Buscar

lista_oscilações

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 3, do total de 3 páginas

Prévia do material em texto

Governo do Estado do Rio de Janeiro 
Universidade Estadual do Norte Fluminense Darcy Ribeiro 
Centro de Ciência e Tecnologia 
Curso de Licenciatura em Física 
 
 
Lista - Oscilações 
1 - O movimento de um corpo sobre o eixo-x obedece a seguinte equação 
 
Onde X está em metros e o tempo (t) em segundos. 
Determine: a) a amplitude, b) a fase inicial, c) a equação da velocidade, d) a equação da 
aceleração, e) o módulo da velocidade máxima, f) o módulo da aceleração máxima. 
2 - Um ponto material de massa m = 0,04 kg oscila em torno da posição O de equilíbrio, com 
M.H.S. A energia total mecânica do sistema é 32 x 10 −4 J. Sendo a constante elástica da mola k = 
0,16 N/m e desprezando-se ações dissipativas, determine: a) O período de oscilação, b) a 
velocidade angular, c) a amplitude de oscilação, d) A função horária da posição, velocidade e 
aceleração, adotando-se o eixo Ox orientado para a direita e instante inicial t=0 quando o móvel 
está na posição extrema P indicada na figura. 
 
3 - Um corpo de massa m = 2 kg oscila sobre uma mesa horizontal, sem atrito, preso a uma mola 
horizontal de constante elástica k = 200 N/m. A amplitude das oscilações é de 10 cm. A partir 
desses dados, calcule (a) a energia cinética máxima do corpo e (b) a energia potencial elástica 
máxima da mola. 
 
4- Uma partícula realiza um movimento harmônico simples com uma frequência de 3,0 Hz e uma 
amplitude de 5,0 cm. (a) Qual é a distância total que a partícula percorre durante um ciclo de seu 
movimento? (b) Qual a sua velocidade máxima? Onde ela ocorre? (c) Encontre a aceleração 
máxima da partícula. Em que ponto do movimento ocorre a aceleração máxima? 
 
5 - Uma partícula executa um MHS com frequência de 0,25 Hz em torno do ponto x = 0. Em t=0, 
ela tem um deslocamento de x = 0,37 cm e velocidade zero. Para o movimento, determine (a) o 
período, (b) a frequência angular, (c) a amplitude, (d) o deslocamento no tempo, (e) a velocidade 
no tempo, (f) a velocidade máxima, (g) a aceleração máxima, (h) o deslocamento em t=3,0 s e (i) 
a velocidade em t = 3,0 s. 
 
6 – Um corpo de massa 2 Kg está preso a uma mola horizontal cuja constante elástica é 5 KN/m. 
A mola é esticada 10 cm em relação ao comprimento de equilíbrio e depois é solta. Achar (a) a 
frequência (b) o período (c) a amplitude (d) a velocidade máxima (e) Quando o corpo atinge a 
posição de equilíbrio, qual a aceleração? 
7 - Um pêndulo simples realiza pequenas oscilações de período igual a 4π s. Considerando a 
aceleração local da gravidade igual a 10 m/s2, determine: a) o comprimento desse pêndulo. b) 
Qual seria o novo período de oscilação desse pêndulo, se ele fosse levado a um planeta cuja 
aceleração da gravidade é ¼ da terrestre? 
 
8 – Um sistema massa-mola possui uma energia mecânica de 1 J, uma amplitude de 10 cm e uma 
velocidade máxima de 1,2 m/s. Determine: a) a constante elástica, b) a massa do bloco, c) a 
frequência de oscilação. 
9 – A equação do movimento de uma partícula em movimento harmônico simples é dada por x(t) 
= 6,0 cos (3π/4 t + π/3) com x em metros e t em segundos. Determine: a) a função velocidade 
em função do tempo, b) a função aceleração em função do tempo, c) a velocidade em t = 2 s, d) a 
velocidade máxima, e) a aceleração máxima, f) a energia cinética em t = 2 s, g) a energia 
potencial em t = 2 s e h) a energia mecânica total em t = 2 s. Considere a massa igual a 1 kg. 
10 - Um oscilador harmônico simples é constituído por um corpo de massa 1 kg preso a uma mola 
de constante 1,75 N/m. Em um certo instante, o corpo se move comprimindo a mola e se afastando 
da posição de equilíbrio; nesse instante, seu deslocamento é 20 cm e sua velocidade 20 cm/s. 
Determine: (a) o período de seu movimento; (b) a energia cinética no instante considerado; (c) a 
energia potencial no instante considerado; (d) a energia mecânica total; (e) a amplitude máxima 
do movimento; (g) a velocidade e a aceleração máximas que ele atinge. 
 
