservatório		37,8 °C
Densidade do gás 		0,68
Temperatura pseudocrítica do gás		213,6 K
Pressão pseudocrítica do gás		46,93 kgf/cm2
Calcular:
	A pressão original do reservatório.
	O volume original de gás no reservatório.
	A pressão média no reservatório em 11.01.1974, sabendo-se que foi mantida uma produção diária de 566.337 m3 std a partir de 11.01.1969.
Respostas:
249,73 kgf/cm2	(b) 2,465 x 109 m3 std	(c) 114,25 kgf/cm2
Problema 7.5 - Para um reservatório de gás com 0,6 de densidade, pressão original de 246 kgf/cm2 e temperatura de 65,6 oC, calculou-se o volume inicial de gás pelo método volumétrico como sendo de 5,663x109 m3 std, com uma área produtiva de 9.105.426 m2. O histórico de produção está apresentado na Tabela 7.9.
Tabela 7.9 - Dados de produção do reservatório de gás do Problema 7.5
p
Gp
Z
(kgf/cm2)
(109 m3 std)
(@ 65,6 oC)
246
-
0,885
176
2,124
0,855
Pedem-se:Adalberto J. Rosa, Renato de S. Carvalho e José A. Daniel Xavier	7-#
Adalberto J. Rosa, Renato de S. Carvalho e José A. Daniel Xavier	7-#
Balanço de Materiais em Reservatórios de Gás
7-#
	Qual é o volume original de gás calculado a partir do histórico de produção, admitindo que não haja influxo de água?
	Admitindo que o volume inicial de gás calculado no item anterior seja o correto, qual é a área do reservatório?
	Admitindo que o volume de gás inicial calculado pelo método volumétrico seja o correto, qual é o volume acumulado de influxo de água que deve ter ocorrido durante a produção dos 2,124 x109 m3 std de gás?
Respostas:
G = 8,187x109 m3 std	(b) A = 13.163.716 m2	(c) We = 3,855x106 m3
Problema 7.6 - Calcular a produção diária de gás, incluindo o gás equivalente de condensado e água, para um reservatório com as seguintes produções diárias:
Gás do separador		169,9x103 m3 std
Condensado		15,9 m3 std
Gás do tanque		595 m3 std
Água		1,6 m3
Outras informações disponíveis são:
Pressão inicial		422,0 kgflcm2
Pressão atual		140,6 kgflcm2
Temperatura		107 °C
Densidade do condensado		50 °API
w ,,,	, , .n, , „ 2 m-,	4,83 m3 de água
Vapor d água no gás a 140,6 kgf/cm e 107 C			5—
106 m3 std de gás
Resposta: 173,7x103 m3 std/d
Problema 7.7 - Um poço produz gás e condensado, através de um separador, com densidades 0,70 e 59 °API, respectivamente. A razão gás/líquido de produção é de 2.618 m3 std/m3 std. A pressão do reservatório é de 182,80 kgf/cm2 (2.600 psia) e a temperatura é de 94,4 °C (202 oF). Admitindo que esses fluidos ocorram em uma única fase gasosa no reservatório, pede-se determinar:
	A densidade do gás do reservatório.
	A massa específica do gás no reservatório.
	O gradiente de pressão no reservatório.
	A viscosidade do gás no reservatório.
Respostas:
(a) 0,88	(b) 185 kg/m3	(c) 0,0185 kgflcm2lm	(d) 0,0191 cp
Bibliografia
Agarwal, R. G.; Al-Hussainy, R. & Ramey, H. J., Jr.: The Importance of Water Influx in Gas Reservoirs. J. Pet. Tech., 1336-1342, Nov. 1965; Trans. AIME, 1965.
Amyx, J. W.; Bass, D. M., Jr. & Whiting, R. L.: Petroleum Reservoir Engineering. McGraw-Hill Book Company, Inc., 1960.
Craft, B. C. & Hawkins, M. F.: Applied Petroleum Reservoir Engineering. Englewood Cliffs, NJ, USA, Prentice-Hall, Inc., 1959.
Dake, L. P.: Fundamentais of Reservoir Engineering. Amsterdam, The Netherlands, Elsevier Scientific Publishing Company, 1978.
Havlena, D. & Odeh, A. S.: The Material Balance as an Equation of a Straight Line. J. Pet. Tech., 896-900, Aug. 1963.
Havlena, D. & Odeh, A. S.: The Material Balance as an Equation of a Straight Line - Part II, Field Cases. J. Pet. Tech., 815-822, July 1964.
Nemeth, L. K. & Kennedy, H. J.: A Correlation of Dew Point Pressure with Fluid Composition and Temperature. SPEJ, 99-104, June 1967.
Ramagost, B. P.: P/Z Abnormally Pressured Gas Reservoirs. In: Annual Fall Technical Conference and Exhibition of the SPE of AIME, 56. San Antonio, TX, USA, Oct. 5-7, 1981. Proceedings. Richardson, TX, SPE, 1981. (SPE 10125.)
Rosa, A. J.: Equação de Balanço de Materiais. Salvador, Bahia, Brasil, PETROBRAS/ SEPES/ DIVEN/SEN-BA, 1980. (Apostila.)
Rosa, A. J. & Carvalho, R. S.: Previsão de Comportamento de Reservatórios de Petróleo - Métodos Analíticos. Rio de Janeiro, Editora Interciência, 2001.

Continue navegando