Buscar

ISOMERIA TEMA5

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 3, do total de 74 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 6, do total de 74 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 9, do total de 74 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Prévia do material em texto

DESCRIÇÃO
Conceitos de isomeria plana e estereoisomeria. Definição de quiralidade, carbono
assimétrico e atividade óptica de substâncias quirais.
PROPÓSITO
Compreender os conceitos de isomeria plana e estereoisomeria permite o entendimento
das diferenças de propriedades físico-químicas de substâncias, bem como de outras
características como a atividade óptica, levando à possibilidade de identificação de
compostos. Além disso, permite compreender a importância da estereoquímica em
fármacos e outras moléculas biologicamente ativas.
OBJETIVOS
MÓDULO 1
Reconhecer isômeros planos e os tipos de isomeria constitucional
MÓDULO 2
Reconhecer isômeros cis/trans , bem como os designados E/Z em alcanos de cadeia
aberta e fechada
MÓDULO 3
Reconhecer as características e propriedades físico-químicas de moléculas quirais
INTRODUÇÃO
Neste conteúdo, conheceremos uma parte da química que trata de compostos que
podem parecer muito similares à primeira vista, mas que acabam por apresentar
propriedades muito distintas em um segundo momento. 
A isomeria plana nos mostra como a diferença na organização dos átomos em uma
estrutura pode levar a propriedades físico-químicas, como pontos de fusão e ebulição,
polaridade e reatividades completamente diferentes.
Veremos também como a organização desses átomos no espaço influencia suas
características.
Quem nunca ouviu dizer que gorduras trans são maléficas à saúde?
Ou talvez você já tenha ouvido falar da tragédia da talidomida causada por um
enantiômero desse fármaco. Entenderemos o que são esses conceitos e a importância
deles para a nossa realidade.
MÓDULO 1
 Reconhecer isômeros planos e os tipos de isomeria constitucional
ISOMERIA: CONCEITO BASE
Existem diversos tipos de isomeria na química, mas elas são separadas em dois grupos
principais: a isomeria plana (ou constitucional) e a estereoisomeria. A isomeria
constitucional trata do arranjo das ligações e dos átomos em determinada molécula,
enquanto a estereoisomeria trata das diferenças na orientação espacial desses
compostos.
A pergunta-chave que devemos responder para iniciar nosso estudo em isomeria é: o que
é um isômero?
Isômeros são compostos que apresentam fórmula química igual, porém possuem
estruturas diferentes. Consequentemente, esses compostos apresentarão características
físico-químicas também distintas.
O éter metil metílico e o etanol, por exemplo, possuem fórmula química C2H6O e, em
temperatura ambiente (25°C):
25°C
É importante que você saiba que as normas preconizadas pelo INMETRO
estabelecem que as unidades de medida devem estar separadas dos números por
javascript:void(0)
um espaço. No entanto, limitações tecnológicas nos fazem juntar algumas das
unidades aos números para tornar o entendimento do nosso material didático mais
fácil. Assim, se você encontrar número e unidades juntos, saiba que foi feito para
melhorar a sua visualização, mas que relatórios técnicos e demais materiais escritos
por você devem seguir o padrão internacional de separação dos números e unidades.
O éter encontra-se no estado gasoso.

O álcool encontra-se no estado líquido.
Compostos isômeros também podem apresentar diversas características diferentes, tais
como sabor e odor, além de propriedades biológicas e químicas também distintas. 
Neste módulo, concentraremos nossas atenções na isomeria constitucional (ou plana).
Existem cinco tipos de isomeria plana possíveis. Vamos conhecê-las?
ISOMERIA DE CADEIA
O primeiro tipo possível de isomeria que trataremos é a isomeria de cadeia. Como o
próprio nome diz, a diferença entre os isômeros está na possibilidade de compostos de
mesma fórmula química apresentarem cadeias diferentes, como cadeias lineares e
ramificadas, por exemplo.
Digamos que queremos escrever a estrutura de um composto de fórmula C4H10.
Que estrutura escreveríamos?
Teríamos duas opções, na verdade:
 
Imagem: Anna Claudia Silva.
Butano
 
Imagem: Anna Claudia Silva.
Isobutano
 Butano e isobutano são isômeros de cadeia.
Tanto o butano quanto o isobutano apresentam 4 átomos de carbono e 10 átomos de
hidrogênio em sua estrutura e são, portanto, isômeros.
E se fosse o composto de fórmula C5H10?
Lembra da fórmula geral dos alcanos? Um alcano linear tem fórmula geral CnH2n+2, como
vimos no caso do butano e do isobutano. No caso do composto C5H10, então, não
poderíamos ter um alcano linear, mas poderíamos ter um alcano cíclico, como o
ciclopentano, ou um alceno. Veja abaixo os isômeros de fórmula C5H10:
 
Imagem: Anna Claudia Silva.
Ciclopentano
 
Imagem: Anna Claudia Silva.
1-metil-ciclobutano
 
Imagem: Anna Claudia Silva.
1-Penteno
 Exemplos de isômeros de cadeia.
Digamos que você se depare com uma situação em que é necessário saber quem são os
isômeros planos possíveis que apresentam determinada fórmula molecular. Como você
procederia? Vamos pensar juntos?
Vamos usar como exemplo a fórmula C5H12.
1º PASSO: ANALISAR A FÓRMULA
MOLECULAR - NO NOSSO EXEMPLO, TEMOS
APENAS ÁTOMOS DE CARBONO E
HIDROGÊNIO E, POR ISSO, SABEMOS QUE
OS ISÔMEROS SERÃO TODOS
HIDROCARBONETOS. MAS SERÁ QUE PODE
SER INSATURADO? CADEIA FECHADA OU
ABERTA? VAMOS OLHAR PARA O NÚMERO
DE HIDROGÊNIOS. VOCÊ ACHA QUE O
COMPOSTO SERÁ SATURADO OU
INSATURADO?
SATURADO INSATURADO
SATURADO
Isso mesmo! Compostos que apresentam número de hidrogênios igual a 2n+2, sendo
n o número de átomos de carbono, serão saturados. No caso do nosso composto:
2×5+2=12, nossos isômeros serão hidrocarbonetos saturados.
INSATURADO
Que pena! Na verdade, compostos que apresentam número de hidrogênios igual a
2n+2, sendo n o número de átomos de carbono, serão saturados. No caso do nosso
composto: 2×5+2=12, nossos isômeros serão hidrocarbonetos saturados.
2º PASSO: MONTAR A FÓRMULA
ESTRUTURAL MAIS SIMPLES POSSÍVEL -
SABEMOS QUE OS NOSSOS ISÔMEROS SÃO
HIDROCARBONETOS SATURADOS. QUAL É
O HIDROCARBONETO SATURADO MAIS
SIMPLES POSSÍVEL?
PENTANO ISOPENTANO
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
PENTANO
Isso mesmo! O hidrocarboneto de 5 carbonos mais simples possível é o pentano, um
hidrocarboneto linear e saturado.
 
Imagem: Anna Claudia Silva.
ISOPENTANO
Não é bem assim! O hidrocarboneto de 5 carbonos mais simples possível é o
pentano, um hidrocarboneto linear e saturado.
 
Imagem: Anna Claudia Silva.
3º PASSO: REMOVER CARBONOS PARA
CRIAR RAMIFICAÇÕES - COMO ASSIM?
AGORA, OS PRÓXIMOS ISÔMEROS
DEVERÃO SER RAMIFICADOS E A ÚNICA
MANEIRA DE FAZER ISSO SEM AUMENTAR O
NÚMERO DE CARBONO DA FÓRMULA É
DIMINUINDO O TAMANHO DA CADEIA
PRINCIPAL. QUAL SERIA NOSSA PRIMEIRA
OPÇÃO?
BUTANO SUBSTITUÍDO PENTANO SUBSTITUÍDO
BUTANO SUBSTITUÍDO
Exatamente! O cuidado necessário nessa etapa é o de não criar dois compostos
iguais achando que são isômeros. As duas estruturas abaixo representam o mesmo
composto: 2-metilbutano. As ramificações devem estar sempre no carbono de menor
número possível, então, temos, em ambos os casos, a metila na posição 2.
 
