Buscar

As Moléculas Orgânicas TEMA4

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 3, do total de 76 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 6, do total de 76 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 9, do total de 76 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Prévia do material em texto

DESCRIÇÃO
A Química Orgânica e sua estruturação por meio das ligações químicas, ressonância, polaridade,
representação e geometria de suas moléculas; e o átomo de carbono como elemento determinante
para a sua identidade como um ramo da ciência Química.
PROPÓSITO
Compreender as características, representações e aplicações das estruturas moleculares baseadas
no átomo de carbono — estudo comumente conhecido como Química Orgânica — e reconhecer sua
importância para as áreas relacionadas à saúde e engenharia, tendo em vista as múltiplas
utilizações de seus compostos.
PREPARAÇÃO
Antes de iniciar o conteúdo, tenha em mãos uma tabela periódica atualizada.
OBJETIVOS
MÓDULO 1
Reconhecer as diferenças entre Química Orgânica e Inorgânica, o histórico e a importância das
moléculas orgânicas
MÓDULO 2
Identificar a configuração eletrônica das espécies químicas com a dos elétrons presentes na camada
de valência
MÓDULO 3
Reconhecer moléculas orgânicas em suas diferentes representações e o uso adequado das ligações
químicas envolvidas em sua construção
MÓDULO 4
Identificar as diferentes geometrias e o caráter polar ou apolar das moléculas orgânicas de acordo
com as configurações de suas estruturas
INTRODUÇÃO
Neste conteúdo, vamos aprender a reconhecer a Química Orgânica, suas aplicações, estruturas e
geometria de suas moléculas — conhecimentos fundamentais para a construção e manutenção da
vida e para inúmeras áreas, desde a indústria até a geração de energia.
Os campos de aplicação da Química Orgânica, por sua amplitude, tornam os compostos orgânicos
uma das classes químicas mais importantes tanto do ponto de vista biológico como econômico e
industrial.
Assim, iremos explorar as possibilidades de formação de ligações químicas e demais propriedades
que permitem a construção de moléculas orgânicas, visualizando suas geometrias, estruturas,
aplicações gerais e representações gráficas necessárias para a sua identificação como entidade
química.
MÓDULO 1
 Reconhecer as diferenças entre Química Orgânica e Inorgânica, o histórico e a
importância das moléculas orgânicas
QUÍMICA E TRANSFORMAÇÃO DA MATÉRIA
A Química é a ciência que busca estudar e entender a transformação da matéria, suas leis, o modo
como os átomos se ligam e como essas ligações são desconstruídas para formar novos compostos
por meio das reações químicas.
Estamos cercados de transformações químicas por todos os lados. O ato de respirar, as trocas
gasosas que ocorrem em nossos pulmões, as reações metabólicas em nosso organismo, a
formação e a quebra de proteínas em nosso corpo, a quebra das moléculas que compõem os
alimentos no processo digestivo, são todas modificações da matéria que envolvem
necessariamente reações químicas.
 
Fonte:Shutterstock
Mas as transformações químicas que cercam o nosso mundo podem ocorrer tanto em meios
biológicos quanto em ambientes não biológicos, ou seja, em ambientes industriais e externos que
não estão diretamente ligados aos organismos vivos. Há uma série de transformações cotidianas
que não estão envolvidas diretamente com a manutenção da vida, como a queima de
combustíveis fósseis, a cura e a secagem do concreto, os processos de refino de metais e a
sua oxidação, a produção de polímeros e plásticos industriais, entre inúmeros outros
processos.
 
Fonte: Shutterstock
A Química, como ciência, estabelece leis gerais aplicáveis em todos os casos de transformações
químicas, sejam as que envolvem a manutenção da vida, sejam as que não estão relacionadas com
essa finalidade.
As regras da Química são válidas para quaisquer tipos de reação.
VITALISMO E ORIGENS HISTÓRICAS DA
QUÍMICA ORGÂNICA
Se as leis gerais da Química podem ser aplicadas à toda matéria e suas transformações, por
que existe uma chamada de “Química Orgânica”?
 RESPOSTA
Por razões históricas, no desenvolvimento da Química como ciência, os primeiros estudiosos da
área, em meados do século XVIII, perceberam que compostos provenientes de organismos vivos
apresentavam características, propriedades e comportamentos diferentes de substâncias originárias
de meios minerais ou meios não orgânicos.
De uma forma geral, os compostos extraídos de animais e plantas apresentam maior dificuldade de
isolamento e de purificação e possibilidade de degradação mais acentuada, se comparamos com os
compostos de origem não biológica.

 
Torbern Bergman. Imagem: Ulrika Fredrika Pasch - Fotografia: Esquilo / Wikimedia Commons /
Domínio Público
No final do século XVIII, mas especificamente em 1770, o químico sueco Torbern Bergman (1735-
1784) estudou as diferenças entre os compostos provenientes de seres vivos (compostos orgânicos)
e compostos de origem não orgânica (compostos inorgânicos).
De forma errônea, Bergman e outros estudiosos da época acreditavam que os compostos orgânicos
não poderiam ser sintetizados em laboratórios por possuírem uma força vital, que impedia a sua
reprodução em meios artificiais (desprovidos de vida). A ideia da existência de uma força vital
nos compostos de origem em seres vivos foi chamada de vitalismo.
O vitalismo foi abandonado ao longo do século XIX, quando alguns estudiosos começaram a obter
moléculas orgânicas utilizando fontes inorgânicas como reagentes. Em 1828, Friedrich Wöhler
(1800-1882) sintetizou ureia (composto orgânico presente na urina) utilizando um reagente
inorgânico, o cianato de amônio. Essa rota reacional, representada a seguir, ficou conhecida como
síntese de Wöhler.
 
Friedrich Wöhler (1800 – 1882). Imagem: Rudolph Hoffmann / Wikimedia Commons / Domínio
Público.

REPRESENTAÇÃO REACIONAL DA SÍNTESE DE
WÖHLER
 
 
Imagem: Jü / Wikimedia Commons / Domínio Público. 
(cianato de amônio) + calor (ureia)
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
A importância dos compostos baseados no carbono, sua versatilidade e aplicações fizeram surgir
uma abordagem científica diferenciada, que recebeu a denominação geral de Química Orgânica.
Assim, podemos definir a Química Orgânica como o ramo da Química que estuda os
compostos cuja estrutura é formada, principalmente, por átomos de carbono.
 ATENÇÃO
Muito embora o carbono seja o principal elemento dos compostos orgânicos, a maioria também
contém hidrogênio e muitos contêm nitrogênio, oxigênio, fósforo, enxofre, cloro e outros elementos.
POR QUE MOTIVO O ÁTOMO DE CARBONO SE
CONFIGURA COMO PEÇA-CHAVE NA QUÍMICA
ORGÂNICA?
 
 RESPOSTA
Porque o carbono é o principal elemento para a formação de moléculas orgânicas. É tão primordial
que encontrar compostos de carbono em exoplanetas pode ser um indicativo de vida.
A posição do carbono na família 14 e no segundo período da tabela periódica dos elementos
químicos nos ajuda a entender a sua versatilidade e importância.
O carbono possui 6 prótons em seu núcleo e, consequentemente, este é o seu número atômico
(Z=6). Além disso, tem massa atômica igual à 12,0107 u. No seu estado fundamental, o carbono
possui 4 elétrons em sua camada de valência. É sua organização eletrônica que permite a
NH4NCO → (NH2)2CO
ocorrência do fenômeno chamado de hibridização de orbitais, o que aumenta a sua capacidade de
formar diferentes tipos de ligações: simples, duplas e triplas.
 
Imagem: Shutterstock.com - Adaptado por Lerik Lopes
 Elemento químico carbono na Tabela Periódica.
Desde compostos bastante simples que possuem 1 ou 2 átomos de carbono em sua estrutura, como
o metano (CH4) e o etano (C2H6), até moléculas complexas como o DNA e o RNA, vitaminas,
proteínas, plásticos e seus polímeros, combustíveis fósseis, tintas, vernizes e compostos industriais
dos mais diversos possuem em sua composição moléculas orgânicas.
APLICAÇÕES E IMPORTÂNCIA DA QUÍMICA
ORGÂNICA
MOLÉCULAS ORGÂNICAS E SERES VIVOS
 
Embora a ideia do vitalismo tenha sido abandonada a partir do século XIX, a Química Orgânica é
inequivocamente a química da vida. Isso porque encontramos compostos baseados em átomos
de carbono em todas as formas de vida,seja como função estrutural (os tecidos que compõem os
organismos são constituídos por moléculas orgânicas), seja como função não estrutural (moléculas
orgânicas participam dos processos metabólicos dos seres vivos).
Uma teoria bastante aceita para a origem da vida pressupõe que a presença de amônia (NH3),
dióxido de carbono (CO2), água, hidrogênio (H2) e gás metano (CH4) na atmosfera primitiva da Terra
tenha dado origem às primeiras proteínas através de reações entre esses componentes, quando a
atmosfera primitiva era bombardeada por descargas elétricas provenientes de raios.
Experimentos em laboratórios, que buscam reproduzir essa atmosfera embrionária da Terra, tiveram
sucesso em obter fragmentos de compostos orgânicos extremamente reativos capazes de se
recombinar formando moléculas orgânicas mais complexas, como aminoácidos e proteínas,
essenciais para a vida.
O composto metano, presente na atmosfera primordial, é uma das moléculas orgânicas mais
simples: possui 1 átomo de carbono central ligado a 4 hidrogênios. Esse composto é utilizado na
indústria petroquímica e é o principal componente do gás natural.
 
Imagem: Shutterstock.com. Adaptado por Lerik Lopes
 Molécula de metano (CH4), um dos compostos orgânicos mais simples.
 
Imagem: Shutterstock.com
 Estrutura complexa do DNA: primordial à manutenção da vida e à transmissão de características
genéticas aos seres vivos.
Diferentemente da simplicidade apresentada pela molécula do metano, o DNA (ácido
desoxirribonucleico), responsável por comandar todas as características genéticas dos seres vivos,
apresenta uma estrutura muito mais complexa. O DNA é composto por:
Um carboidrato com cinco átomos de carbono em sua estrutura (pentose, um tipo de açúcar).
Uma base nitrogenada que em sua estrutura comporta tanto átomos de carbono quanto de
nitrogênio.
Grupos fosfatos (grupo inorgânico).
Nesse ponto, você já deve ter percebido a importância de algumas moléculas orgânicas para a vida
e a diferença de complexidade entre elas. Mas outras moléculas orgânicas estão presentes no
nosso dia a dia, como a cafeína (C8H10N4O2) e a teobromina (C7H8N4O2), contidas no chocolate.
Os compostos orgânicos também constituem as drogas legalizadas, como o etanol (C2H5OH) e a
nicotina (C10H14N2), e as drogas ilícitas, como a cocaína (C17H21NO4) e o LSD-dietilamina de
ácido lisérgico (C20H25N3O).
 
Imagem: Shutterstock.com - Adaptado por Lerik Lopes
Molécula orgânica da cafeína, estimulante presente no café.
 
