Buscar

Estrutura química e síntese de hormônios

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 3, do total de 5 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Prévia do material em texto

Estrutura Química e Síntese dos Hormônios
ESTRUTURA QUÍMICA E SÍNTESE DE HORMÔNIOS
Existem três classes gerais de hormônios:
1. Proteínas e polipeptídeos, incluindo hormônios secretados pela hipófise anterior e posterior, pelo pâncreas (insulina e glucagon), pela paratireoide (paratormônio) e por muitos outros (Tabela 75-1).
2. Esteroides secretados pelo córtex adrenal (cortisol e aldosterona), pelos ovários (estrogênio e progesterona), testículos (testosterona) e pela placenta (estrogênio e progesterona).
3. Derivados do aminoácido tirosina, secretados pela tireoide (tiroxina e tri-iodotironina) e medula adrenal (epinefrina e norepinefrina). Não existe hormônio conhecido com polissacarídeos ou ácidos nucleicos.
Hormônios Polipeptídicos e Proteicos São Armazenados em Vesículas Secretoras Até Que Sejam Necessários. A maioria dos hormônios no corpo é de polipeptídeos e de proteínas. Esses hormônios variam em tamanho, desde pequenos peptídeos, com não mais que três aminoácidos (hormônio liberador de tireotropina), até proteínas com quase 200 aminoácidos (hormônio do crescimento e prolactina). Em geral, os polipeptídeos com 100 ou mais aminoácidos são chamados proteínas, e os com menos de 100 aminoácidos são denominados peptídeos.
Os hormônios proteicos e peptídicos são sintetizados na extremidade rugosa do retículo endoplasmático das diferentes células endócrinas, da mesma maneira que a maioria das outras proteínas (Figura 75-2). Geralmente, são sintetizados primeiro como proteínas maiores, que não são biologicamente ativas (pré-pró-hormônios), e clivados para formar pró-hormônios menores no retículo endoplasmático. Estes são então transferidos para o aparelho de Golgi, para acondicionamento em vesículas secretoras. Nesse processo, as enzimas nas vesículas clivam os pró-hormônios, a fim de produzir os hormônios menores biologicamente ativos e fragmentos inativos. As vesículas são armazenadas no citoplasma e muitas ficam ligadas à membrana celular até que o produto da sua secreção seja necessário. A secreção dos hormônios (bem como os fragmentos inativos) ocorre quando as vesículas secretoras se fundem com a membrana celular e o conteúdo granular é expelido para o líquido intersticial ou diretamente na corrente sanguínea por exocitose.
Em muitos casos, o estímulo para a exocitose é o aumento da concentração citosólica de cálcio, ocasionado por despolarização da membrana plasmática. Em outros casos, a estimulação de receptor endócrino na superfície celular causa aumento do monofosfato de adenosina cíclico (AMPc) e, subsequentemente, ativação de proteinocinases que iniciam a secreção do hormônio. Os hormônios peptídicos são hidrossolúveis, o que permite que entrem facilmente no sistema circulatório para serem transportados para seus tecidos-alvo.
Figura 75-2. Síntese e secreção de hormônios peptídicos. O estímulo para secreção hormonal costuma envolver alterações do cálcio intracelular ou alterações do monofosfato de adenosina cíclico (AMPc) na célula.
Hormônios Esteroides em Geral São Sintetizados a Partir do Colesterol e não São Armazenados. A estrutura química dos hormônios esteroides é semelhante à do colesterol e, na maioria dos casos, eles são sintetizados a partir do próprio colesterol. São lipossolúveis e consistem em três anéis ciclo-hexila e um anel ciclopentila, combinados em única estrutura (Figura 75-3).
Embora na maioria das vezes exista muito pouco armazenamento de hormônio em células endócrinas produtoras de esteroides, grandes depósitos de ésteres de colesterol em vacúolos do citoplasma podem ser rapidamente mobilizados para a síntese de esteroides após o estímulo. Grande parte do colesterol nas células produtoras de esteroides vem do plasma, mas também ocorre síntese de novo colesterol nas células produtoras de esteroides. Como os esteroides são muito lipossolúveis, uma vez sintetizados, eles simplesmente podem se difundir através da membrana celular e entram no líquido intersticial e, depois, no sangue.
Figura 75-3. Estruturas químicas de vários hormônios esteroides.