Imagem: Anna Claudia Silva.
PENTANO SUBSTITUÍDO
Não é bem assim! Vamos, então, ver as possibilidades com butano substituído:
javascript:void(0)
javascript:void(0)
 
Imagem: Anna Claudia Silva.
O cuidado necessário nessa etapa é o de não criar dois compostos iguais achando
que são isômeros. As duas estruturas acima representam o mesmo composto: 2-
metilbutano. As ramificações devem estar sempre no carbono de menor número
possível, então, temos, em ambos os casos, a metila na posição 2.
É POSSÍVEL DIMINUIR MAIS A CADEIA?
SIM NÃO
SIM
Muito bem! O propano é uma cadeia principal de 3 carbonos, com isso, precisaríamos
alocar mais 2 na forma de ramificações. É importante lembrar que as ramificações
devem ficar no meio da estrutura. Se adicionarmos um desses carbonos na ponta,
voltamos a ter o butano, pois estamos aumentando a cadeia principal. Da mesma
forma, se tentarmos substituir um etil no carbono 2 do propano, teremos mais uma
vez o 2-metilbutano.
javascript:void(0)
javascript:void(0)Imagem: Anna Claudia Silva.
Com isso, o último isômero possível é o 2,2-dimetilpropano. E podemos concluir que
existem 3 isômeros possíveis para essa fórmula molecular.
NÃO
Não é bem assim! O propano é uma cadeia principal de 3 carbonos, com isso,
precisaríamos alocar mais 2 na forma de ramificações. É importante lembrar que as
ramificações devem ficar no meio da estrutura. Se adicionarmos um desses carbonos
na ponta, voltamos a ter o butano, pois estamos aumentando a cadeia principal. Da
mesma forma, se tentarmos substituir um etil no carbono 2 do propano, teremos mais
uma vez o 2-metilbutano.
 
Imagem: Anna Claudia Silva.
Com isso, o último isômero possível é o 2,2-dimetilpropano. E podemos concluir que
existem 3 isômeros possíveis para essa fórmula molecular.
É importante lembrar que, se o número de hidrogênios na fórmula molecular for igual a
2n, poderemos ter um alceno ou um composto cíclico e, se for 2n-2, pode ser um alcino
ou um composto com duas ligações duplas ou ainda um hidrocarboneto cíclico com uma
ligação dupla, por exemplo. A relação entre o número de hidrogênios e carbonos é
sempre um forte indicativo em termos do tipo de cadeia do composto.
ISOMERIA DE FUNÇÃO
Os isômeros que vimos até aqui eram compostos apenas de átomos de carbono e
hidrogênio, mas o que acontece se tivermos um composto que apresenta um átomo de
oxigênio, por exemplo?
Não só os átomos de carbono poderão estar em posições diferentes levando a isômeros
de cadeia, mas os átomos de oxigênio poderão estar em mais de uma posição e formar
compostos que pertencem a funções orgânicas diferentes. Vamos ver um exemplo?
Quais são os possíveis isômeros do composto de fórmula C2H6O?
PASSO 1: VAMOS LEMBRAR QUAIS SÃO AS
FUNÇÕES ORGÂNICAS QUE APRESENTAM 1
ÁTOMO DE OXIGÊNIO EM SUA ESTRUTURA:
ÁLCOOL, ÉTER, CETONA E ALDEÍDO.
Com dois carbonos apenas na fórmula, não é possível formar uma cetona, já que a
carbonila (C=O) precisa estar entre dois carbonos e a menor cetona possível é a
propanona.
Um aldeído, por outro lado, apresenta a carbonila na ponta, portanto é possível de existir
numa molécula com 2 carbonos. Ficamos, então, com 3 possibilidades:
ÁLCOOL
ÉTER
ALDEÍDO
PASSO 2: CHECAR A RELAÇÃO ENTRE O NÚMERO
DE HIDROGÊNIOS E CARBONOS
A fórmula molecular nos mostra que o número de hidrogênios é igual a 2n+2, ou seja, o
composto não apresenta ligações duplas. Assim, descartamos a possibilidade do aldeído.
Para confirmar, podemos desenhar as três estruturas. O que percebemos é que o
acetaldeído não apresenta a mesma fórmula química dos demais e, por isso, não é
isômero deles.
 
Imagem: Anna Claudia Silva
 Etano e éter dimetílico são isômeros entre si, mas o acetaldeído, não.
O etanol e o éter dimetílico, por outro lado, apresentam fórmula molecular C2H6O e
diferem um do outro pela função orgânica a qual pertencem, por isso são isômeros de
função.
ISOMERIA DE POSIÇÃO
Neste tipo de isomeria, além de apresentarem a mesma fórmula química (definição de
isômero), os compostos devem também pertencer à mesma função orgânica, porém o
grupo funcional está em posições diferentes – vale também para ligações duplas ou
triplas.
Temos como exemplo desse tipo de isomeria a isopropilamina, que tem o grupo amina no
carbono 2, e a propilamina, na qual o grupo amina está ligado ao carbono 1. Veja as
estruturas abaixo:
 
Imagem: Anna Claudia Silva
 Isopropilamina e propilamina são exemplos de isômeros de posição.
ISOMERIA DE COMPENSAÇÃO (METAMERIA)
A isomeria de compensação está presente em compostos que apresentam heteroátomos
em pontos distintos de suas estruturas.
Um bom exemplo desse tipo de isomeria e que é muito importante na indústria
farmacêutica são os anéis de imidazol e pirazol. Ambos apresentam 2 átomos de
nitrogênio em sua estrutura e fórmula molecular C3H4N2, porém o imidazol é o 1,3-diazol
e o pirazol é o 1,2-diazol, como mostram as estruturas ao lado.
 
Imagem: Anna Claudia Silva
 Metâmeros: anéis C3H4N2 com o heteroátomo em posição distinta.
Embora pareça uma diferença pequena, esses dois anéis são partes importantes da
estrutura de fármacos completamente diferentes, como é o caso da dipirona sódica,
utilizada como antipirético e antitérmico, e do albendazol, um antiparasitário de grande
relevância na prática clínica.
 
Imagem: Anna Claudia Silva.
 Dipirona sódica e albendazol, fármacos que apresentam anéis que apresentam
metameria.
TAUTOMERIA
A tautomeria é um caso específico de isomeria de função na qual existe um equilíbrio
dinâmico entre os isômeros
Eles se interconvertem de uma função para outra e existem em equilíbrio.
O exemplo clássico de tautomerismo e que tem enorme importância na química orgânica
é o tautomerismo ceto-enólico. Nesse tipo de tautomerismo, o grupo carbonila de um
aldeído ou cetona se interconverte a um álcool no qual a hidroxila está ligada a um
carbono insaturado, ou seja, um enol. A imagem abaixo traz exemplos desse tipo de
isomeria.
 
Imagem: Anna Claudia Silva
 Exemplos de tautomerismo ceto-enólico.
O enol, em geral, existe em quantidades muito pequenas quando comparado ao aldeído
ou cetona, porém a possibilidade de sua existência permite que uma série de reações
possam ocorrer, chegando a ter capítulos de livros dedicados a reações que apresentam
enóis e enolatos (seu ânion) como intermediário-chave.
CONSEQUÊNCIAS DA ISOMERIA PLANA
Talvez as mudanças que vimos entre os isômeros tenham parecido simples e até
irrelevantes para você, afinal, mesmo com as ligações entre os átomos sendo diferentes,
ainda temos os mesmos átomos e na mesma quantidade.
Isso é um engano.
Propriedades como solubilidade e ponto de ebulição são altamente dependentes da
organização dos átomos dentro da estrutura. Vamos voltar ao butano e isobutano que
vimos como exemplo de isômeros de cadeia. Ambos são compostos apolares que
apresentam as forças de dispersão (London) como força intermolecular.
SERÁ, ENTÃO, QUE ELES TÊM O MESMO
PONTO DE EBULIÇÃO?
RESPOSTA
javascript:void(0)
RESPOSTA
Não! O butano tem ponto de ebulição de -1°C enquanto o isobutano tem ponto de
ebulição igual a -11,7°C. E isso se deve ao fato de os átomos estarem ligados de
maneira diferente. A ramificação diminui a área superficial disponível para a
ocorrência das forças intermoleculares e torna o ponto de ebulição do composto mais
baixo.
Voltemos ao exemplo do éter dimetílico e do etanol citados no início deste módulo. Esses
compostos são isômeros de fórmula química C2H6O, ou seja, apresentam a mesma
massa molecular. No entanto...
O éter dimetílico tem ponto de ebulição igual a -24°C.