Imagem: Shutterstock.com - Adaptado por Lerik Lopes
Molécula orgânica da droga ilícita cocaína.
MOLÉCULAS ORGÂNICAS DERIVADAS DO
PETRÓLEO
Além das moléculas orgânicas diretamente ligadas à vida ou à sua manutenção, existem as
moléculas presentes em “compostos artificiais”, como os combustíveis derivados do petróleo, e em
produtos da indústria petroquímica, como os plásticos, que são polímeros industriais com longa
cadeia molecular baseada em carbono.
 SAIBA MAIS
Esses compostos, normalmente de baixo custo, ao mesmo tempo apresentam versatilidade de usos
para a vida moderna, mas também lançam desafios para a sua reciclagem e reaproveitamento.
Vejamos o petróleo, por exemplo. Ele é uma mistura complexa de compostos orgânicos. Nessa
grande mistura de moléculas orgânicas, existem desde compostos com apenas 1 carbono, como o
metano, até compostos de cadeias mais longas com 20, 30 ou mais carbonos em sua estrutura. O
processo de destilação do petróleo dá origem aos combustíveis fósseis como a gasolina, o diesel e
o querosene. Esses combustíveis, por sua vez, também são misturas mais leves e menos
complexas de moléculas orgânicas, adequadas ao processo de combustão. As transformações das
moléculas orgânicas presentes no petróleo dão origem a uma série de produtos da indústria
petroquímica que vão além dos combustíveis fósseis.
 
Imagem: Shutterstock.com - Adaptado por Lerik Lopes
 A indústria do petróleo e seus produtos
Também originários do petróleo, os diferentes plásticos são materiais classificados como orgânicos,
tendo em vista que têm a sua estrutura molecular baseada no átomo de carbono. Esses materiais
orgânicos, provenientes dos processos industriais de produção de polímeros não biodegradáveis,
provocam enormes problemas de poluição, sobretudo nos mares.
 SAIBA MAIS
Polímero é uma molécula com uma cadeia praticamente “infinita”, onde determinados grupamentos
químicos se repetem “n” vezes. Por esse motivo, a massa molecular de um polímero é bastante
elevada. O PET, por exemplo, tem a fórmula molecular representada por (C10H8O4)n, ou seja, uma
cadeia orgânica com 10 carbonos apresenta um número “n” de repetições, estruturando dessa forma
o composto polimérico. Os segmentos com 10 carbonos do PET são chamados de “monômeros”.
 
Imagem: Shutterstock.com
 Acúmulo de lixo plástico em uma praia próxima ao canal do Panamá, abril de 2015.
Um dos materiais plásticos mais utilizados pelo homem atualmente é o polímero orgânico
polietileno tereftalato (PET), principalmente na produção de recipientes para o armazenamento de
alimentos, sobretudo garrafas plásticas para bebidas. Embora apresente as vantagens de baixo
custo, baixo peso das embalagens, facilidade no transporte e resistência mecânica adequada ao seu
propósito, o PET representa atualmente um sério problema ambiental em razão de seus baixos
índices de reciclagem. As garrafas e embalagens PET não recicladas são descartadas
inadequadamente e levadas pelos fluxos de água, acumulando-se em praias, ilhas e oceanos.
 
Imagem: Shutterstock.com
 Fórmula estrutural PET mostrando os monômeros. 
Os átomos de carbono estão em cinza.
QUÍMICA ORGÂNICA: A QUÍMICA DA VIDA
Agora, o especialista apresentará a importância da Química Orgânica, bem como exemplos de
moléculas importantes para a vida tanto no desenvolvimento no campo das ciências da saúde, como
no ramo industrial e da engenharia química.
VERIFICANDO O APRENDIZADO
1. EM MEADOS DO SÉCULO XVIII, COM O DESENVOLVIMENTO DA QUÍMICA,
OS ESTUDIOSOS DESSA CIÊNCIA PERCEBERAM DIFERENÇAS NOTÁVEIS
ENTRE SUBSTÂNCIAS QUE SE ORIGINAVAM DE ORGANISMOS VIVOS E
SUBSTÂNCIAS DE ORIGEM MINERAL. EM VIRTUDE DE OBSERVAÇÕES
ACERCA DESSES COMPOSTOS ORIGINÁRIOS, FOI ESTABELECIDA A
CONCEPÇÃO DENOMINADA “VITALISMO”. A RESPEITO DO VITALISMO,
ASSINALE A ALTERNATIVA CORRETA:
A) De acordo com o vitalismo, todas as substâncias provenientes de organismos se comportariam
como os seres vivos individuais, com uma “vida própria” e contribuindo de forma coletiva para
existência do ser em questão.
B) De acordo com o vitalismo, não existe diferenciação química entre substâncias minerais e
substâncias de origem em seres vivos. As últimas teriam a denominação de “vitálicas” por serem
primordiais à vida.
C) De acordo com o vitalismo, as moléculas provenientes de seres vivos teriam uma “força vital”, o
que impediria que elas fossem obtidas a partir de compostos inorgânicos ou em ambiente de
laboratório.
D) O vitalismo, baseado nos princípios da alquimia, indicava que qualquer substância química
poderia se tornar parte de um ser vivo através da assimilação pela alimentação. Essas moléculas
seriam então convertidas em moléculas vitais e permaneceriam como parte integrante desse
organismo.
E) O vitalismo indicava que todas as moléculas presentes na face da Terra tiveram origem em seres
vivos; parte delas, ao deixarem os organismos, passavam a ser moléculas minerais, dando origem
aos compostos inorgânicos.
2. O ÓLEO CRU DO PETRÓLEO É UMA MISTURA COMPLEXA DE
MOLÉCULAS ORGÂNICAS COM DIFERENTES COMPRIMENTOS DE CADEIAS
CARBÔNICAS. APÓS OS PROCESSOS DE REFINO E DA INDUSTRIALIZAÇÃO
POR PROCESSOS PETROQUÍMICOS, O PETRÓLEO DÁ ORIGEM AOS
COMBUSTÍVEIS FÓSSEIS E OUTROS PRODUTOS COMO OS PLÁSTICOS. A
RESPEITO DOS PLÁSTICOS, PODEMOS AFIRMAR:
A) Embora sejam originados de uma mistura de compostos orgânicos, os plásticos são
considerados produtos inorgânicos, tendo em vista a sua origem artificial.
B) Os plásticos,de uma forma geral, apresentam cadeias curtas de moléculas orgânicas, o que
explica a sua facilidade de moldagem e conformação e de biodegradação.
C) Em virtude do alto valor agregado dos plásticos industriais, seu processo de reciclagem atinge
altos percentuais quando comparado à reciclagem de materiais metálicos, impedindo, dessa forma,
o acúmulo desses polímeros orgânicos na natureza.
D) O PET (polietileno tereftalato) tem sido utilizado como plástico preferencial para a produção de
embalagens, sobretudo garrafas de bebidas, pela sua leveza, facilidade de conformação, resistência
mecânica ao uso a que se aplica e baixo custo, embora represente um problema ambiental
decorrente de seu descarte inadequado.
E) Os plásticos, de forma geral, apesar de serem materiais muito caros, apresentam facilidade de
reaproveitamento muito superior a todos os outros materiais, como vidros e metais, justificando o
seu amplo uso atualmente.
GABARITO
1. Em meados do século XVIII, com o desenvolvimento da Química, os estudiosos dessa
ciência perceberam diferenças notáveis entre substâncias que se originavam de organismos
vivos e substâncias de origem mineral. Em virtude de observações acerca desses compostos
originários, foi estabelecida a concepção denominada “vitalismo”. A respeito do vitalismo,
assinale a alternativa correta:
A alternativa "C " está correta.
 
O vitalismo, corrente da Química de meados do século XVIII, partia de uma concepção errônea
sobre a impossibilidade de reproduzir compostos de origem nos seres vivos (compostos orgânicos)
a partir de reagentes inorgânicos. Essa impossibilidade se deveria à presença de uma espécie de
“força vital” nos compostos de origem nos seres vivos, o que levaria ao insucesso de produção
dessas substâncias a partir de reagentes inorgânicos ou minerais. No início do século XIX, alguns
químicos conseguiram a síntese de compostos orgânicos a partir de reagentes inorgânicos, levando
ao fim paulatino da ideia de vitalismo.
2. O óleo cru do petróleo é uma mistura complexa de moléculas orgânicas com diferentes
comprimentos de cadeias carbônicas. Após os processos de refino e da industrialização por
processos petroquímicos, o petróleo dá origem aos combustíveis fósseis e outros produtos
como os plásticos. A respeito dos plásticos, podemos afirmar:
A alternativa "D " está correta.
 
O PET é um plástico originário de um polímero produzido pela indústria petroquímica. Apresenta
uma cadeia longa, característica dos polímeros orgânicos. Em virtude de seu baixo custo e
propriedades químicas, físicas e mecânicas, é um dos plásticos mais utilizados para a produção de
embalagens, sobretudo garrafas para o armazenamento de bebidas. Um dos grandes problemas de
sua utilização reside no baixo índice de reciclagem, ocasionando o acúmulo desse material em
praias e oceanos.
MÓDULO 2
 Identificar a configuração eletrônica das espécies químicas com a dos elétrons presentes
na camada de valência
ESTRUTURA DO ÁTOMO E FORMAÇÃO DE
ÍONS
Tudo o que existe ao nosso redor é formado por matéria. A matéria, por sua vez, compreende um
número enorme de átomos que se conjugam através de ligações chamadas de ligações químicas.
 
Imagem: Shutterstock.com
 Representação de uma molécula mostrando os átomos esféricos e suas ligações.
MAS POR QUE OS ÁTOMOS SE LIGAM? QUAL A
JUSTIFICATIVA PARA QUE A MATÉRIA NÃO PASSE
DE UM GRANDE VOLUME DE ÁTOMOS DISPERSOS
E FLUTUANDO NO UNIVERSO?
 
 RESPOSTA
Para começarmos a responder a essas perguntas, devemos compreender como é a estrutura do
átomo. Existem partículas subatômicas com cargas positivas, negativas e neutras que dão a
identidade aos diferentes átomos. A maioria dos átomos, quando tratados isoladamente, não
possuem estabilidade como entidade química e, então, busca se conjugar a outros átomos através
de ligações para formar compostos estáveis.
O modelo atômico simplificado, adotado atualmente, descreve o átomo em duas regiões
principais: no núcleo e na região extranuclear.
NÚCLEO
Toda a carga positiva e praticamente toda a massa do átomo. Possui duas partículas: os
nêutrons (sem carga) e os prótons (carga positiva).
REGIÃO EXTRANUCLEAR
O restante do átomo. Composta de elétrons que são partículas com carga negativa.
 