Hormônios Aminados São Derivados da Tirosina. Os dois grupos de hormônios derivados da tirosina, os hormônios da tireoide e da medula adrenal, são formados pela ação de enzimas nos compartimentos citoplasmáticos das células glandulares. Os hormônios da tiroide são sintetizados e armazenados na glândula tireoide e incorporados a macromoléculas da proteína tireoglobulina, que é armazenada em grandes folículos na tireoide. A secreção hormonal ocorre quando as aminas são clivadas da tireoglobulina e os hormônios livres são então liberados na corrente sanguínea. Depois de entrar no sangue, a maior parte dos hormônios da tireoide se combina com proteínas plasmáticas, em especial a globulina de ligação à tiroxina, que lentamente libera os hormônios para os tecidos-alvo.
A epinefrina e a norepinefrina são formadas na medula adrenal, que normalmente secreta cerca de quatro vezes mais epinefrina do que norepinefrina. As catecolaminas ocupam as vesículas pré-formadas que são armazenadas até serem secretadas. De modo semelhante aos hormônios proteicos, armazenados em grânulos secretores, as catecolaminas também são liberadas das células da medula adrenal por exocitose. Uma vez que as catecolaminas entram na circulação, elas podem existir no plasma, na forma livre ou em conjugação com outras substâncias.
SECREÇÃO HORMONAL, TRANSPORTE E DEPURAÇÃO DE HORMÔNIOS DO SANGUE
Secreção de Hormônios após um Estímulo e Duração de Ação de Diferentes Hormônios. Alguns hormônios, como a norepinefrina e a epinefrina, são secretados em segundos, após a glândula ser estimulada, e podem desenvolver ação completa dentro de alguns segundos a minutos; as ações de outros hormônios, como a tiroxina ou o hormônio do crescimento, podem exigir meses para ter seu efeito completo. Desse modo, cada um dos diferentes hormônios tem suas próprias características para início e duração da ação — cada um é moldado para realizar sua função de controle específica.
Concentrações de Hormônios no Sangue Circulante e Taxas de Secreção Hormonal. As concentrações de hormônios necessárias para controlar a maioria das funções metabólicas e endócrinas são incrivelmente pequenas. Suas concentrações no sangue variam de não mais que 1 picograma (que é o milionésimo de um milionésimo de grama), em cada mililitro de sangue até, no máximo, alguns microgramas (alguns milionésimos de grama) por mililitro de sangue. De modo semelhante, as intensidades de secreção dos vários hormônios são extremamente pequenas, em geral, medidas em microgramas ou miligramas por dia. Veremos, ainda neste Capítulo, que existem mecanismos muito especializados nos tecidos-alvo, permitindo que até quantidades diminutas de hormônios exerçam potente controle sobre os sistemas fisiológicos.
CONTROLE POR FEEDBACK DA SECREÇÃO HORMONAL
O Feedback Negativo Impede a Hiperatividade dos Sistemas Hormonais. Embora as concentrações plasmáticas de muitos hormônios flutuem em resposta a vários estímulos que ocorrem durante todo o dia, todos os hormônios estudados até aqui parecem ser estritamente controlados. Na maioria dos casos, esse controle é exercido por mecanismos de feedback negativo (descritos no Capítulo 1) que asseguram o nível apropriado de atividade hormonal no tecido-alvo. Depois que o estímulo causa liberação do hormônio, condições ou produtos decorrentes da ação do hormônio tendem a suprimir sua liberação adicional. Em outras palavras, o hormônio (ou um de seus produtos) exerce efeito de feedback negativo para impedir a hipersecreção do hormônio ou a hiperatividade no tecido-alvo.
A variável controlada não costuma ser a secreção do hormônio, mas o grau de atividade no tecido-alvo. Portanto, somente quando a atividade no tecido-alvo se eleva até nível apropriado, os sinais de feedback para a glândula endócrina serão suficientemente potentes para lentificar a secreção do hormônio. A regulação dos hormônios por feedback pode ocorrer em todos os níveis, incluindo a transcrição gênica e as etapas de traduçãoenvolvidas na síntese de hormônios e etapas envolvidas no processamento de hormônios ou na liberação dos hormônios armazenados.
Surtos de Secreção Hormonal Podem Ocorrer com Feedback Positivo. Em alguns casos, ocorre feedback positivo quando a ação biológica do hormônio causa sua secreção adicional. Exemplo desse feedback positivo é o surto de secreção de hormônio luteinizante (LH) que ocorre em decorrência do efeito estimulatório do estrogênio sobre a hipófise anterior, antes da ovulação. O LH secretado atua então sobre os ovários, estimulando a secreção adicional de estrogênio o que, por sua vez, causa mais secreção de LH. Finalmente, o LH atinge a concentração apropriada e é, assim, exercido controle típico por feedback negativo da secreção do hormônio.