O etanol tem ponto de ebulição igual a 78,4°C.
E é por isso que em temperatura ambiente essas substâncias estão em estados
físicos da matéria diferentes.
Essa diferença se deve, mais uma vez, ao arranjo diferenciado dos átomos nos dois
compostos. A existência da hidroxila no álcool permite que ele faça ligações de
hidrogênio, enquanto o éter tem como força intermolecular entre suas moléculas as
forças do tipo dipolo-dipolo, que são mais fracas e levam a menores pontos de ebulição.
Note, então, que, embora tenham a mesma fórmula química, os isômeros planos (ou
constitucionais) apresentam propriedades distintas.
Agora que conhecemos a isomeria plana (ou constitucional), é hora de estudarmos o
efeito das diferentes organizações dos átomos nas estruturas no espaço e as diferenças
que podem ocorrer.
CLASSIFICAÇÃO DE ISÔMEROS
CONSTITUCIONAIS
Neste vídeo, a especialista Gabriela de Andrade Danin Barbosa falará sobre a
classificação dos isômeros constitucionais e a construção da estrutura molecular de
isômeros a partir da fórmula química. Assista!
VERIFICANDO O APRENDIZADO
1. ACERCA DA ISOMERIA, PODEMOS AFIRMAR QUE:
A) Isômeros são compostos que apresentam a mesma massa molecular e podem conter
átomos de elementos diferentes.
B) A isomeria constitucional ou plana trata das diferenças nas ligações entre os átomos
de compostos com a mesma fórmulaquímica.
C) A tautomeria é um tipo de estereoisomeria, visto que trata da interconversão entre
compostos de grupos funcionais diferentes.
D) Existem 5 tipos de isomeria plana: de cadeia, de posição, de função, metameria e
estereoisomeria.
E) Isômeros apresentam propriedades químicas idênticas apesar das diferenças em suas
estruturas.
2. OS COMPOSTOS ABAIXO APRESENTAM FÓRMULA QUÍMICA
C4H10O SENDO, PORTANTO, ISÔMEROS.
 
ASSINALE A ALTERNATIVA QUE CONTÉM O TIPO DE ISOMERIA
EXEMPLIFICADO NOS COMPOSTOS ACIMA:
A) Isomeria de cadeia
B) Isomeria de função
C) Isomeria de posição
D) Isomeria de compensação (metameria)
E) Tautomeria
GABARITO
1. Acerca da isomeria, podemos afirmar que:
A alternativa "B " está correta.
 
A isomeria se divide em dois grandes grupos: a isomeria plana ou constitucional e a
estereoisomeria. A isomeria plana é a que pode ser entendida a partir da visualização da
estrutura química plana, ou seja, não há necessidade de analisar a conformação dessas
moléculas no espaço. A estereoisomeria, por outro lado, trata das diferenças presentes
nos compostos quando comparamos suas estruturas tridimensionalmente.
2. Os compostos abaixo apresentam fórmula química C4H10O sendo, portanto,
isômeros.
 
Assinale a alternativa que contém o tipo de isomeria exemplificado nos compostos
acima:
A alternativa "A " está correta.
 
A diferença entre os dois compostos está na presença de uma ramificação no segundo
composto. Isso significa que esses compostos são isômeros de cadeia.
MÓDULO 2
 Reconhecer isômeros cis/trans , bem como os designados E/Z em alcanos de
cadeia aberta e fechada
ESTEREOISOMERIA
Sabemos que a isomeria é dividida em isomeria plana ou constitucional e a
estereoisomeria. Neste módulo, vamos nos concentrar no segundo tipo.
Na estereoisomeria, a diferença entre as moléculas está na disposição dos átomos
no espaço, ou seja, a estrutura tridimensional é diferente.
Vamos começar vendo como classificar alguns desses isômeros que são formados a
partir das diferentes estruturas de alcenos e cicloalcanos, moléculas que não apresentam
rotação livre.
ISOMERIA CIS-TRANS
Nos alcanos lineares, temos apenas ligações simples que apresentam rotação
praticamente livre em torno de seu eixo, de forma que a barreira de rotação na molécula
do etano, por exemplo, é de apenas 12kJ/mol, uma barreira facilmente transponível, que
permite que os vários confôrmeros existam em equilíbrio.
No caso das duplas ligações, para que a rotação ocorra, é necessário que a ligação π
seja rompida, pois, na rotação, os orbitais p deixarão de estar paralelos, e isso requer
uma energia de aproximadamente 350kJ/mol, uma barreira energética bem mais difícil de
ser ultrapassada.
 
Imagem: Química Orgânica. MCMURRAY, 2010.
 Impossibilidade de rotação em uma ligação em função do rompimento da ligação π
Essa diferença energética e a impossibilidade de rotação livre em torno da dupla ligação
confere aos alcenos dissubstituídos duas possibilidades de isômeros: os isômeros cis e
os isômeros trans, que apresentam propriedades físico-químicas distintas.
Para que a isomeria cis-trans exista, ambos os carbonos devem ter substituintes
diferentes, ou seja, se um dos carbonos estiver ligado a dois ligantes iguais, não há
isomeria. É o que acontece com o propeno, no qual um dos carbonos está ligado a dois
átomos de hidrogênio, portanto a molécula não possui isomeria cis-trans .
 
Imagem: Anna Claudia Silva.
 Não há isomeria em compostos nos quais um dos carbonos da dupla ligação está
ligado a dois substituintes iguais.
O alceno mais simples no qual podemos ver a isomeria cis-trans é o 2-buteno, pois
podemos ter as metilas terminais do mesmo lado da dupla ligação (isômero cis) ou em
lados opostos (isômero trans), como podemos ver nas imagens abaixo:
 
Imagem: Anna Claudia Silva.
 
Imagem: Anna Claudia Silva.
 Isômero cis do 2-buteno
 
Imagem: Anna Claudia Silva.
javascript:void(0)
javascript:void(0)
 
Imagem: Anna Claudia Silva.
 Isômero trans do 2-buteno
Essa diferença na estrutura tridimensional dos compostos se reflete na estabilidade
deles. O trans-2-buteno apresenta as metilas terminais o mais longe possível uma da
outra e isso faz com que seja mais estável que o cis-2-buteno, no qual a proximidade das
metilas terminais leva a uma tensão estérica que diminui sua estabilidade.
Esse tipo de isomeria é muito discutido na química de alimentos.
Isso porque os óleos de origem natural, como os óleos vegetais, por exemplo,
apresentam gorduras poli-insaturadas na forma do isômero cis, porém podem ser
convertidos aos isômeros trans devido às condições dos processos e essa mudança leva
a alterações nas propriedades físico-químicas dos compostos. 
O ácido oleico, também conhecido como ômega 9, por exemplo, é um composto de
fórmula C18H34O2 que apresenta uma insaturação no carbono 9, isomeria cis e ponto de
fusão igual a 14°C, ou seja, é um líquido à temperatura ambiente. Já o isômero trans,
conhecido como ácido elaídico, tem ponto de fusão igual a 44°C, sendo um sólido à
temperatura ambiente. Podemos ver a fórmula estrutural dos dois na imagem a seguir:
 
Imagem: Anna Claudia Silva.
 Estrutura dos ácidos oleico e elaídico, importantes na indústria de alimentos.
Essa mudança nas propriedades físico-químicas é explorada na indústria de alimentos no
processo de hidrogenação dos ácidos graxos.
Isso porque os óleos vegetais são líquidos à temperatura ambiente devido à presença de
múltiplas ligações duplas com isomeria cis, mas podem ser hidrogenados completamente
levando a gorduras saturadas sólidas de alto ponto de fusão ou, ainda, serem
parcialmente hidrogenados levando à formação de insaturações com isomeria trans, que
tornam a gordura sólida, mas com ponto de fusão intermediário, dando a essas gorduras
uma consistência cremosa à temperatura ambiente.
 