Imagem: Shutterstock.com
 O núcleo é a região central que está cercada pela região extranuclear.
O número atômico (Z) de um determinado elemento químico configura a identidade do elemento,
tendo em vista que representa a quantidade de prótons em seu núcleo. Em um átomo neutro, o
número de elétrons na região extranuclear é igual ao número de prótons presentes no núcleo.
javascript:void(0)
javascript:void(0)
 
Imagem: Shutterstock.com - Adaptado por Lerik Lopes
 Partículas presentes nos átomos e suas cargas.
Um átomo, no entanto, pode adquirir carga geral positiva ou negativa. O aparecimento de uma
carga se dá pelo ganho ou pela perda de elétrons na região extranuclear.
OS ÍONS SÃO PARTÍCULAS CARREGADAS
POSITIVAMENTE OU NEGATIVAMENTE.
 
 Escolha um dos ítens a seguir.
ÁTOMO CARREGADO POSITIVAMENTE
ÁTOMO CARREGADO NEGATIVAMENTE
Ocorre pela perda de elétrons. É chamado de cátion.
 
Imagem: Bruno Cavalcante Di Lello. Adaptado por Lerik Lopes
Ocorre pelo ganho de elétrons. É chamado de ânion.
 
Imagem: Bruno Cavalcante Di Lello. Adaptado por Lerik Lopes
ORGANIZAÇÃO ELETRÔNICA DOS
ELÉTRONS NA REGIÃO EXTRANUCLEAR
Neste ponto, é importante salientar que os elétrons que se encontram na região extranuclear são
distribuídos de acordo com regras bem estabelecidas e não de forma aleatória.
Para começarmos a entender os mecanismos de ligação química e, mais adiante, as ligações
envolvidas nas moléculas orgânicas, precisamos entender como os elétrons se encontram em um
átomo.
Embora haja a limitação imposta pelo Princípio de Incerteza de Heinsenberg, podemos descrever,
em termos práticos, como se encontram os elétrons na camada extranuclear. Essa descrição é dada
por um conjunto de informações relacionadas aos números quânticos dos elétrons.
 SAIBA MAIS
Em 1927, o físico alemão Werner Heisenberg desenvolveu uma relação importante que mostra a
existência de uma limitação rígida e natural em nossa capacidade de aprender e descrever o
movimento de partículas extremamente pequenas. O Princípio de Incerteza de Heinsenberg
estabelece que é impossível conhecer simultaneamente e com certeza a posição e o momento
de uma pequena partícula como um elétron.
Existem quatro números quânticos e cada um está relacionado a uma informação referente aos
elétrons presentes no átomo. Vamos aos números quânticos!
NÚMEROS QUÂNTICOS
Número quântico principal (n) — Camadas ou níveis
As camadas eletrônicas de um átomo representam o número quântico principal, n. Existem sete
camadas eletrônicas, dentro das quais se acomodam os elétrons ao redor do núcleo. Estas
camadas são representadas por letras e possuem um número quântico correspondente: K (n=1), L
(n=2), M (n=3), N (n=4), O (n=5), P (n=6) e Q (n=7), sendo K a camada mais próxima do núcleo e Q
a camada mais distante.
 
Imagem: Bruno Cavalcante Di Lello. Adaptado por Lerik Lopes
 Os níveis eletrônicos de um átomo.
NÚMERO QUÂNTICO SECUNDÁRIO OU AZIMUTAL
(ℓ) — AS SUBCAMADAS
 
As subcamadas são agrupamentos dos orbitais dentro dos quais se encontram os elétrons. Cada
camada eletrônica contém uma ou mais subcamadas. 
As subcamadas necessárias para agrupar os orbitais nos átomos em seus estados fundamentais
são descritas pelas letras s, p, d e f. Nas camadas “n”, há subcamadas, como mostra a imagem a
seguir:
 
Imagem: Bruno Cavalcante Di Lello. Adaptado por Lerik Lopes
 Representação das camadas e subcamadas eletrônicas.
Camada
energética (“n”)
Subcamadas presentes nas camadas eletrônicas dos átomos em
seus estados fundamentais (“ℓ”)
1 s 
2 s p 
3 s p d 
4 s p d f
5 s p d f
6 s p d 
7 s
Quadro: Camada energética e suas subcamadas.
 Atenção! Para visualização completa da tabela utilize a rolagemhorizontal
Cada subcamada corresponde a um número quântico secundário específico (“ℓ”) e acomoda um
número máximo de elétrons. Assim, temos:
Número quântico secundário
(“ℓ”)
Subcamada
correspondente
Número máximo de
elétrons
0 s 2
1 p 6
2 d 10
3 f 14
Quadro: Elaborado porBruno Cavalcante Di Lello.
 Atenção! Para visualização completa da tabela utilize a rolagem horizontal
Neste ponto, devemos abordar um conceito importante para a distribuição dos elétrons: o subnível.
Ele é identificado pela subcamada e pelo nível em que se encontra um determinado elétron, por
exemplo:
SUBNÍVEL 1S → CAMADA 1 (K), SUBCAMADA S
SUBNÍVEL 2P → CAMADA 2 (L), SUBCAMADA P
SUBNÍVEL 4D → CAMADA 4 (N), SUBCAMADA D
Número quântico magnético (mℓ) — Os orbitais
Os orbitais correspondem aos estados individuais que podem ser ocupados pelo elétron em um
átomo. O número quântico magnético que representa esses orbitais varia de - ℓ à +ℓ.
Para fins de simplificação e compreensão inicial, os orbitais presentes em cada subcamada serão
representados graficamente conforme a figura a seguir. Observe que na parte inferior dos orbitais
estão descritos os seus respectivos números quânticos magnéticos (mℓ):
 
Imagem: Bruno Cavalcante Di Lello. Adaptado por Lerik Lopes
 Representação simplificada dos orbitais presentes em cada subcamada.
Número quântico spin (ms)
Refere-se à rotação de um elétron em um orbital. Um elétron pode ter uma rotação anti-horária ou
horária. Ao se acomodar dois elétrons em um único orbital, estes devem ter spins opostos, para
minimizar a repulsão, tendo em vista que ambos possuem carga negativa.
 
Imagem: BROWN, 2016, p. 246.
 Spin do elétron.
O elétron em um orbital é representado de forma simplificada por uma “meia seta” orientada para
cima (ms = +1/2) ou para baixo (ms = -1/2).
Considerando um elétron no orbital e o seu spin, temos a seguinte representação:
 
Imagem: Bruno Cavalcante Di Lello. Adaptado por Lerik Lopes
Agora que já vimos como a região extranuclear é organizada, vamos entender como os elétrons
estão ali distribuídos.
DISTRIBUIÇÃO ELETRÔNICA
Os elétrons são acomodados nos subníveis por ordem crescente de energia. O Diagrama de
Pauling mostra a ordem de preenchimento, conforme a figura a seguir.
 
Imagem: Bruno Cavalcante Di Lello. Adaptado por Lerik Lopes
 Diagrama de Pauling: diagrama dos elétrons em um átomo em seus subníveis de energia.
Utilizando o Diagrama de Pauling, é fácil estabelecer um ordenamento dos elétrons na região
extranuclear. Observe que há oito diagonais, ordenadas de 1 até 8. Essas diagonais, representadas
por setas, “cortam” os subníveis (representados pela camada, pela subcamada e por seu número
máximo de elétrons). Cada uma das oito diagonais representa um nível crescente de energia.
Obedecendo a sequência crescente das diagonais de 1 até 8, temos a seguinte ordem de
preenchimento eletrônico na região extranuclear:
 
Imagem: Bruno Cavalcante Di Lello. Adaptado por Lerik Lopes
 Ordem de preenchimento dos subníveis energéticos na região extranuclear.
Vamos verificar agora como fica a distribuição eletrônica na região extranuclear para átomos neutros
e a representação dos elétrons nos orbitais com os seus spins. Veja os exemplos a seguir.
Para um átomo neutro, deve-se contabilizar seus elétrons e distribuí-los de acordo com a ordem de
preenchimento do diagrama energético. O preenchimento nos orbitais eletrônicos deve observar a
Regra de Hund.
REGRA DE HUND
Segundo a Regra de Hund, os elétrons numa mesma subcamada tendem a permanecer
desemparelhados (em orbitais separados) com spins paralelos.
EXEMPLO 1
A distribuição do átomo de carbono deve ser assim:
 
Imagem: Bruno Cavalcante Di Lello. Adaptado por Lerik Lopes
EXEMPLO 2
O elemento nitrogênio possui sete elétrons em sua região extranuclear que serão distribuídos da
seguinte forma:
javascript:void(0)
 
Imagem: Bruno Cavalcante Di Lello. Adaptado por Lerik Lopes
EXEMPLO 3
Para o elemento oxigênio, considerando um átomo neutro, há oito elétrons em sua região
extranuclear que serão distribuídos da seguinte forma:
 