11 – Pesando Astronauta. Este processo tem sido realmente usado para “pesar” astronautas no 
espaço. Uma cadeira de 42,5 kg é presa a uma mola e deixada oscilar livremente. Quando vazia, 
a cadeira leva 1,3 s para completar uma vibração. Mas com um astronauta sentada nela, sem 
apoiar os pés no chão, a cadeira leva 2,54 s para completar um ciclo. Qual é a massa do astronauta? 
 
12 – Um brinquedo de 0,150 kg executa um movimento harmônico simples na extremidade de 
uma mola horizontal com uma constante k = 300 N/m. Quando o objeto está a uma distância de 
0,012 m da posição de equilíbrio, verifica-se que ele possui uma velocidade igual a 0,300 m/s. 
Quais são: a) a energia mecânica total do objeto, b) a amplitude do movimento, c) a velocidade 
máxima alcançada pelo objeto. 
 
13 – Você puxa lateralmente um pêndulo simples de 0,240 m de comprimento até um ângulo de 
3,50 e solta-o a seguir. a) Quanto tempo leva o pêndulo para atingir a velocidade mais elevada? 
b) Quanto tempo levaria se o pêndulo simples fosse solto em um ângulo de 1,750 em vez de 3,50? 
 
14 – Um corpo de 175 g sobre um trilho de ar horizontal, sem atrito, é preso a uma mola fixa ideal 
de constante elástica 155 N/m. No instante em que você efetua medições sobre o corpo, ela está 
se movendo a 0,815 m/s e está a 3 cm de seu ponto de equilíbrio. Determine: a) a amplitude do 
movimento, b) a velocidade máxima do corpo, c) a frequência angular das oscilações. 
 
15 – Uma massa de 0,5 kg oscilando em uma mola tem a velocidade em função do tempo dada 
por v(t) = 3,6 cm/s sen (4,71t – π/2). Determine: a) o período, b) a amplitude, c) a aceleração 
máxima da partícula. 
 
 
 
 
 
Respostas: 
1 – a) 4 m, b) π rad, c) v = - 2 π sen (1/2 π t + π), d) a = – π2 cos (π/2 t + π), e) v = 2 π ou 6,28 
m/s, f) a = 9,86 m/s2 
2 – a) T = 3,14 s, b) ɷ = 2 rad/s, c) x = 0,2 m, d) x = 0,2 cos (2t + π), v = - 0,4 sen (2t + π), a 
= - 0,8 cos (2t + π) 
3 - a) 1J, b) 1 J 
4) a) 20 cm, b) 3,77 m/s ocorre na posição de equilíbrio, c) 71 m/s2 ocorre nos pontos de inversão 
do movimento (amplitude) 
5 – a) 4 s b) 1,57 s-1 ou π/2 c) 0,37 m d) x = 0,37 cos (π/2 t) e) v = - 0,58 sen (π/2 t) 
f) v = ± 0,58 cm/s g) a = ±0,91 cm/s2 h) x = 0 m i) v = 0,58 m/s. 
6) a) 7,96 Hz, b) 0,1256 s, c) 10 cm ou 0,1 m, d) 50 rad/s, e) 5 m/s, f) zero 
7) a) 40 m b) T = 25,13 s 
8) a) 200 N/m b) 1,39 kg c) 1,91 hz 
 
9) a) v (t) = -14,13 sen (3π/4 t + π/3) (b) a (t) = - 33,3 cos (3π/4 t + π/3) (c) v(2) = 7,065 
m/s (d) vmax = 14,13 m/s (d) (f) 25 J (g) 75 J (h) 100 J 
11 – 120 kg 
12 – a) 0,028 J, b) 0,014 m, c) 0,61 m/s 
13 – a) 0,25 s, b) o memso tempo, o período independe da amplitude. 
14 – a) 0,04 m, b) 1,2 m/s, c) 30 rad/s 
15 – a) 1,33 s, b) 0,764 cm, c) 16,9 cm/s2

Continue navegando