Foto: Shutterstock.com
DESIGNAÇÃO E/Z
Você deve ter observado que nos exemplos já vistos os substituintes ligados aos
carbonos da dupla eram parecidos, senão iguais.
O que acontece se tivermos substituintes muito diferentes ou três substituintes ao
invés de apenas dois? Será que a designação cis/trans ainda funciona?
A verdade é que não. Nesses casos, a designação cis/trans pode ser ambígua, assim, foi
criado um sistema, a designação E/Z. Nessa designação, os substituintes ligados aos
carbonos da dupla ligação são priorizados de acordo com as regras de Cahn-Ingold-
Prelog, que vamos ver a seguir, utilizando o 2-bromo-1-fluorobut-1-eno.
 
Imagem: Anna Claudia Silva.
 Estrutura do 2-bromo-1-fluorobut-1-eno.
REGRA N° 1
REGRA N° 2
REGRA N° 3
REGRA N° 1
Compare os átomos imediatamente ligados aos carbonos da dupla ligação; aquele que
tiver o maior número atômico terá maior prioridade. No caso do nosso exemplo, temos:
 
Imagem: Anna Claudia Silva
 Estabelecendo a prioridade entre os substituintes dos carbonos da dupla ligação.
No caso dessa substância, podemos ver, então, que os substituintes de maior prioridade
estão do mesmo lado da dupla ligação e, por isso, esse é o composto Z (do alemão
zusammen, que significa “juntos”). A imagem abaixo mostra o composto E (do alemão
entgegen, que significa “oposto”):
 
Imagem: Anna Claudia Silva.
 Estrutura do (E )-2-bromo-1-fluorobut-1-eno.
REGRA N° 2
Essa regra é válida quando a primeira não é suficiente para definir o substituinte de maior
prioridade. Caso os primeiros átomos dos dois substituintes ligados ao carbono da dupla
ligação sejam iguais, passamos aos próximos átomos. A imagem abaixo traz um exemplo
desse tipo:
 
Imagem: Anna Claudia Silva
 Desempate da prioridade de substituintes.
Na estrutura, podemos ver que o carbono da ponta direita é de fácil resolução: flúor tem
maior número atômico que o hidrogênio e, por isso, tem prioridade. Já no caso do
carbono à esquerda da dupla ligação, ele está ligado a ambos os substituintes que têm
como primeiro átomo o carbono. Assim, precisamos ir andando nacadeia a fim de
resolver o empate.
No caso do substituinte de cima (etila), o átomo seguinte é outro carbono, porém, no de
baixo, temos apenas átomos de hidrogênio, já que se trata de uma metila. Carbono tem
um número atômico maior que o hidrogênio, então tem prioridade sobre ele. Logo, o
composto mostrado é o (E)-1-fluoro-2-metil-1-buteno.
Caso o segundo átomo não seja capaz de definir o substituinte de maior prioridade,
passa-se ao terceiro, quarto, quinto, e assim sucessivamente, até que haja uma diferença
que resolva o empate.
REGRA N° 3
Átomos ligados entre si através de ligações múltiplas equivalem a várias ligações simples
entre aqueles átomos. Ou seja, C=O equivale a um átomo de carbono ligado a dois
átomos de oxigênio por meio de ligações simples. A imagem abaixo mostra como seria
isso:
 
Imagem: Anna Claudia Silva.
 Para prioridade, uma ligação dupla equivale a duplas ligações simples entre os
mesmos átomos.
Note que os compostos classificados usualmente como cis e trans também podem ser
classificados na designação E/Z. Vamos ver o caso do 2-buteno novamente:
 
Imagem: Anna Claudia Silva.
 Estruturas do (Z ) e (E )-2-buteno.
 ATENÇÃO
Ao escrever o nome dos isômeros, note que a designação cis/trans não precisa estar
entre parênteses, mas deve estar em itálico. Na designação E/Z, deve-se colocar a letra
entre parênteses e em itálico antes do nome IUPAC do composto.
Agora que discutimos os alcenos, vamos ver como funciona a isomeria em compostos
cíclicos.
ISOMERIA EM CICLOALCANOS
No caso de cicloalcanos, a isomeria cis/trans é possível pelo mesmo motivo que nos
alcenos:
Não existe rotação livre nas ligações sigma que compõem o anel.
Desse modo, assim como nos alcenos, os isômeros cis e trans só são passíveis de se
interconverterem se houver quebra das ligações sigma, o que não ocorre à temperatura
ambiente. Essa característica implica propriedades físico-químicas diferentes para os
compostos, que podem ser isolados separadamente.
O menor cicloalcano possível de existir é o ciclopropano, que é também o composto no
qual a visualização da isomeria cis/trans é mais fácil.
 
Imagem: Anna Claudia Silva.
 Isômeros cis e trans do 1,2-dimetilciclopropano.
Ciclobutanos e ciclopentanos dissubstituídos, embora não sejam tão planares quanto o
cicloproprano, ainda apresentam planaridade suficiente para facilitar a visualização dos
isômeros cis/trans. Por isso, podemos simplesmente dizer que, assim como no caso dos
alcenos:
Quando os dois substituintes estão do mesmo lado do plano do anel, temos o isômero cis

Quando os substituintes estão em planos opostos, temos o isômero trans
A isomeria dos cicloalcanos começa a ficar mais difícil de visualizar com os cicloexanos,
devido às diferentes conformações que eles podem assumir, e ao fato de sua
conformação mais estável, a cadeira, não ser plana e ter substituintes nas posições axial
e equatorial. Vamos começar entendendo quem são essas posições.
Os carbonos do cicloexano apresentam geometria tetraédrica e, quando desenhamos sua
estrutura, devemos respeitar a geometria colocando seus substituintes na posição certa.
1
 
Imagem: Anna Claudia Silva
 Conformação cadeira do cicloexano.
Para começar, vamos ver como desenhar a conformação cadeira do cicloexano. A
imagem ao lado mostra as linhas que compõem essa estrutura coloridas de maneira a
facilitar a visualização: as linhas azuis são paralelas entre si, da mesma forma que as
rosas e as pretas. Note também que as pontas do cicloexano na conformação cadeira
ficam no mesmo nível.
Em seguida, precisamos colocar os substituintes nas posições axial e equatorial. Aqui,
vamos utilizar hidrogênios apenas e desenhar o cicloexano, mas qualquer substituinte
seguiria a mesma lógica de desenho. Primeiro colocamos os hidrogênios axiais. Esses
hidrogênios estarão em linha reta, acima ou abaixo do anel, de maneira intercalada,
conforme a imagem a seguir:
 
Imagem: Anna Claudia Silva
 Conformações cadeira do cicloexano com hidrogênios axiais destacados em rosa.
2
3
 
Imagem: Anna Claudia Silva
 Conformações cadeira do cicloexano com hidrogênios equatoriais destacados em
rosa.
Os hidrogênios equatoriais não são tão óbvios de serem desenhados quanto os axiais.
No entanto, as ligações equatoriais estarão sempre paralelas a pelo menos duas ligações
C-C, conforme podemos ver na imagem ao lado.
Agora que entendemos como desenhar o cicloexano e quem são as ligações equatoriais
e axiais, vamos ver a isomeria cis/trans propriamente dita. Existem três possibilidades de
dissubstituições no cicloexano:
os compostos 1,2-dissubstituídos;
os 1,3-dissubstituídos;
os 1,4-dissubstituídos.
Todos com isômeros cis e trans.
A determinação do isômero depende se os substituintes estão ambos em ligações que
vão para cima ou um para cima e um para baixo, conforme a imagem a seguir:
 
Imagem: Anna Claudia Silva.
 Como reconhecer compostos cis e trans em cicloexanos dissubstituídos na
conformação cadeira.
Essa diferenciação das ligações para cima e para baixo funciona também para
compostos cíclicos ainda maiores. A decalina, por exemplo, um composto bicíclico,
também apresenta isomeria cis/trans, como podemos ver a seguir:
 
Imagem: Anna Claudia Silva.
 Cis e trans -decalina.
Note que o anel da direita (todo em preto) pode ser considerado o anel principal, e que as
ligações entre esse anel e o segundo seguem a mesma lógica de ter ambas as ligações
na mesma direção para o composto cis e ligações na direção contrária para o composto
trans.
ISOMERIA EM COMPOSTOS
INSATURADOS E CÍCLICOS
Vejamos, através de exercícios, a identificação e classificação de isômeros cis/trans em
alcenos e compostos cíclicos; a classificação cis/trans de compostos cicloexano
substituídos e a relação de tal classificação com os locais de substituição (1,2/1,3 e 1,4) e
as configurações axial e equatorial.
VERIFICANDO O APRENDIZADO
1. OS COMPOSTOS 1, 2 E 3 POSSUEM ISÔMERO CIS E ISÔMERO
TRANS .
 