Imagem: Bruno Cavalcante Di Lello. Adaptado por Lerik Lopes
MODELOS DE LIGAÇÃO QUÍMICA
A partir do entendimento da distribuição eletrônica em seus subníveis, devemos nos deter nos
elétrons da camada de valência e ter em vista que as ligações químicas ocorrem envolvendo os
elétrons que se localizam na camada de valência.
Existem três modelos atualmente aceitos para a ligação química: a ligação iônica, a ligação
metálica e a ligação covalente.
Resumidamente, cada modelo de ligação química tem as seguintes características:
 Clique nos cards a seguir.
LIGAÇÃO IÔNICA
LIGAÇÃO METÁLICA
LIGAÇÃO COVALENTE
Ocorre entre íons e é explicada, de uma forma simplificada, pela atração eletrostática entre as
espécies de cargas opostas, isto é, cátions e ânions. Este modelo é aplicado aos elementos
metálicos que se ionizam formando cátions e aos ametais que, quando se ionizam, formam ânions.
Ocorre entre os elementos metálicos. Por este modelo, os núcleos metálicos dos participantes da
ligação, carregados positivamente, encontram-se “mergulhados” na região extranuclear coletiva dos
átomos presentes, carregados negativamente com seus elétrons. Assim, há uma estabilização
mútua dos núcleos com os elétrons envolvendo todos os átomos participantes.
Ocorre quando um ou mais átomos participantes compartilham pares de elétrons, de forma que
passam a integrar simultaneamente as camadas de valência dos átomos presentes na ligação até
que haja estabilidade eletrônica. Esse tipo de ligação envolve os átomos dos ametais. As ligações
covalentes são as responsáveis por estruturar as moléculas orgânicas.
Para fins de entendimento das ligações envolvidas nas moléculas orgânicas, no próximo módulo
exploraremos com maiores detalhes as características das ligações covalentes.
DISTRIBUIÇÃO ELETRÔNICA, LIGAÇÕES
QUÍMICAS E A REGRA DO OCTETO
Mas, antes, o especialista apresentará a relação entre a configuração dos elementos e sua
estabilidade, relacionando-a com a formação de ligações químicas.
VERIFICANDO O APRENDIZADO
1. AO LONGO DO DESENVOLVIMENTO DA QUÍMICA, DIFERENTES MODELOS
PARA A REPRESENTAÇÃO DO ÁTOMO E DE SUAS PARTÍCULAS FORAM
PROPOSTOS. DE ACORDO COM A REPRESENTAÇÃO ATUAL, EXISTEM
DUAS REGIÕES PRINCIPAIS, NAS QUAIS SÃO ENCONTRADAS AS
PARTÍCULAS SUBATÔMICAS. A RESPEITO DAS DIFERENTES REGIÕES DOS
ÁTOMOS E DAS CARACTERÍSTICAS DE SUAS PARTÍCULAS, ASSINALE A
ALTERNATIVA CORRETA:
A) O átomo apresenta um núcleo que contém elétrons com carga negativa e prótons com carga
positiva. Além do núcleo, existe a região extranuclear que contém os nêutrons, partículas sem
carga elétrica.
B) O átomo apresenta um núcleo que contém elétrons com carga negativa e nêutrons, partículas
sem carga elétrica. Além do núcleo, existe a região extranuclear que contém os prótons, partículas
com carga positiva.
C) O átomo apresenta duas regiões: um núcleo que contém apenas partículas sem cargas,
chamadas de nêutrons; e uma região extranuclear onde se encontram os elétrons que possuem
carga positiva e os prótons, que possuem carga negativa.
D) O átomo apresenta duas regiões: um núcleo, que contém partículas sem cargas, chamadas de
nêutrons, e partículas negativas, chamadas de prótons; além de uma região extranuclear onde se
encontram os elétrons que possuem carga positiva.
E) O átomo apresenta duas regiões: um núcleo, que contém partículas sem cargas, chamadas de
nêutrons, e partículas positivas, chamadas de prótons; além de uma região extranuclear onde se
encontram os elétrons que possuem carga negativa.
2. EXISTEM TRÊS MODELOS PARA A LIGAÇÃO QUÍMICA: A LIGAÇÃO
IÔNICA, A LIGAÇÃO METÁLICA E A LIGAÇÃO COVALENTE. OS COMPOSTOS
ORGÂNICOS APRESENTAM ÁTOMOS DE CARBONO QUE SE LIGAM COM
ÁTOMOS DE AMETAIS COMO HIDROGÊNIO, NITROGÊNIO, CLORO,
OXIGÊNIO EM BOA PARTE DE MOLÉCULAS IMPORTANTES PARA A
MANUTENÇÃO DA VIDA, COMO O DNA E A CLOROFILA. ESSAS
MOLÉCULAS SEESTRUTURAM PREDOMINANTEMENTE EM LIGAÇÕES QUE
COMPARTILHAM ELÉTRONS. A RESPEITO DAS MOLÉCULAS ORGÂNICAS,
ASSINALE A OPÇÃO CORRETA EM RELAÇÃO ÀS LIGAÇÕES.
A) As ligações iônicas são as predominantes na estruturação das moléculas orgânicas em virtude da
facilidade do átomo de carbono em se ionizar, permitindo a sua conjugação com a maioria dos
elementos da tabela periódica.
B) Embora seja um ametal, o carbono tem facilidade em formar ligações com caráter metálico, tendo
em vista que possui duas camadas eletrônicas com orbitais s e p presentes.
C) As ligações presentes nas moléculas orgânicas podem ser metálicas ou covalentes, tendo em
vista o comportamento dos elétrons do átomo de carbono que se apresentam bastante próximos ao
núcleo do elemento, provocando estabilização com os prótons e favorecendo esses modelos de
ligação.
D) Tendo em vista a participação predominante de ametais e o compartilhamento de elétrons entre
os participantes, a ligação estruturante dos compostos orgânicos é a ligação covalente.
E) Uma mesma molécula orgânica pode apresentar ao mesmo tempo os três modelos de ligação,
dependendo dos átomos que se ligam ao carbono.
GABARITO
1. Ao longo do desenvolvimento da Química, diferentes modelos para a representação do
átomo e de suas partículas foram propostos. De acordo com a representação atual, existem
duas regiões principais, nas quais são encontradas as partículas subatômicas. A respeito das
diferentes regiões dos átomos e das características de suas partículas, assinale a alternativa
correta:
A alternativa "E " está correta.
 
Existem três partículas subatômicas: prótons (carga +), elétrons (carga -) e os nêutrons (não
possuem carga elétrica). Essas partículas se distribuem em duas regiões: 
1) núcleo, onde se localizam os prótons e os nêutrons; 
2) região extranuclear, onde se localizam os elétrons.
2. Existem três modelos para a ligação química: a ligação iônica, a ligação metálica e a
ligação covalente. Os compostos orgânicos apresentam átomos de carbono que se ligam
com átomos de ametais como hidrogênio, nitrogênio, cloro, oxigênio em boa parte de
moléculas importantes para a manutenção da vida, como o DNA e a clorofila. Essas
moléculas se estruturam predominantemente em ligações que compartilham elétrons. A
respeito das moléculas orgânicas, assinale a opção correta em relação às ligações.
A alternativa "D " está correta.
 
O modelo da ligação covalente é baseado no compartilhamento de elétrons. Nos compostos
orgânicos, os elementos participantes da ligação são ametais que não possuem a tendência de se
ionizarem entre si, formando cátions e ânions, mas de compartilharem pares de elétrons que
configuram as ligações covalentes.
MÓDULO 3
 Reconhecer moléculas orgânicas em suas diferentes representações e o uso adequado
das ligações químicas envolvidas em sua construção
LIGAÇÃO COVALENTE NAS MOLÉCULAS
ORGÂNICAS E REPRESENTAÇÕES DE LEWIS
E KEKULÉ
Para compreendermos como a ligação química covalente se estabelece, precisamos visualizar os
elétrons de valência dos átomos que participarão da ligação. Para isso, utilizaremos uma
representação denominada “estrutura de Lewis”.
A estrutura de Lewis de um átomo utiliza o símbolo químico desse átomo cercado de seus elétrons
de valência representados por “·”
Vejamos as estruturas de Lewis para o hidrogênio (H), carbono (C), nitrogênio (N), oxigênio (O) e
cloro (Cl):
 
Elaborado por: Bruno Cavalcante Di Lello
 Quadro: Estruturas de Lewis para o hidrogênio (H), carbono (C), nitrogênio (N), oxigênio (O) e
cloro (Cl).
Esses elétrons, representados nas estruturas de Lewis, serão compartilhados com outros átomos,
formando pares eletrônicos até que as camadas de valência de cada participante alcancem 8
elétrons (Regra do Octeto).
As estruturas de Lewis representam átomos e seus elétrons, além dos compostos formados pela
ligação entre esses átomos. Assim, podemos representar alguns compostos covalentes utilizando
estruturas de Lewis. Vejamos alguns exemplos:
EXEMPLO 1 - MOLÉCULA DA ÁGUA (H2O)
Na molécula da água, o oxigênio apresenta 6 elétrons de valência, necessitando de 2 elétrons para
a estabilização eletrônica. Cada hidrogênio ligado ao oxigênio fica estabilizado compartilhando seu
único elétron.
 
Observe que na molécula de água, há 2 pares de elétrons que participam da ligação entre o
oxigênio e o hidrogênio e há também 2 pares de elétrons na camada de valência do oxigênio que
não estão ligados a nenhum átomo. Esses pares que não participam da ligação são chamados de
pares de elétrons não ligantes.
 
Imagem: Shutterstock.com - Adaptado por Bruno Di Lello e Lerik Lopes
 Estrutura de Lewis para molécula da água.
EXEMPLO 2 — MOLÉCULA DO METANO CH4
Na molécula de metano, temos o carbono como o átomo central. E como o carbono apresenta 4
elétrons em sua camada de valência, para alcançar o octeto, compartilha cada um deles com 1
elétron de átomos de hidrogênio, formando 4 ligações covalentes.
 
No caso do metano, todos os pares de elétrons participam das ligações.
 
Imagem: Shutterstock.com - Adaptado por Bruno Di Lello e Lerik Lopes
 Estrutura de Lewis para a molécula do metano.
EXEMPLO 3 — MOLÉCULA DA AMÔNIA (NH3)
O nitrogênio apresenta 5 elétrons em sua camada de valência, necessitando de 3 ligações
covalentes para alcançar o octeto.
 
Imagem: Shutterstock.com - Adaptado por Bruno Di Lello e Lerik Lopes
 Estrutura de Lewis para a molécula da amônia.
 
Fonte: Shutterstock.com
 Representação de Kekulé para o composto orgânico benzeno.
As ligações covalentes podem ser representadas por traços e levam a uma fórmula típica e plana de
um composto. A representação por traços também é chamada de fórmula de Kekulé.
 
Imagem: Shutterstock.com - Adaptado por Lerik Lopes
 Estruturas espaciais e representação de Kekulé para metano, etano e propano.
As representações de Lewis e de Kekulé mostram as moléculas de forma plana. Entretanto, as
moléculas têm uma geometria tridimensional, como apresentado na figura.
Agora que vimos como as ligações covalentes são representadas, vamos estudar mais
profundamente como são formadas.
TEORIA DA LIGAÇÃO DE VALÊNCIA (LV)
Com base no entendimento de que os orbitais são regiões do espaço que os elétrons ocupam, a
teoria de ligação de valência (LV) prevê que uma ligação química covalente é decorrente da
sobreposição de densidades eletrônicas de dois átomos, e esta sobreposição é o resultado
da interferência construtiva dos seus orbitais. Vejamos como isso ocorre, especialmente com os
orbitais s e p.
Espacialmente, a maior probabilidade de se encontrar um elétron num orbital s é em uma “nuvem
eletrônica” descrita como uma esfera.
Representação espacial do orbital s
 Clique nas figuras abaixo para ver as informações.
Eixos geométricos
javascript:void(0)
Região esférica do orbital s
Os orbitais p, por sua vez, apresentam a região mais provável para encontrar os elétrons distribuída
em “lóbulos” localizados nos três eixos geométricos. Os elétrons da subcamada p estão distribuídos
nessa região. Cada lóbulo que se encontra nos eixos x, y e z são denominados, respectivamente, px
py e pz.
 
Imagem: Bruno Cavalcante Di Lello. Adaptado por Lerik Lopes
Representação espacial do orbital px.
 
Imagem: Bruno Cavalcante Di Lello. Adaptado por Lerik Lopes
javascript:void(0)
Representação espacial do orbital py
 
Imagem: Bruno Cavalcante Di Lello. Adaptado por Lerik Lopes
Representação espacial do orbital pz
De acordo com a teoria LV, os elétrons p que participarão da ligação covalente se encontram nos
orbitais descritos geometricamente nos eixos x, y e z nos seus respectivos átomos. Para realizar
uma ligação covalente, esses orbitais dos átomos participantes devem se sobrepor, compartilhando
os elétrons numa região comum aos dois átomos. Isso também é válido para elétrons que se
encontram nos orbitais s.
Assim, a ligação covalente ocorre entre os pares de elétrons que se encontrarão na região desobreposição dos orbitais dos átomos participantes.
Uma ligação simples é realizada por apenas 1 compartilhamento do par de elétrons na região
sobreposta dos orbitais dos átomos participantes. A ligação simples apresenta uma sobreposição de
orbitais axial e é denominada ligação sigma, σ.
Veja o exemplo para uma molécula de gás hidrogênio, H2, com a formação de uma ligação σ.
 