Ocorrem Variações Cíclicas na Liberação do Hormônio. Existem variações periódicas da liberação do hormônio sobrepostas ao controle por feedback negativo e positivo da secreção hormonal, e elas são influenciadas por alterações sazonais, várias etapas do desenvolvimento e do envelhecimento, ciclo circadiano (diário) e sono. Por exemplo, a secreção do hormônio do crescimento aumenta acentuadamente durante o período inicial do sono, mas se reduz durante os estágios posteriores. Em muitos casos, essas variações cíclicas da secreção hormonal se devem às alterações da atividade das vias neurais, envolvidas no controle da liberação dos hormônios.
TRANSPORTE DE HORMÔNIOS NO SANGUE
Os hormônios hidrossolúveis (peptídeos e catecolaminas) são dissolvidos no plasma e transportados de seus locais de síntese para tecidos-alvo, onde se difundem dos capilares, entram no líquido intersticial e, finalmente, chegam às células-alvo.
Hormônios esteroides e da tireoide diferentemente circulam no sangue, em grande parte, ligados às proteínas plasmáticas. Em geral, menos de 10% dos hormônios esteroides ou tireoidianos existem livres em solução no plasma. Por exemplo, mais de 99% da tiroxina no sangue está ligada a proteínas plasmáticas. No entanto, os hormônios ligados a proteínas não conseguem se difundir facilmente pelos capilares e ganhar acesso às suas células-alvo, sendo, portanto, biologicamente inativos até que se dissociem das proteínas plasmáticas.
As quantidades relativamente grandes de hormônios ligados a proteínas servem como reservatórios, reabastecendo a concentração de hormônios livres quando eles estão ligados a receptores-alvo ou eliminados da circulação. A ligação de hormônios a proteínas plasmáticas torna sua remoção do plasma muito mais lenta.
“Depuração” de Hormônios do Sangue. Dois fatores podem aumentar ou diminuir a concentração de um hormônio no sangue. Um desses é sua intensidade de secreção no sangue. O segundo é a intensidade da remoção do hormônio do sangue, chamada depuração metabólica e, em geral, é expressa em termos do número de mililitros de plasma depurado do hormônio por minuto. Para calcular essa depuração, medem-se: (1) a intensidade/velocidade de desaparecimento do hormônio do plasma (p. ex., nanogramas por minuto); e (2) a concentração plasmática do hormônio (p. ex., nanogramas por mililitro de plasma). Depois, calcula-se a depuração metabólica pela seguinte fórmula:
Taxa de Depuração metabólica
= Velocidade do desaparecimento do hormônio do plasma/Concentração de hormônio
O procedimento usual para fazer essa medida é o seguinte: solução purificada do hormônio a ser medido é marcada com substância radioativa. Depois, o hormônio radioativo é infundido, com intensidade constante na corrente sanguínea, até que a concentração radioativa no plasma fique constante. Nesse momento, o desaparecimento do hormônio radioativo do plasma é igual à intensidade com que é infundido, o que fornece a intensidade do desaparecimento. Ao mesmo tempo, a concentração plasmática do hormônio radioativo é medida, usando-se procedimento padrão de contagem de radioatividade. Depois, usando a fórmula citada, calcula-se a depuração metabólica.
Os hormônios são “depurados” do plasma por vários modos, incluindo: (1) destruição metabólica pelos tecidos; (2) ligação com os tecidos; (3) excreção na bile pelo fígado; e (4) excreção na urina pelos rins. Para certos hormônios, a diminuição da depuração metabólica pode causar concentração excessivamente alta do hormônio nos líquidos corporais circulantes. Por exemplo, esse fenômeno ocorre com vários dos hormônios esteroides, quando o fígado fica doente, porque esses hormônios são conjugados principalmente no fígado e depois “depurados” na bile.
Os hormônios são algumas vezes degradados em suas células-alvo por processos enzimáticos que causam endocitose do complexo hormônio-receptor na membrana; o hormônio é então metabolizado na célula, e os receptores em geral são reciclados de volta à membrana celular.
A maioria dos hormônios peptídicos e das catecolaminas é hidrossolúvel e circula livremente no sangue. Em geral, são degradados por enzimas no sangue e nos tecidos e rapidamente excretados pelos rins e fígado, permanecendo assim no sangue por apenas curto período. Por exemplo, a meia-vida da angiotensina II circulante no sangue é inferior a 1 minuto.
Hormônios que se ligam a proteínas plasmáticas são removidos do sangue com intensidade muito menor (mais lenta) e podem continuar na circulação por várias horas ou mesmo dias. A meia-vida dos esteroides adrenais na circulação, por exemplo, varia entre 20 e 100 minutos, enquanto a meia-vida dos hormônios da tireoide, ligados a proteínas, pode ser de 1 a 6 dias

Continue navegando