ASSINALE A ALTERNATIVA QUE TRAZ O ISÔMERO MOSTRADO NA
FIGURA:
A) Trans; cis; cis 
B) Cis; trans; cis
C) Cis; cis; trans
D) Trans; trans; cis
E) Trans; cis; trans
2. ASSINALE A ALTERNATIVA QUE TRAZ A ESTRUTURA DO
ISÔMERO E DO 2-FLUOROPENT-2-EN-3-AMINA:
A)
A)
B)
B)
C)
C)
D)
D)
E)
E)
GABARITO
1. Os compostos 1, 2 e 3 possuem isômero cis e isômero trans .
 
Assinale a alternativa que traz o isômero mostrado na figura:
A alternativa "B " está correta.
 
Os compostos 1 e 3 apresentam ambos os substituintes em ligações direcionadas ao
mesmo plano do anel, ou seja, no composto 1 ambos estão para cima e no composto 3
ambos estão para baixo, o que quer dizer que esses compostos apresentam isomeria
cis .
2. Assinale a alternativa que traz a estrutura do isômero E do 2-fluoropent-2-en-3-
amina:
A alternativa "C " está correta.
 
O primeiro passo seria identificar o composto que apresenta 5 carbonos na cadeia
principal, com ligação dupla entre os carbonos 2 e 3, substituído com flúor no carbono 2 e
um grupo amina na posição 3. Em seguida, sabemos que o isômero E é aquele que
apresenta os grupos de maior prioridade em lados opostos da dupla ligação e, como
podemos ver na figura, esse é o caso da letra C, em que o flúor e a amina estão em lados
opostos.
MÓDULO 3
 Reconhecer as características e propriedades físico-químicas de moléculas
quirais
ESTEREOISOMERIA
Até o momento, vimos os isômeros constitucionais ou planos, a isomeria cis/trans e
designação E/Z. Agora, vamos continuar nos aprofundando na estereoisomeria. Para
isso, precisamos conhecer um conceito importantíssimo: a quiralidade.
QUIRALIDADE
Mesmo sem saber, o conceito de quiralidade é familiar para você. Já acordou de manhã e
tentou calçar o sapato errado? Tentou colocar uma luva e percebeu que estava colocando
a mão errada? O fato de que existe um sapato e uma luva errados para nossas mãos e
pés é resultado da quiralidade desses membros.
Um objeto oumolécula quiral é aquele que não é sobreponível à sua imagem
especular.
Como assim?
Falamos antes que as nossas mãos são quirais. Vamos, então, fazer um experimento?
Coloque a sua mão esquerda em frente a um espelho. Note que a imagem refletida é
igual à sua mão direita, mas que se você tentar sobrepor as duas mãos com a palma
para cima, por exemplo, isso não será possível.
O que acontece quando olhamos na frente do espelho é apresentado na imagem abaixo:
 
Imagem: shutterstock.com
 Imagens especulares não sobreponíveis.
Isso quer dizer que, se a imagem refletida não apresentar um plano de simetria, as
imagens especulares não serão sobreponíveis, como é o caso da letra B mostrada na
imagem acima. O número 8, por outro lado, é simétrico e, por isso, suas imagens
especulares são sobreponíveis, conforme pode ser visto na imagem a seguir:
 
Imagem: Anna Claudia Silva.
 Quiralidade em números e letras.
A quiralidade, no entanto, vai muito além das nossas mãos e de objetos como luvas e
sapatos. A natureza está repleta de exemplos de quiralidade, desde plantas que crescem
sempre para o mesmo lado até nossos aminoácidos que, com a exceção da glicina, são
quirais e apresentam, geralmente, desvio da luz polarizada para a esquerda, enquanto os
açúcares naturais apresentam desvio da luz polarizada para a direita. Essas diferenças
são cruciais, pois afetam a interação dessas substâncias com as enzimas e receptores do
nosso organismo.
MOLÉCULAS QUIRAIS
Como identificar a quiralidade em uma molécula orgânica?
RESPOSTA
A regra é: moléculas quirais não são sobreponíveis à sua imagem especular.
Porém, existem algumas outras maneiras de se chegar a essa conclusão. A primeira é a
presença de um centro de quiralidade na molécula. O centro de quiralidade em uma
substância orgânica é, em geral, marcado por um asterisco (*) e dado pela presença de
um carbono assimétrico.
Um carbono assimétrico é nada mais que um carbono tetraédrico ligado a quatro
substituintes distintos entre si.
CARBONO TETRAÉDRICO
Carbono com hibridização sp3 e que, por isso, faz 4 ligações simples.
É importante observarmos que uma molécula só será certamente quiral caso haja
apenas um centro de quiralidade em sua estrutura. Caso dois ou mais estejam presentes,
é necessário avaliar a molécula como um todo e ver se ela é ou não sobreponível à sua
imagem especular.
A necessidade da presença de um carbono assimétrico na estrutura da molécula deriva
do fato de que moléculas que apresentem um plano de simetria não serão quirais, como
vimos quando discutimos o conceito de quiralidade, e esse cenário só existe quando
todos os quatro substituintes são diferentes entre si. Veja na imagem abaixo:
javascript:void(0)
 
Imagem: Anna Claudia Silva.
 Carbono assimétrico que possibilita o centro de quiralidade.
Uma vez que a molécula é identificada como quiral, sabemos que ela poderá existir na
forma das duas imagens especulares, que são denominadas enantiômeros.
Os enantiômeros são um tipo de estereoisômero em que as moléculas não são
sobreponíveis às suas imagens especulares, ou seja, são quirais.
Na imagem, podemos ver os dois enantiômeros do 2-butanol:
 
Imagem: Anna Claudia Silva.
 Enantiômeros do 2-butanol.
Os enantiômeros, assim como os outros isômeros que vimos, apresentam nomes
diferentes para que possamos saber a qual deles estamos nos referindo ao ler um texto,
por exemplo.
Vamos ver como nomeá-los?
NOMENCLATURA DE ENANTIÔMEROS: SISTEMA
R,S
Para nomear os enantiômeros de acordo com a IUPAC, devemos utilizar as regras de
Cahn-Ingold-Prelog que vimos quando discutimos a designação E/Z , lembra delas?
Vamos fazer um resumo para refrescar a memória:
REGRA Nº 1
Compare os átomos imediatamente ligados aos carbonos. Aquele que tiver o maior
número atômico terá maior prioridade.
REGRA Nº 2
Essa regra é válida quando a primeira não é suficiente para definir o substituinte de maior
prioridade. Caso os primeiros átomos dos substituintes ligados ao carbono sejam iguais,
passamos aos próximos átomos.
REGRA Nº 3
Átomos ligados entre si através de ligações múltiplas equivalem a várias ligações simples
entre aqueles átomos. Ou seja, C=O, por exemplo, equivale a um átomo de carbono
ligado a dois átomos de oxigênio através de ligações simples.
Agora que lembramos das regras, vamos ver como designar se um enantiômero é o R
ou o S , etapa por etapa, utilizando um enantiômero do 2-butanol como exemplo:
1
 
imagem: Anna Claudia Silva
 Atribuição de prioridade nos substituintes do 2-butanol.
Assinale a ordem de prioridade dos substituintes do carbono assimétrico de acordo com
as regras de Cahn-Ingold-Prelog (vamos utilizar letras para facilitar: “a” possui maior
prioridade e “d” possui menor prioridade):
Lembrando que a etila tem preferência sobre a metila, pois, comparando o segundo
átomo, sabemos que carbono tem preferência sobre hidrogênio.
Giramos a estrutura de modo que o substituinte de menor prioridade fique o mais longe
possível do observador. Nessa etapa e na seguinte, o uso da projeção de Newman facilita
a designação e o entendimento
 