Bruno Cavalcante Di Lello - Adaptado por Lerik Lopes
 Representação simplificada para uma ligação utilizando os orbitais s de dois átomos na molécula
do gás hidrogênio, H2. Sobreposição de orbitais s.
Havendo sobreposição significativa dos orbitais de cada um dos átomos, os elétrons irão se
emparelhar no espaço tridimensional. Assim, espacialmente, os elétrons dos orbitais s de ambos os
átomos são compartilhados em uma região comum, alinhando-se de forma axial (eixo de ligação),
conforme a figura a seguir.
 
Imagem: Bruno Cavalcante Di Lello. Adaptado por Lerik Lopes
As ligações sigma também são formadas pela sobreposição de orbitais s com orbitais p. Assim,
compostos como HF apresentam ligação sigma com esse tipo de sobreposição.
Para o composto HF, teremos:
 
Imagem: Bruno Cavalcante Di Lello. Adaptado por Lerik Lopes
A sobreposição de orbitais p de dois átomos para formar uma ligação covalente simples tem simetria
axial e leva a uma ligação sigma, como no caso de moléculas de gás flúor (F2).
Observe que as ligações simples formadas quando há sobreposição de dois orbitais s, orbitais s e p
ou de orbitais p e p dos átomos participantes são denominadas ligações sigma. As ligações sigma
têm orientação axial em relação aos orbitais envolvidos.
Essas ligações σ se desenvolvem, por convenção, no eixo geométrico “x” entre os átomos
participantes.
 
Imagem: Bruno Cavalcante Di Lello. Adaptado por Lerik Lopes
 Ligações sigma entre orbitais s e s, s e p, p e p.
As ligações que se formam além da primeira ligação sigma são denominadas ligações “pi” (π). As
ligações π estão presentes nas ligações múltiplas e elas são o resultado da sobreposição lateral de
orbitais p. Veja na figura a seguir a representação da sobreposição de orbitais que acontecem entre
orbitais do tipo p.
 
Imagem: Bruno Cavalcante Di Lello. Adaptado por Lerik Lopes
 Orbitais p envolvidos nas ligações .
Além dos compostos orgânicos, outras moléculas que apresentam ligações duplas e triplas
covalentes terão necessariamente a presença da ligação π.
Exemplos de ligações em moléculas inorgânicas:
 
Imagem: Bruno Cavalcante Di Lello. Adaptado por Lerik Lopes.
σ e π
σ e π
HIBRIDIZAÇÃO DE ORBITAIS NOS ÁTOMOS
DE CARBONO
Em alguns compostos, observa-se a existência de orbitais mistos ou hibridizados, que são a
conjunção de diferentes tipos de orbitais. Para a química do carbono, veremos a descrição de três
hibridizações importantes que influenciam diretamente a estrutura e a geometria de diferentes
moléculas orgânicas.
HIBRIDIZAÇÃO SP3
Os orbitais hibridizados sp3 são formados a partir de um orbital 2s e três orbitais 2p de um mesmo
átomo. Este tipo de hibridização ocorre no átomo de carbono durante a formação de seus
compostos que apresentam somente ligações σ, como o CH4.
O carbono no estado fundamental tem a seguinte configuração:
 
Imagem: Bruno Cavalcante Di Lello. Adaptado por Lerik Lopes.
Essa configuração não satisfaz a estrutura do CH4, pois apresenta apenas dois orbitais moleculares
capazes de fazer ligações covalentes, além de não justificar a sua geometria tridimensional. Como,
então, podemos justificar a tetravalência (capacidade de fazer quatro ligações) e a geometria
tetraédrica do carbono sp3?
Esse questionamento pode ser resolvido se pensarmos no carbono em estado excitado, onde um
elétron presente no orbital 2s do carbono é promovido para o orbital 2p vazio. Desta forma, na
camada de valência o carbono passa a ter quatro elétrons desemparelhados, como mostra a figura
ao lado. Cada um desses elétrons está envolvido na formação de ligações covalentes.
 
Imagem: Imagem: KLEIN, 2016.
 Representação da excitação eletrônica de um átomo de carbono.
O fenômeno da excitação eletrônica explica o motivo pelo qual o carbono faz quatro ligações
covalentes. Mas a justificativa para a geometria do carbono sp3 foi proposta por Linus Pauling no
início da década de 1930. Matematicamente, Pauling calculou a média do orbital 2s e dos três
orbitais 2p. O resultado deste cálculo sugere a formação de quatro novos orbitais atômicos
hibridizados degenerados, em que seu formato possui 25% das características do orbital s e 75%
são características oriundas dos orbitais p. Veja o esquema a seguir.
HIBRIDIZADOS DEGENERADOS
Em Química, o termo “orbitais degenerados” significa orbitais com energias equivalentes.
 
Imagem: KLEIN, 2016.
Orbital sp3.
javascript:void(0)
 
Imagem: KLEIN, 2016.
Formação dos quatro orbitais sp3 degenerados.
 ATENÇÃO
A hibridização não é um fenômeno fisicamente representado. É uma previsão matemática que
descreve satisfatoriamente a ligação observada. Por serem energeticamente equivalentes, os
orbitais sp3 se distanciam o máximo possível um do outro, alcançando uma configuração tetraédrica,
com ângulos de 109,5 °.
 
Imagem: Shutterstock.com.
 Orbitais sp3 com uma configuração geometria tetraédrica.
Assim, um carbono ligado a quatro átomos de hidrogênio, na molécula de CH4, apresenta a seguinte
configuração:
 
Imagem: Bruno Cavalcante Di Lello. Adaptado por Lerik Lopes.
Uma vez que, na molécula do metano, cada orbital sp3 forma uma ligação do tipo σ com orbitais s
do hidrogênio, a sua configuração espacial será tetraédrica, com o átomo de carbono como
elemento central e os átomos de hidrogênio localizando-se nos vértices. Na figura ao lado, você
pode observar a representação da geometria tridimensional tetraédrica do metano.
 
Imagem: Bruno Cavalcante Di Lello. Adaptado por Lerik Lopes.
 Configuração espacial da molécula de metano.
HIBRIDIZAÇÃO SP2
Outro tipo de hibridização do carbono é denominado hibridização sp2. Ocorre a conjunção entre um
orbital 2s e dois orbitais 2p. Neste processo, são formados três orbitais sp2 degenerados e um
orbital p não é afetado, conforme exemplificado a seguir:
 
Imagem: KLEIN, 2016.
 Formação dos orbitais degenerados sp2.
O formato de um orbital sp2 apresenta 33% da característica do orbital s e 67% da característica do
orbital p. 
O carbono sp2 é capaz de realizar três ligações do tipo por meio dos orbitais sp2. O orbital p não
hibridizado será responsável pela formação de uma ligação π.
σ
 
Imagem: Bruno Cavalcante Di Lello. Adaptado por Lerik Lopes.
Assim, a partir da hibridização sp2 o átomo de carbono poderá realizar uma ligação dupla mais
duas ligações simples. A geometria em torno do carbono em hibridização sp2 é trigonal plana,
com ângulo entre as ligações de aproximadamente 120o, como podemos observar na estrutura do
eteno.
 
Imagem: Shutterstock.com
 Hibridização sp2 nos carbonos da molécula de eteno.
ORBITAIS HIBRIDIZADOS SP
O carbono pode apresentar mais um tipo de hibridização de seus orbitais denominado sp. Na
hibridização sp, ocorre a conjunção entre um orbital 2s e um orbital 2p. O formato do orbital sp
apresenta 50% de suas características oriundas do orbital 2s e 50% provenientes do orbital 2p.
Como apenas um orbital do tipo 2s e um 2p sofrem hibridização, dois orbitais 2p ficam inalterados.
Assim, o carbono sp é capaz de fazer duas ligações do tipo e duas ligações do tipo π:σ
 
Imagem: Bruno Cavalcante Di Lello. Adaptado por Lerik Lopes.
Vejamos o exemplo da molécula orgânica do etino, C2H2. Nela, ambos os carbonos possuem
hibridização do tipo sp. Eles estão ligados entre si em um ângulo de 180° por uma ligação tripla, que
é constituída por uma ligação σ e duas ligações π (resultantes da sobreposição dos orbitais py – py
e pz – pz que não sofreram hibridização). Observe que cada um desses carbonos faz também uma
ligação σ com um átomo de hidrogênio pormeio de sobreposições sp-s.
 
Imagem: Bruno Cavalcante Di Lello. Adaptado por Lerik Lopes.
MOLÉCULA DE ETINO.
 
Imagem: Bruno Cavalcante Di Lello. Adaptado por Lerik Lopes.
SOBREPOSIÇÃO DOS ORBITAIS P, FORMANDO AS
LIGAÇÕES Σ E Π DO ETINO.
Em cada tipo de hibridização, os orbitais têm disposições espaciais diferentes que vão determinar a
forma geométrica tridimensional do átomo. Os ângulos formados entre os orbitais hibridizados e,
consequentemente, entre as ligações do tipo são os seguintes:
SP3
– ângulo entre as ligações de 109,5° – geometria tetraédrica.
SP2
– ângulo entre as ligações de 120° 
– geometria trigonal plana.
SP
– ângulo entre as ligações de 180° 
– geometria linear.
Observe a forma geométrica tridimensional para cada uma das hibridizações.
 
Imagem: Bruno Cavalcante Di Lello. Adaptado por Lerik Lopes.
Geometria tridimensional dos orbitais hibridizados sp3.
 
Imagem: Bruno Cavalcante Di Lello. Adaptado por Lerik Lopes.
Geometria tridimensional dos orbitais hibridizados sp2.
 
Imagem: Bruno Cavalcante Di Lello. Adaptado por Lerik Lopes.
Geometria tridimensional dos orbitais hibridizados sp.
σ
TEORIA DO ORBITAL MOLECULAR (OM)
Uma outra abordagem para a formação de ligações covalentes é a teoria do orbital molecular (OM).
Essa teoria assume que os orbitais atômicos são substituídos por um novo conjunto de níveis
energéticos na molécula chamados de orbitais moleculares.
A teoria OM utiliza a ordem da ligação para estabelecer a probabilidade de existência de uma
molécula. De acordo com essa teoria, os elétrons de dois átomos são distribuídos em orbitais
moleculares ligantes e antiligantes.
 ATENÇÃO
Orbitais ligantes, com níveis energéticos menores, são favoráveis para estabelecer uma ligação.
Orbitais antiligantes, com níveis energéticos mais altos, são desfavoráveis para estabelecer uma
ligação.
Os orbitais ligantes possuem menos energia do que os orbitais atômicos, isto é, os orbitais originais
dos átomos participantes. Por isso, os elétrons da ligação covalente se localizam preferencialmente
nestes orbitais moleculares ligantes.
Há uma diferença conceitual importante entre a teoria OM e a teoria LV:
Teoria OM
Na teoria OM, são formados orbitais novos, chamados de orbitais moleculares, com um
comportamento diferente dos orbitais atômicos e com seus próprios níveis de energia.
Teoria LV
Pela teoria LV, os orbitais atômicos são sobrepostos e a ligação covalente ocorre na sobreposição
desses orbitais.
De acordo com a teoria OM, a ordem de uma ligação é uma contabilização entre o número de
elétrons localizados nos orbitais ligantes e o número de elétrons nos orbitais antiligantes.
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
Ordem   da  ligação =   elétrons  nos   orbitais  ligantes−elétrons  nos   orbit
2
Para que uma reação química covalente se estabeleça, é necessário que a ordem da ligação seja
diferente de zero, isto é, o total de elétrons ligantes deve ser maior que o total de elétrons
antiligantes.
 A ordem da ligação estabelece o número de pares de elétrons presentes numa ligação covalente.
As moléculas de Cl2, O2 e N2 são formadas por ligações simples, dupla e tripla, respectivamente.
Quadro: Elaborado por Bruno Cavalcante Di Lello.
O diagrama de energia para o orbital molecular, em uma ligação simples, mostra os orbitais
ligantes σ e antiligantes σ*. Para uma molécula de H2, cada átomo de H possui um orbital
atômico 1s, cada um com apenas 1 elétron.
O par de elétrons da ligação covalente se localiza preferencialmente no orbital molecular σ (ligante).
Não há nenhum elétron em σ*. A ordem da ligação para essa molécula será 1.
 
Imagem: Shutterstock.com
 Diagrama de orbital molecular para o H2.
Para uma molécula de O2, o diagrama de energia do orbital molecular mostra a formação de pares
de ligação entre os orbitais ligantes e antiligantes. Nesse caso, em virtude do número de elétrons na
camada de valência, há orbitais sigma ligante (σ) e antiligante (σ*), além de orbitais “pi” ligante (π) e
antiligante (π*).
Observe que cada átomo de oxigênio, antes da ligação, tem a seguinte configuração eletrônica, com
os orbitais atômicos p nos eixos x, y e z (px, py e pz):
 
Imagem: Bruno Cavalcante Di Lello. Adaptado por Lerik Lopes.
A análise de energia do orbital molecular para a ligação entre dois átomos de oxigênio mostra os
orbitais ligantes e antiligantes.
 
Imagem: Shutterstock. Adaptado por Lerik Lopes.
 Diagrama do orbital molecular para a molécula de O2.
No diagrama para a molécula do O2, temos um total de 8 elétrons em orbitais ligantes (σs, σz, πx e
πz) e 4 elétrons nos orbitais antiligantes. Assim, a ordem de ligação para o O2 será dada por:
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
Pela teoria OM, as ligações covalentes presentes nos compostos orgânicos se dariam nos orbitais
moleculares formados entre os orbitais atômicos do carbono e os orbitais atômicos dos átomos que
se ligam ao carbono. 
A determinação da ordem de ligação entre os participantes origina as ligações simples, dupla e
tripla, conforme já mencionado. É importante ressaltar que tanto a teoria OM quanto a teoria LV
chegam aos mesmos resultados para as estruturas das moléculas orgânicas.
Ordem da ligação para O2 =   = 28−42
HIBRIDIZAÇÃO DO CARBONO E SUAS
RELAÇÕES COM O COMPRIMENTO E A
FORÇA DAS LIGAÇÕES
Para concluir o módulo, o especialista apresentará o fenômeno de hibridização e como este se
relaciona com a estrutura do composto, a forma e o comprimento de ligações.
VERIFICANDO O APRENDIZADO
1. AS LIGAÇÕES COVALENTES SÃO AS LIGAÇÕES PRESENTES NAS
MOLÉCULAS ORGÂNICAS. ESSAS LIGAÇÕES BASEIAM-SE NO
COMPARTILHAMENTO DE ELÉTRONS ENTRE AS ESPÉCIES
PARTICIPANTES, NORMALMENTE ATÉ QUE OS ÁTOMOS PRESENTES
ESTEJAM ESTABILIZADOS COM 8 ELÉTRONS NA CAMADA DE VALÊNCIA,
SEGUINDO UMA REGRA CHAMADA DE REGRA DO OCTETO. EMBORA HAJA
VÁRIAS EXCEÇÕES À REGRA DO OCTETO, OS ÁTOMOS DE CARBONO,
NITROGÊNIO E OXIGÊNIO ATENDEM BEM A ESSE CRITÉRIO DE
ESTABILIDADE ELETRÔNICA. CONSIDERANDO OS COMPOSTOS CH4, NH3 E
H2O, QUE POSSUEM RESPECTIVAMENTE O CARBONO, O NITROGÊNIO E O
OXIGÊNIO COMO ÁTOMO CENTRAL DE SUAS ESTRUTURAS, ASSINALE A
ALTERNATIVA CORRETA:
A) O carbono possui 4 pares de elétrons compartilhados no CH4 enquanto o nitrogênio possui 3
pares compartilhados e 1 par de elétrons não compartilhado no NH3. Na molécula da água, o
oxigênio possui 2 pares compartilhados e 2 pares não compartilhados.
B) O carbono possui 4 pares de elétrons compartilhados no CH4 enquanto o nitrogênio possui 2
pares compartilhados e 1 par de elétrons não compartilhado no NH3. Na molécula da água, o
oxigênio possui 2 pares compartilhados e não possui pares não compartilhados.
C) Em todas as três moléculas todos os pares de elétrons estão compartilhados, não havendo pares
não compartilhados.
D) Em todas as 3 moléculas há pelo menos 1 par de elétrons não compartilhado, enquanto os
demais pares estão envolvidos nas ligações covalentes.
E) Apenas o carbono, na molécula de CH4, apresenta 1 par de elétrons não compartilhado. Nas
moléculas de NH3 e H2O, todos os pares de elétrons presentes estão envolvidos nas ligações
covalentes.
2. AS MOLÉCULAS ORGÂNICAS TÊM SUAS ESTRUTURAS BASEADAS NO
ÁTOMO DE CARBONO, TENDO EM VISTA SUA CAPACIDADE DE FORMAR
QUATRO LIGAÇÕES. NOS COMPOSTOS ORGÂNICOS ESTÃO PRESENTES
LIGAÇÕES Σ E LIGAÇÕES Π. A RESPEITO DAS MOLÉCULAS ORGÂNICAS E
DAS LIGAÇÕES PRESENTES, DE ACORDO COM A TEORIA DA LIGAÇÃO DE
VALÊNCIA, ASSINALE A ALTERNATIVA INCORRETA.
A) As ligações σ são formadas em orientação axial em relação aos átomos participantes, havendo
emparelhamento do par de elétrons na região de sobreposição dos orbitais participantes.
B) As ligações π envolvem orbitais py e orbitais pz que se alinham axialmente, compartilhando os
pares de elétrons que formam esse tipo de ligação.
C) Uma mesma molécula de um composto orgânico pode possuir ligações σ e ligações π, tendoem
vista que um composto pode possuir ligações simples, duplas e triplas em sua estrutura.
D) Em uma ligação tripla, temos um alinhamento axial dos orbitais que formam a ligação σ presente
e um alinhamento lateral dos orbitais que formam as duas ligações π presentes.
E) Uma molécula orgânica que só possui ligações simples formadas por elétrons compartilhados
terá somente ligações do tipo σ resultantes da sobreposição de orbitais s e p ou de orbitais p e p.
GABARITO
1. As ligações covalentes são as ligações presentes nas moléculas orgânicas. Essas ligações
baseiam-se no compartilhamento de elétrons entre as espécies participantes, normalmente
até que os átomos presentes estejam estabilizados com 8 elétrons na camada de valência,
seguindo uma regra chamada de regra do octeto. Embora haja várias exceções à regra do
octeto, os átomos de carbono, nitrogênio e oxigênio atendem bem a esse critério de
estabilidade eletrônica. Considerando os compostos CH4, NH3 e H2O, que possuem
respectivamente o carbono, o nitrogênio e o oxigênio como átomo central de suas estruturas,
assinale a alternativa correta:
A alternativa "A " está correta.
 
As estruturas de Lewis para as moléculas de CH4, NH3 e H2O mostram as seguintes configurações:
1) Na molécula de CH4, com o carbono, que possui 4 elétrons de valência, são realizadas 4 ligações
covalentes com os hidrogênios. Não há nenhum par de elétrons não compartilhado. Assim, formam-
se quatro ligações com 4 pares de elétrons ligados.
2) Na molécula de NH3, com o nitrogênio que possui 5 elétrons de valência, são realizadas três
ligações covalentes com os hidrogênios. Resta 1 par de elétrons não compartilhado.
3) Na molécula de H2O, com o oxigênio, que possui 6 elétrons de valência, são realizadas duas
ligações covalentes com os hidrogênios. Restam 2 pares de elétrons não compartilhados.
2. As moléculas orgânicas têm suas estruturas baseadas no átomo de carbono, tendo em
vista sua capacidade de formar quatro ligações. Nos compostos orgânicos estão presentes
ligações σ e ligações π. A respeito das moléculas orgânicas e das ligações presentes, de
acordo com a teoria da ligação de valência, assinale a alternativa incorreta.
A alternativa "B " está correta.
 
A formação das ligações π nas moléculas orgânicas envolvem orbitais py e pz com orientação
lateral. A orientação axial dos orbitais participantes é responsável pela ligação σ.
MÓDULO 4
 Identificar as diferentes geometrias e o caráter polar ou apolar das moléculas orgânicas de
acordo com as configurações de suas estruturas
POLARIDADE DAS LIGAÇÕES QUÍMICAS
As ligações químicas iônicas e covalentes apresentam dois extremos de modelos de ligação.
Ligação iônica
Na ligação iônica, os átomos participantes conseguem se ionizar com um dos átomos transferindo
elétrons para o outro átomo .
Ligação covalente
Na ligação covalente há o compartilhamento de elétrons sem a formação efetiva de íons.
UM DOS ÁTOMOS
Normalmente, um metal, que se transforma em um cátion.
OUTRO ÁTOMO
Normalmente, não metal que se transforma em um ânion.
LIGAÇÃO COVALENTE POLAR E APOLAR
Para as moléculas orgânicas, o modelo mais importante é o da ligação covalente, tendo em vista
que suas moléculas são estruturadas pelo compartilhamento de pares de elétrons, formando as
ligações σ e as ligações π.
Cabe ressaltar, entretanto, que os elétrons compartilhados, na maioria das vezes, não se encontram
na distância média exata entre os átomos participantes. Quando são elementos diferentes, esses
pares de elétrons ficam deslocados e mais próximos do átomo cujo núcleo tem maior capacidade de
atraí-los para si.
Mas como podemos identificar qual átomo atrairá para sua proximidade o par de elétrons da
ligação? Primeiramente, devemos ficar atentos à eletronegatividade dos átomos envolvidos na
ligação covalente.
De forma geral, elementos com menos camadas eletrônicas e com maior número atômico
tendem a atrair mais os elétrons, em virtude da proximidade entre o núcleo (carregado
javascript:void(0)
javascript:void(0)
javascript:void(0)
positivamente) e a camada de valência (carregada negativamente). Esses fatores justificam o maior
valor de eletronegatividade dos elementos situados na parte superior e à direita da tabela periódica.
ELETRONEGATIVIDADE
A eletronegatividade (EN) é uma propriedade periódica que mede a tendência de atração de
elétrons da ligação por um elemento químico.
Como se vê na figura a seguir, o flúor (EN = 4,0), o oxigênio (EN = 3,5) e o nitrogênio (EN = 3,0) são
os elementos com as maiores eletronegatividades, enquanto o Césio (Cs) é o elemento menos
eletronegativo (EN = 0,7).
 