Imagem: Química Orgânica. SOLOMONS, T. W. G.; FRYHLE, C. B.; SNYDER, S. A.
,2021 . Adaptado por Anna Claudia Silva.
 Menor prioridade afastada na 2ª etapa da designação R,S .
2
3
 
Imagem: Anna Claudia Silva.
 Como analisar o sentido de rotação e o isômero correspondente.
Traçamos um giro que vai de a até c (d está para trás do carbono, então não será
considerado nessa etapa). Se as setas mostrarem que a molécula gira para direita
(sentido horário), estamos frente ao enantiômero R; caso as setas apontem para a
esquerda (sentido anti-horário), estamos frente ao isômero S.
Como aqui as setas estão no sentido horário, temos o (R)-2-butanol.
Note que na nomenclatura de enantiômeros, a designação R,S deve vir entre parênteses,
antes do restante do nome e sempre em itálico. 
No caso de compostos que apresentam mais de um centro de quiralidade, cada centro
deve ser tratado e nomeado de maneira individual para designar se aquele centro é R ou
S. Uma vez estabelecida a designação, o centro é numerado como se fosse um
substituinte. Temos, por exemplo, o composto (2R,3R)-2,3-dibromobutano.
COMO DESENHAR OS ENANTIÔMEROS
Agora que sabemos identificar se estamos frente ao enantiômero R ou S, digamos que
você queira desenhar o outro enantiômero. Para compostos que apresentam apenas um
centro de quiralidade, como o 2-butanol, é bastante simples: a inversão de quaisquer dos
dois substituintes na estrutura de um isômero levará ao outro. A imagem traz o exemplo
do 2-butanol:
 
Imagem: Anna Claudia Silva.
 Desenhando o (S )-butan-2-ol a partir do (R )-butan-2-ol.
E o que acontece quando temos mais de um carbono assimétrico na molécula?
Vamos ver o caso do 2,3-dibromopentano, que tem 2 centros de quiralidade:
Nesse caso, o primeiro passo é saber que o número máximo de enantiômeros que um
composto pode ter é 2n, em que n é o número de centros de quiralidade. No caso do 2,3-
dibromopentano, então, podemos ter um máximo de 4 enantiômeros para o composto.
 
Imagem: Anna Claudia Silva.
 Estrutura do 2,3-dibromopentano com os centros de quiralidade indicados.
Para desenhar os primeiros dois isômeros, podemos escolher a posição que quisermos,
mas é sempre melhor se o desenho da estrutura estiver de tal forma que facilite a
visualização de um possível plano de simetria. A imagem abaixo traz o exemplo do par de
enantiômeros 1 e 2 do 2,3-dibromopentano:
 
Imagem: Anna Claudia Silva.
 Enantiômeros 1 e 2 do 2,3-dibromopentano.
Como podemos ver, as duas estruturas acima não são sobreponíveis e, portanto, são
enantiômeros. Para encontrarmos o outro par de enantiômeros possível, vamos inverter a
posição de dois substituintes em um dos carbonos e espelhar a imagem, conforme a
imagem:
 
Imagem: Anna Claudia Silva.
 Enantiômeros 3 e 4 do 2,3-dibromopentano.
A análise das estruturas dos quatro estereoisômeros possíveisdo 2,3-dibromopentano
nos leva a uma outra diferença importante.
Note que os compostos 1 e 2 são a imagem especular um do outro e não são
sobreponíveis, ou seja, são enantiômeros. O mesmo acontece entre as estruturas 3 e 4.
Mas e se compararmos 1 e 4? Ou 2 e 3? Vamos descobrir.
DIASTEREOISÔMEROS, ENANTIÔMEROS
E COMPOSTOS MESO
O fluxograma abaixo mostra como todas essas formas de isomeria que vimos até o
momento estão relacionadas:
 
Imagem: Química Orgânica. SOLOMONS, T. W. G.; FRYHLE, C. B.; SNYDER, S. A.;
2021.
 Classificação dos diferentes tipos de isômeros.
Os compostos 1 e 4 que vimos anteriormente são estereoisômeros do 2,3-
dibromopentano, porém não são a imagem especular um do outro, entao são
diastereoisômeros. Quando comparamos novamente os quatro estereoisômeros do 2,3-
dibromopentano, chegamos às seguintes relações:
 
Imagem: Anna Claudia Silva.
 Relações entre enantiômeros e diastereoisômeros do 2,3-dibromopentano.
Existe, ainda, um terceiro tipo de composto muito importante de ser mencionado: o
composto meso. Para entender quem é esse composto, vamos analisar o 2,3-
dibromobutano.
Esse composto, assim como o 2,3-dibromopentano já visto, apresenta 2 centros de
quiralidade, então também existe um máximo de quatro isômeros possíveis para ele. 
Começamos escolhendo uma estrutura e desenhando sua imagem especular.
 
Imagem: Anna Claudia Silva.
 Enantiômeros 1 e 2 do 2,3-dibromobutano.
Em seguida, vamos inverter um dos centros quirais para obter o diastereoisômero 3 e sua
imagem especular 4.
 
Imagem: Anna Claudia Silva.
 Composto meso do 2,3-dibromobutano.
Agora, podemos observar que 1 e 2 são a imagem especular não sobreponível um do
outro e, portanto, são enantiômeros. Porém, 3 e 4 são sobreponíveis e apresentam um
plano de simetria que corta a ligação σ carbono-carbono entre os dois centros quirais ao
meio. Isso quer dizer que 3 e 4 são uma única estrutura que apresenta dois centros de
quiralidade e não é quiral, ou seja, é um composto meso.
Da mesma forma que fizemos para o 2,3-dibromopentano, vamos olhar as relações entre
os isômeros do 2,3-dibromobutano?
 
Imagem: Anna Claudia Silva.
 Enantiômeros, diastereoisômeros e composto meso do 2,3-dibromobutano.
Para resumir:
aquiral
Composto meso é um composto
que, apesar de apresentar
assimétrico
diferente
diferentes
fórmula
idênticas
quatro
quiralidade
sobreponível
centros de quiralidade em sua
estrutura, possui um plano de
simetria interno que o torna 
---------- .
Diastereoisômeros são
compostos que apresentam
mesma ---------- molecular,
porém seus átomos estão
arranjados de maneira ----------
no espaço e não são a imagem
especular um do outro. Esses
compostos apresentam
propriedades físico-químicas
como ponto de fusão e ebulição 
---------- entre si.
Enantiômeros são compostos
que são a imagem especular não 
---------- um do outro. Esses
compostos devem apresentar ao
menos um átomo de carbono
tetraédrico ligado a ----------
substituintes diferentes, também
conhecido como carbono 
---------- . Caso tenha mais de
um centro de quiralidade, o
composto terá um número
máximo de isômeros igual a 2n
em que n é o número de centros
de ---------- . Enantiômeros têm
propriedades físico-químicas 
---------- entre si.
RESPOSTA
A sequência correta é:
Composto meso é um composto que, apesar de apresentar centros de quiralidade em
sua estrutura, possui um plano de simetria interno que o torna aquiral.
Diastereoisômeros são compostos que apresentam mesma fórmula molecular, porém
seus átomos estão arranjados de maneira diferente no espaço e não são a imagem
especular um do outro. Esses compostos apresentam propriedades físico-químicas como
ponto de fusão e ebulição diferentes entre si.
Enantiômeros são compostos que são a imagem especular não sobreponível um do
outro. Esses compostos devem apresentar ao menos um átomo de carbono tetraédrico
ligado a quatro substituintes diferentes, também conhecido como carbono assimétrico.
Caso tenha mais de um centro de quiralidade, o composto terá um número máximo de
isômeros igual a 2n em que n é o número de centros de quiralidade. Enantiômeros têm
propriedades físico-químicas idênticas entre si.
Se os enantiômeros apresentam as mesmas propriedades físico-químicas, como
sabemos que eles existem? Como sabemos que não são todos iguais? Sabemos porque
esses compostos apresentam uma diferença que está relacionada a uma propriedade
que ainda não vimos: a atividade óptica.
ATIVIDADE ÓPTICA
Os estudos relacionados à atividade óptica começaram no século XIX com os trabalhos
do físico francês Jean-Baptiste Biot sobre a natureza da luz polarizada.
O feixe de luz, em geral, é um fenômeno eletromagnético que apresenta oscilações em
um número infinito de planos, como visto na imagem.
 