Imagem: Shutterstock.com - Adaptado por Lerik Lopes.
 Valores de eletronegatividade dos elementos na tabela periódica.
Em relação à polaridade, as ligações covalentes podem ser classificadas como apolar e polar, de
acordo com a diferença de eletronegatividade entre os participantes. Para diferenças de
eletronegatividade mais altas (normalmente para valores superiores a 1,8), teremos uma ligação
iônica.
 
Imagem: Shutterstock.com - Adaptado por Lerik Lopes.
 Ligação covalente apolar, polar e ligação iônica.
Ligação apolar
A diferença entre a eletronegatividade dos átomos participantes é muito baixa (menor que 0,4) ou
nula. Os pares de elétrons encontram-se compartilhados de forma igualitária entre os átomos
participantes. Por exemplo, a ligação entre carbono (EN = 2,5) e hidrogênio (EN = 2,1) terá uma
diferença de 2,5 -2,1 = 0,4. Ou seja, não há formação efetiva de dipolo e, portanto, a ligação C–H é
classificada como uma ligação covalente apolar.

Ligação polar
A diferença entre a eletronegatividade dos átomos participantes da ligação covalente é maior 0,4 até
um valor por volta de 1,8, formando nesse caso um dipolo, isto é, uma região mais adensada em
elétrons (polo negativo, , no átomo mais eletronegativo) e uma região com menos adensamento
de elétrons (polo positivo, , no átomo menos eletronegativo). Como exemplo, uma ligação entre
oxigênio (EN = 3,5) e hidrogênio (EN = 2,1) terá uma diferença de eletronegatividade igual a 3,5 –
2,1 = 1,4. Isso confere a esta ligação um caráter polar significativo. Logo, podemos classificar a
ligação O–H como uma ligação covalente polar.
Diferenças entre as ligações covalentes apolares e polares
 Clique nas figuras abaixo para ver as informações.
δ−
δ+
 
Imagem: Shutterstock.com - Adaptado por Thaiane Andrade e Lerik Lopes
Os átomos A e B têm a mesma eletronegatividade, por isso têm um compartilhamento igual dos
pares de elétrons (região azul).
 
Imagem: Shutterstock.com - Adaptado por Thaiane Andrade e Lerik Lopes
Átomos com eletronegatividades diferentes têm um compartilhamento desigual dos pares de
elétrons da ligação covalente. O átomo de oxigênio (O) tem maior eletronegatividade do que o
átomo de hidrogênio (H) e assim tem a maior proximidade com os pares de elétrons da ligação. Um
dipolo é formado, porque uma extremidade da ligação é ligeiramente positiva (delta positiva, δ+ ) e a
outra extremidade é ligeiramente negativa (delta negativo, δ-).
RESSONÂNCIA E AS ESTRUTURAS DE
RESSONÂNCIA
Já vimos que as estruturas de Lewis de uma molécula mostram os elétrons presentes, tanto na
forma de pares ligados quanto na forma de pares de elétrons não ligantes. Esse conjunto de
elétrons é responsável pela estabilidade eletrônica da molécula. Ao organizarmos todos os elétrons
envolvidos, podemos observar em algumas moléculas a possibilidade de mais de um arranjo
eletrônico, ou seja, a possibilidade de mais de uma estrutura eletrônica numa mesma molécula.
Esse fenômeno é chamado de ressonância.
javascript:void(0)
javascript:void(0)
CARGAS FORMAIS E AS POSSÍVEIS ESTRUTURAS
DE UMA ESPÉCIE QUÍMICA
Ao compartilhar elétrons para formar as ligações covalentes, são possíveis diferentes arranjos
desses pares eletrônicos para estruturar uma determinada espécie química. Entre as possibilidades,
entretanto, existem as estruturas maisestáveis eletronicamente. Um dos critérios para avaliar qual a
estrutura eletrônica mais estável — e, portanto, com maior possibilidade de representar
adequadamente o composto — é a análise da carga formal de seus átomos presentes. 
O critério é bastante simples: a estrutura mais adequada é aquela que tiver o maior conjunto de
cargas formais iguais a zero ou próximas de zero.
Mas, afinal, como se calcula a carga formal (CF)? Primeiramente, devemos analisar as estruturas
de Lewis possíveis para uma determinada espécie química.
A seguir, temos como exemplo a molécula de ácido clorídrico, HCl, formada por apenas uma ligação
covalente.
 
Imagem: Bruno Cavalcante Di Lello - Adaptado por Lerik Lopes.
 Fórmula estrutural do HCl e Fórmula de Lewis para o HCl.
 ATENÇÃO
Carga formal (CF) = (número de elétrons de valência – número de elétrons isolados) – número de
ligações compartilhadas
Assim:
 
Imagem: Bruno Cavalcante Di Lello - Adaptado por Lerik Lopes.
A molécula de HCl somente apresenta uma estrutura provável. No próximo exemplo, veremos a
análise do íon sulfato, SO42-, que pode apresentar mais de uma estrutura de Lewis possível. Neste
caso, a carga formal dos participantes determinará a estrutura mais adequada para esse íon. Cabe
ressaltar que o enxofre (S) é um elemento que aceita a estabilização com 10 elétrons em sua
camada de valência, em virtude do fenômeno da expansão da camada de valência para elementos
do terceiro período da Tabela Periódica.
EXPANSÃO DA CAMADA DE VALÊNCIA
A expansão da camada de valência é a capacidade de um elemento adquirir estabilidade com
mais de 8 elétrons na camada de valência. Isso ocorre com elementos não metálicos que
possuem mais de três níveis e é justificado pelo fato desses elementos possuírem orbitais do
tipo d vazios em sua camada de valência que podem acomodar 10 ou 12 elétrons.
Estruturas possíveis para o íon sulfato
 
Imagem: Bruno Cavalcante Di Lello - Adaptado por Lerik Lopes.
NAS TRÊS ESTRUTURAS MOSTRADAS, TEMOS:
javascript:void(0)
 
 
Imagem: Bruno Cavalcante Di Lello - Adaptado por Lerik Lopes.
ENXOFRE COM QUATRO LIGAÇÕES SIMPLES,
LIGADO A 4 OXIGÊNIOS COM 3 PARES NÃO
LIGANTES.
 
Imagem: Bruno Cavalcante Di Lello - Adaptado por Lerik Lopes.
ENXOFRE COM TRÊS LIGAÇÕES SIMPLES E UMA
LIGAÇÃO DUPLA, LIGADO A 3 OXIGÊNIOS COM 3
PARES NÃO LIGANTES E A 1 OXIGÊNIO COM 2
PARES NÃO LIGANTES.
 
Imagem: Bruno Cavalcante Di Lello - Adaptado por Lerik Lopes.
ENXOFRE COM DUAS LIGAÇÕES DUPLAS E DUAS
LIGAÇÕES SIMPLES, LIGADO A 2 OXIGÊNIOS COM
3 PARES NÃO LIGANTES E A 2 OXIGÊNIOS COM 2
PARES NÃO LIGANTES.
Para estabelecer o arranjo eletrônico mais adequado para o íon sulfato, temos que analisar as
cargas formais de todos os átomos presentes em cada uma das três estruturas. A tabela a seguir
apresenta as CF dos átomos presentes nas três estruturas do íon sulfato (SO42-).
 Quadro: O íon sulfato, SO42-: cargas formais dos átomos presentes nas três estruturas.
Elaborado por Bruno Cavalcante Di Lello.
Como se vê na tabela, a estrutura que apresenta o maior número de átomos com CF igual a zero é
a estrutura “C”. Nessa estrutura, temos o enxofre (S) com CF igual a zero e temos 2 oxigênios, que
possuem a dupla ligação também com CF igual a zero. Todas as outras estruturas apresentam um
número maior de átomos com CF diferente de zero. Assim, a estrutura “C” para o íon sulfato é a
mais adequada e favorável.
 SAIBA MAIS
Embora o íon sulfato não seja um composto orgânico, o exemplo de análise de cargas formais
demonstrado para identificar uma estrutura eletrônica mais estável é válido para qualquer composto,
seja orgânico ou inorgânico.
RESSONÂNCIA E HÍBRIDOS DE RESSONÂNCIA
Vimos que a análise das cargas formais de possíveis estruturas eletrônicas permite identificar o
arranjo das ligações mais provável para uma espécie química. Ocorre que, em algumas moléculas e
íons que possuem ligações covalentes, teremos duas ou mais estruturas que apresentam o mesmo
resultado na análise das cargas formais. Essas estruturas serão totalmente equivalentes do ponto
de vista de arranjo eletrônico.
 
Imagem: Bruno Cavalcante Di Lello - Adaptado por Lerik Lopes.
FORMAS DE RESSONÂNCIA PARA A MOLÉCULA
DE O3
Vejamos o exemplo de duas estruturas totalmente equivalentes para o composto ozônio, O3. Neste
caso, as estruturas equivalentes são chamadas de estruturas de ressonância ou formas de
ressonância.
 
Imagem: Bruno Cavalcante Di Lello - Adaptado por Lerik Lopes.
FORMAS DE RESSONÂNCIA PARA O NITRATO,
MOSTRANDO OS PARES NÃO LIGADOS E AS
LIGAÇÕES COVALENTES.
O mesmo ocorre para o íon nitrato, NO3-, que apresenta três estruturas eletrônicas equivalentes, ou
seja, três formas de ressonância.
 
Imagem: Bruno Cavalcante Di Lello - Adaptado por Lerik Lopes.
CARGAS FORMAIS NAS ESTRUTURAS DE
RESSONÂNCIA DO NITRATO.
Uma análise das cargas formais dos átomos presentes no NO3- mostra que o somatório das cargas
formais resulta na carga total do íon nitrato, -1.
É importante destacar dois aspectos das estruturas de ressonância. Primeiramente, cada um dos
átomos cumpre com a regra do octeto, apresentando configuração de gás nobre. O outro aspecto
refere-se à capacidade de cada uma delas se transformar em qualquer outra mudando a posição
dos elétrons não ligados e daqueles envolvidos nas ligações do tipo π. 
Essa movimentação pode ser indicada por setas curvas, como mostra o exemplo a seguir que
apresenta as estruturas de ressonância do íon carbonato (CO32-):
 
Imagem: GRAHAM, 2018.
 Estruturas de ressonância do íon carbonato (CO32-).
O deslocamento de elétrons demonstrado ao lado faz com que a estrutura 1 se transforme na 2.
 
Imagem: GRAHAM, 2018.
 Conversão entre as estruturas de ressonância 1 e 2 do carbonato.
De maneira semelhante, a movimentação dos elétrons na estrutura 2 leva à formação da estrutura 3
como representado a lado.
 
Fonte:Shutterstock
 Conversão entre as estruturas de ressonância 2 e 3 do carbonato.
Ainda sobre o íon carbonato, apesar de a ligação simples entre o átomo de carbono e o oxigênio ser
maior que a ligação dupla entre esses dois átomos, no íon carbonato todas as ligações
apresentam o mesmo tamanho, indicando que nenhuma dessas estruturas estão exatamente
corretas. A teoria da ressonância explica esse fenômeno, pois declara que, quando um composto
pode ser representado por mais de uma estrutura de Lewis que são distintas apenas pela posição
de elétrons, nenhuma delas será a representação correta da espécie química. Esta molécula será,
então, mais bem representada por uma média de cada uma das estruturas equivalentes, chamada
de híbrido de ressonância.
 
Fonte: Imagem: GRAHAM, 2018.
 Híbrido e estrutura de ressonância do carbonato.
 ATENÇÃO
As estruturas de ressonâncias são hipotéticas e não podem ser isoladas.
Vejamos o fenômeno de ressonância aplicado a algumas moléculas orgânicas.
A molécula orgânica de benzeno, C6H6, é um exemplo clássico de um hidrocarboneto cíclico que
apresenta dois possíveis arranjos eletrônicos de suas ligações, ou seja, duas estruturas de
ressonância.
 
Imagem: Bruno Cavalcante Di Lello - Adaptado por Lerik Lopes.
 Fórmula estrutural do benzeno.
A posição intercalada dessas ligações simples e duplas possibilita a existência de duas estruturas
diferentes, porém eletronicamente equivalentes. Observe que a molécula apresenta ligações duplas
e simples intercaladas em torno do anel benzênico. O híbrido de ressonância, bem como uma das
mais conhecidas representações da molécula do benzeno são representados a seguir.
 
Imagem: Bruno Cavalcante Di Lello - Adaptado por Lerik Lopes.
 Estruturas de ressonância e o híbrido de ressonância do benzeno.
Um outro exemplo é o íon orgânico acetato, CH3COO-, que também apresenta ressonância, tendo
em vista a possibilidade de duas estruturas eletronicamente equivalentes.
 
Imagem: Shutterstock.com
 Estruturas de ressonância e o híbrido de ressonância do acetato.
 ATENÇÃO
A cargalocalizada no oxigênio da ligação simples é a sua carga formal.
DESENHANDO ESTRUTURAS DE
RESSONÂNCIA
A seguir, o especialista explicará como escrever estruturas de ressonância para estruturas
orgânicas, destacando o movimento de setas, e como decidir se uma estrutura de ressonância
contribui mais para o híbrido do que outra.
GEOMETRIA DAS MOLÉCULAS ORGÂNICAS
As moléculas, sejam inorgânicas ou orgânicas, apresentam uma representação geométrica de
acordo com as ligações presentes, tipo de hibridização dos átomos centrais, presença de elétrons
não ligantes, entre outros fatores. Entretanto, podemos prever de maneira simples a geometria de
um composto aplicando o que diz o modelo de repulsão dos pares de elétrons na camada de
valência (RPECV). Para esta previsão, o modelo leva em consideração:
I
Moléculas cujo átomo central está ligado a, no mínimo, 2 outros átomos ou grupos.
II
Todos os elétrons de valência do átomo central (pares de elétrons envolvidos em ligações
covalentes e pares de elétrons não ligantes).
III
A repulsão entres os pares de elétrons, fazendo com que os elétrons de valência fiquem o mais
afastados possível uns dos outros, sabendo-se que a repulsão entre elétrons envolvidos em ligação
covalente é menor do que entre pares de elétrons isolados.
IV
Moléculas cujo átomo central está ligado a, no mínimo, 2 outros átomos ou grupos.
Sendo assim, de acordo com o modelo RPECV, podemos afirmar que a geometria assumida por
uma molécula é aquela que possibilita maior distância possível entre os pares de elétrons da
camada de valência.
Veja o exemplo de uma molécula do composto orgânico metano, CH4, em relação às diferentes
representações de sua molécula.
 Escolha um dos itens a seguir.
ESTRUTURA DE LEWIS PARA 
O METANO
 
Imagem: Bruno Cavalcante Di Lello - Adaptado por Lerik Lopes.
ESTRUTURA DE KEKULÉ PARA 
O METANO
javascript:void(0)
javascript:void(0)
 
Imagem: Bruno Cavalcante Di Lello - Adaptado por Lerik Lopes.
REPRESENTAÇÃO GEOMÉTRICA DA MOLÉCULA DE
METANO
 
Imagem: Bruno Cavalcante Di Lello - Adaptado por Lerik Lopes.
As propriedades das moléculas estão relacionadas com sua estrutura espacial real. O metano
apresenta o carbono como átomo central de sua molécula, com seus orbitais permitindo a realização
de quatro ligações σ, em virtude de sua hibridização sp3. Assim, os 4 átomos de hidrogênio irão se
alinhar com um ângulo de 109,5° em torno do átomo de carbono, formando uma estrutura
tridimensional tetraédrica. Para o metano, esta é a única orientação que permitirá maior e igual
distância entre os pares de elétrons envolvidos em suas ligações covalentes.
javascript:void(0)
 
Imagem: Bruno Cavalcante Di Lello - Adaptado por Lerik Lopes.
 Geometria tetraédrica em torno do carbono com hibridização sp3.
Já vimos que, além da hibridização sp3, o carbono pode ter a hibridização sp2 e a hibridização sp.
Essas diferentes hibridizações irão refletir na organização geométrica da molécula em torno do
átomo de carbono.
 
Imagem: Bruno Cavalcante Di Lello - Adaptado por Lerik Lopes.
 Geometria trigonal plana em torno do carbono com hibridização sp2 e sp.
Assim, os tipos de hibridizações presentes em uma molécula orgânica irão determinar os ângulos de
ligações em torno do átomo de carbono.
Como vimos, para as hibridizações sp3, sp2 e sp, considerando que o carbono se ligue a átomos ou
grupos químicos iguais, teremos, respectivamente, os ângulos de 109,5°, 120° e 180°. Esses
ângulos sofrerão ligeiras alterações, se os ligantes aos átomos de carbono forem diferentes. Essas
alterações ocorrem em virtude do tamanho dos átomos ou grupos químicos, da repulsão entre as
nuvens eletrônicas ou da presença de pares de elétrons não compartilhados.
Além das geometrias mostradas para as hibridizações sp3, sp2 e sp, importantes para as moléculas
orgânicas, existem outros tipos de estruturas moleculares.
O conjunto completo de estruturas moleculares pode ser visto no quadro a seguir.
 
Imagem: Bruno Cavalcante Di Lello - Adaptado por Lerik Lopes.
 Tipos de estruturas moleculares.
Observe que uma mesma molécula pode conter carbonos com diferentes hibridizações, levando a
uma mistura de geometrias e de posicionamentos dos ligantes em sua estrutura.
 
Imagem: Bruno Cavalcante Di Lello - Adaptado por Lerik Lopes.
Molécula de etano, C2H6
 
Imagem: Bruno Cavalcante Di Lello - Adaptado por Lerik Lopes.
Molécula de propano, C3H8
 
Imagem: Bruno Cavalcante Di Lello - Adaptado por Lerik Lopes.
Molécula de etanol, C2H5OH
 
Imagem: Bruno Cavalcante Di Lello - Adaptado por Lerik Lopes.
Molécula de benzeno, C6H6
 
Imagem: Bruno Cavalcante Di Lello - Adaptado por Lerik Lopes.
Molécula de frutose (C6H12O6).
POLARIDADE DAS MOLÉCULAS
Já vimos que ligações covalentes entre átomos com diferentes eletronegatividades levam à
formação de ligações químicas polares. Embora existam moléculas bastante simples (sobretudo
alguns gases inorgânicos) que têm apenas uma ligação, a maior parte das moléculas apresenta
várias ligações químicas em sua estrutura.
O balanço das cargas deslocalizadas por ligações covalentes polares em uma molécula pode
resultar em moléculas polares ou apolares. A existência ou não de polaridade numa molécula
dependerá também de sua geometria.
Uma geometria molecular capaz de equilibrar todos os dipolos das ligações presentes, de forma que
o balanço resulte num momento dipolar, μ, igual a zero, resultará em uma molécula apolar. Por
outro lado, uma molécula com momento dipolar diferente de zero é classificada como uma molécula
polar.
A polaridade de moléculas pode ser medida experimentalmente colocando-se amostras de
moléculas entre placas carregadas eletricamente com cargas opostas. Se as moléculas forem
polares, observa-se um alinhamento com o campo elétrico formado. A medida desse alinhamento é
chamada de momento dipolo, μ, e é expresso numa unidade denominada debye (D).
Moléculas polares: momento dipolo, μ ≠ 0
Moléculas apolares: momento dipolo, μ = 0
Um exemplo importante de molécula polar é a água, tendo em vista que a sua estrutura geométrica,
angular, não consegue anular os dipolos das ligações entre o oxigênio e o hidrogênio. O polo
negativo se localiza no oxigênio por ser o elemento mais eletronegativo.
 
Imagem: Shutterstock.com
 Molécula polar de água, geometria angular, μ = 1,85 D.
Por sua vez, o gás carbônico, CO2, é uma molécula apolar tendo em vista que os dipolos formados
pelas ligações do carbono com o oxigênio têm um resultante de momento dipolar igual a zero. A
molécula de CO2 apresenta uma geometria linear, com 1 átomo de carbono com hibridização sp
ligado a 2 oxigênios em extremidades opostas. Essa regularidade estrutural equilibra os dipolos,
resultando num momento dipolar nulo.
 
Imagem: Bruno Cavalcante Di Lello - Adaptado por Lerik Lopes.
 Molécula apolar de gás carbônico, geometria linear, μ = 0.
A ideia de regularidade geométrica das moléculas como forma de equilibrar os dipolos levando a
uma molécula apolar é válida desde os compostos mais simples até às estruturas mais complexas.
Assim, moléculas como H2, Cl2 e CH4 são apolares, enquanto moléculas HCl, H2O e NH3 são
polares.
 
Imagem: Shutterstock.com
 Moléculas apolares (H2, Cl2 e CH4) e polares (HCl, H2O e NH3).
Observe que enquanto a molécula de metano, CH4 é apolar, um derivado do metano, o
clorometano, CH3Cl, é polar. Ambas as moléculas têm geometria tetraédrica, entretanto o metano é
totalmente regular, tendo em vista que o carbono está ligado a 4 hidrogênios.
 Clique nas figuras abaixo para ver as informações.
MOLÉCULA POLAR DE CLOROMETANO,
GEOMETRIA TETRAÉDRICA, Μ = 1,87 D.
No clorometano, o carbono está ligado a 1 cloro e 3 hidrogênios. A inserção de 1 átomo de cloro
provoca um desequilíbrio do momento de dipolar, resultando numa molécula polar.
javascript:void(0)
MOLÉCULA APOLAR DE TETRACLORETO DE
CARBONO, GEOMETRIA TETRAÉDRICA, Μ = 0.
Uma molécula com 4 átomos de cloro, tetracloreto de

Outros materiais