Imagem: Química Orgânica. SOLOMONS, T. W. G.; FRYHLE, C. B.; SNYDER, S. A.;
2021.
 Planos do feixe de luz.
No entanto, é possível passar a luz por um dispositivo denominado polarizador, que filtra
o feixe de luz de maneira que a luz que atravessa tem suas oscilações no mesmo plano,
ou seja, a luz se torna polarizada.
O que Biot observou a princípio foi que algumas substâncias eram capazes de desviar o
plano da luz polarizada em determinado ângulo α. Atualmente, contamos com um
equipamento denominado polarímetro para fazer essas observações.
Um polarímetro apresenta uma fonte de luz não polarizada, um polarizador, um espaço
onde pode-se colocar soluções de substâncias orgânicas para serem analisadas e um
analisador que nada mais é que um segundo polarizador, conforme pode ser visto na
imagem abaixo:
 
Imagem: Química Orgânica. MCMURRAY, J., 2010.
SUBSTÂNCIA OPTICAMENTE INATIVA
Quando o tubo de amostra contém uma substância opticamente inativa ou está vazio, a
luz chegará ao observador com a mesma intensidade máxima que passou pelo
polarizador.
SUBSTÂNCIA OPTICAMENTE ATIVA
Se a substância no tubo for opticamente ativa, o observador precisará girar o analisador
em seu eixo para observar a intensidade máxima de luz.
SUBSTÂNCIA DEXTRÓGIRA
Quando o analisador gira para a direita, em sentido horário, a substância é dita dextrógira
e a rotação específica recebe um sinal positivo (+).
SUBSTÂNCIA LEVÓGIRA
Já quando o analisador gira para a esquerda, em sentido anti-horário, a substância é dita
levógira e sua rotação recebe um sinal negativo (-).
ROTAÇÃO ESPECÍFICA
O lado para o qual uma substância gira a luz polarizada é indicado pelo sinal de positivo
ou negativo, como já vimos, mas agora veremos o quanto essa substância vai desviar a
luz polarizada.
O grau do ângulo de desvio é influenciado diretamente pela quantidade de
moléculas quirais as quais a luz polarizada encontra durante sua passagem pelo
tubo contendo a amostra, ou seja, a concentração da substância influencia
diretamente o ângulo de rotação. Da mesma forma, se mantivermos a
concentração, mas aumentarmos ou diminuirmos o tamanho do tubo que contém a
amostra, o ângulo será alterado de maneira proporcional. O comprimento de onda
da luz e a temperatura também podem influenciar.
Por todos esses motivos, os químicos decidiram elaborar um padrão para que
pudéssemos comparar diferentes substâncias e, por isso, criou-se a ideia de rotação
específica de uma substância. Essa rotação é medida a 25°C utilizando uma luz de
586,6nm de comprimento de onda (lâmpada de sódio comum), o caminho ótico l é de
1dm (ou 10cm) e a concentração da substância é de 1g/mL.
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
[Α]D
Rotação específica da substância
Α
Rotação observada no polarímetro
L
Caminho óptico
C
Concentração da substância
Vamos ver os exemplos de dois pares de enantiômeros, os do 2-metil-1-butanol e os do
1-cloro-2-metilbutano e suas rotações específicas:
[α]
D
  =     =  
Rotação observada (graus)
Caminho ótico (dm) × Concentração ( )g
ml
α
l × c
javascript:void(0)
javascript:void(0)
javascript:void(0)javascript:void(0)
 
Imagem: Anna Claudia Silva.
 Enantiômeros R/S e o desvio da luz polarizada.
Nessa imagem, podemos observar duas informações muito importantes:
1
A rotação específica de um par de enantiômeros vai ter o mesmo valor numérico e sinais
invertidos.
2
A configuração R/S não determina se um composto será dextrógiro ou levógiro – note
que o (R)-2-metil-1-butanol é dextrógiro (+), enquanto o (R)-1-cloro-2-metilbutano é
levógiro (-).
A rotação específica de um composto é importante, pois é uma maneira de caracterizar
tal substância e sua pureza. A tabela abaixo traz exemplos de rotações específicas de
algumas substâncias de grande importância clínica:
Composto Estrutura [α]D
Penicilina V +233
Imagem: Anna Claudia Silva.
Colesterol
Imagem: Anna Claudia Silva.
-31,5
Morfina
 
Imagem: Anna Claudia Silva.
-132
 Atenção! Para visualização completa da tabela utilize a rolagem horizontal
 Tabela: Rotações específicas de substâncias de relevância médica. 
Elaborada por Anna Claudia Silva
MISTURA RACÊMICA
Já vimos que um par de enantiômeros terá o mesmo valor numérico de rotação
específica com variação apenas no sinal, pois um será dextrógiro e o outro levógiro.
Isso quer dizer que, quando uma solução de um composto quiral apresentar
quantidades equimolares do par de enantiômeros, essa solução será chamada de
mistura racêmica e não será capaz de desviar o plano da luz polarizada.
Isso acontece porque enquanto um enantiômero vai desviar a luz polarizada em +x, o
outro irá desviá-la em -x, e o resultado será zero de desvio. A imagem abaixo mostra
essa situação:
 
Imagem: Química Orgânica. SOLOMONS, T. W. G.; FRYHLE, C. B.; SNYDER, S. A.,
2021. Adaptado por Anna Claudia Silva.
 Misturas racêmicas não são capazes de desviar a luz polarizada.
A mistura racêmica de dois enantiômeros pode ser representada pelo símbolo (±) antes
do nome da substância. Por exemplo, uma mistura racêmica do (R)-2-butanol e (S)-2-
butanol é representada como (±)-2-butanol.
EXCESSO ENANTIOMÉRICO
Chamamos uma solução na qual só existe um enantiômero de solução opticamente
pura ou enantiomericamente pura e de mistura racêmica uma solução com
proporções iguais de enantiômeros.
Como vimos, as soluções opticamente puras desviarão a luz polarizada e a rotação
observada será equivalente à rotação específica da substância, no sentido
correspondente ao enantiômero que estiver presente na solução. A mistura racêmica, por
outro lado, tem rotação nula.
Diferente desses dois casos, uma solução constituída por quantidades diferentes
de dois enantiômeros será opticamente ativa, porém, ao ser analisada em
polarímetro, apresentará rotação diferente da rotação específica da substância.
Vamos voltar ao exemplo do 2-butanol para entender melhor como isso funciona. Se em
uma solução tivermos 70% do (R)-2-butanol e 30% do (S)- 2-butanol, podemos dizer que
existe um excesso de 40% de enantiômero R (70% - 30% = 40%). As demais partes da
solução são constituídas por uma mistura racêmica dos dois enantiômeros. Chamamos
esse excesso de um dos enantiômeros de excesso enantiomérico (ee%). 
Experimentalmente, podemos calcular o excesso enantiomérico da seguinte maneira:
% ee =     ×  100
|α observado|
∣∣α do enantiômero puro∣∣
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
Vamos ver como isso ocorre na prática:
A ROTAÇÃO DA ADRENALINA OPTICAMENTE
ATIVA PURA EM ÁGUA (A 25°C) É DE – 53°. O
RESULTADO DA ROTAÇÃO ESPECÍFICA
OBTIDO PELA ANÁLISE DE UMA SOLUÇÃO
FORMADA POR UMA MISTURA DA
ADRENALINA E SEU ENANTIÔMERO FOI DE –
45°. QUAL É O EXCESSO ENANTIOMÉRICO
(EE%) NESSA SOLUÇÃO?
58% 85%
58%
Não é bem assim! Vamos inserir os valores das rotações específicas do enantiômero
puro e da mistura de enantiômeros na equação apresentada para o cálculo de ee%:
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
% ee =     ×  100
|α observado|
∣∣α do enantiômero puro∣∣
% ee =       ×  100 = 85%
|45|
|53|
javascript:void(0)
javascript:void(0)
85%
Muito bem! Vamos inserir os valores das rotações específicas do enantiômero puro e
da mistura de enantiômeros na equação apresentada para o cálculo de ee%:
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
A partir desse resultado, podemos dizer que temos um excesso enantiomérico de 85% da
adrenalina. Os outros 15% referem-se à mistura racêmica da adrenalina e seu
enantiômero (7,5% de adrenalina e 7,5% do seu enantiômero).
Se quisermos saber qual o percentual total de adrenalina que temos nessa mistura, basta
somarmos o excesso enantiomérico (85%) e o percentual da substância na mistura
racêmica (7,5%). Logo, podemos dizer que essa mistura é composta por 92,5% de
adrenalina e 7,5 % do seu isômero.
RESOLUÇÃO DE ENANTIÔMEROS
% ee =     ×  100
|α observado|
∣∣α do enantiômero puro∣∣
% ee =       ×  100 = 85%
|45|
|53|
Na natureza, a maior parte das moléculas quirais que encontramos estão na forma de um
dos enantiômeros. Os aminoácidos, por exemplo, são majoritariamente encontrados na
forma de L-aminoácidos (levógiros), enquanto os açúcares naturais são dextrógiros (D-
açúcares).
No entanto, quando produzimos substâncias quirais em laboratório, em geral, obtemos
uma mistura racêmica dos enantiômeros e a separação deles pode ser necessária.
Mas como podemos separar compostos que não apresentam propriedades físico-
químicas diferentes?
A maneira mais fácil de fazer essa separação é utilizando os compostos naturalmente
quirais que estão disponíveis na natureza.
Digamos, por exemplo, que queremos separar enantiômeros da mistura racêmica de um
álcool. Podemos fazer isso utilizando o ácido (R)-mandélico proveniente de amêndoas
em uma reação de esterificação em que um dos produtos de partida está na forma
enantiomericamente pura.
A esterificação levará à formação de dois diastereoisômeros que apresentam
propriedades físico-químicas diferentes e podem ser separados por cromatografia, por
exemplo, conforme o esquema:
 Etapa 1 da resolução de enantiômeros através de reação com substâncias
enantiomericamente puras.
Uma vez que temos os diastereoisômeros puros, podemos reverter a esterificação
através de reação de hidrólise, recuperando tanto o ácido quanto o álcool na forma
enantiomericamente pura, conforme esquema abaixo:
 
Imagem: Anna Claudia Silva.
 Etapa 2 da resolução de enantiômeros através de reação com substâncias
enantiomericamente puras.
Uma segunda possibilidade de fazer a resolução dos enantiômeros é através da
formação de sais de diastereoisômeros. Esse tipo de resolução é utilizado na separação
dos enantiômeros de fármacos como naproxeno e ibuprofeno.
O ibuprofeno sofre enantiomerização no organismo, por isso é vendido na forma de
mistura racêmica.

O naproxeno apresenta atividade anti-inflamatória apenas no seu isômero (S ), por isso
deve ser comercializado na forma enantiomericamente pura.
Aproveitando-se do fato de que o naproxeno é um ácido carboxílico, reage-se ele com
uma amina enantiomericamente pura, no caso a N-propilglucosamina, e os sais
diastereoisômeros são formados. Um dos sais apresenta solubilidade enquanto o outro
se mantém na forma cristalina, podendo então ser filtrado para fora da solução,
separando os enantiômeros, e a posterior basificação com hidróxido de sódio permite a
recuperação do sal de sódio do (S)-naproxeno, conforme esquema abaixo:
 
Imagem: Anna Claudia Silva.
 Exemplo de resolução enantiomérica do naproxeno.
O que podemos fazer caso os enantiômeros a serem resolvidos não contenham
grupos funcionais capazes de serem reagidos de maneira a formar
diastereoisômeros diferentes?
RESPOSTA
Nesse caso, podemos recorrer à cromatografia, na qual a fase estacionária é quiral por
reação da sílica com um composto enantiomericamente puro, conforme mostra a
imagem:
 
Imagem: : Organic Chemistry. CAREY, F. A.; GIULIANO, R. M.; ALLISON, N. T.; BANE, S.
L., 2018, Pág. 326 Fase estacionária quiral.
O que acontece nesse caso é que um dos enantiômeros a ser resolvido terá maior
afinidade pela fase estacionária quiral do que o outro, portanto sairão da coluna
cromatográfica em tempos diferentes, permitindo a resolução dos enantiômeros. A
imagem abaixo mostra como esse processo acontece:
 Resolução enantiomérica por cromatografia com fase estacionária quiral.
POR QUE É IMPORTANTE FAZER A RESOLUÇÃO
DOS ENANTIÔMEROS?
Principalmente na área de medicamentos, a resolução de enantiômeros pode ser a
diferença entre atividade biológica ou a falta dela, porém, mais do que isso, pode ser a
diferença entre o uso seguro de uma medicação e seus efeitos tóxicos.
Vamos ver alguns exemplos?
Β-BLOQUEADORES
DOPA
Β-BLOQUEADORES
O primeiro exemplo que podemos citar é o dos fármacos β-bloqueadores. Estudos
mostram que os enantiômeros levorrotatórios desses fármacos chegam a ser 100 vezes
mais ativos que suas contrapartes dextrorrotatórias. Apesar disso, a maior parte dos
fármacos β-bloqueadores seguem sendo comercializados na forma de racematos.
DOPA
Por outro lado, a dopa, utilizada no tratamento da doença de Alzheimer, era
comercializada sob a forma de mistura racêmica, porém foram observados efeitos tóxicos
graves relacionados à D-Dopa e, por esse motivo, atualmente o fármaco corresponde à
forma enantiomericamente pura da L-Dopa.
Nem sempre, no entanto, a resolução dos enantiômeros é o suficiente para eliminar os
efeitos tóxicos de um dos enantiômeros. Isso acontece porque alguns fármacos podem
ser convertidos ao enantiômero tóxico dentro do nosso organismo.
É o caso da talidomida, por exemplo, um fármaco que foi muito usado na década de 1960
para o tratamento de enjoos matinais em gestantes. Na época, a medicação foi
amplamente utilizada e desencadeou o que ficou conhecido como a “Tragédia da
talidomida”, na qual várias crianças nasceram com deficiências em razão do efeito
teratogênico da (S)-talidomida.
 
Foto: shutterstock.com
Atualmente, o fármaco é utilizado no tratamento de doenças como lúpus eritematoso e
mieloma múltiplo.
O quadro a seguir traz exemplos de fármacos e as diferentes ações farmacológicas dos
enantiômeros:
Composto Efeito
Estrona
(+): hormônio estrogênico
(-): inativo
Penicilamina D: Antirreumático
L: Extremamente tóxico
Talidomida
(R): Sedativo
(S): Teratogênico
Cetamina
(+): Anestésico
(-): Estimulante do SNC
Bupivacaína
(±): Ambos os isômeros têm ação anestésica local, porém apenas o
enantiômero (-) tem ação vasoconstritora prolongando o efeito
anestésico.
Timolol
(S): Escolha correta como bloqueador β-adrenérgico em
hipertensão, angina pectoris e algumas arritmias
(R): Ação mais localizada no β-adrenoceptor, melhorando a eficácia
do timolol no tratamento do glaucoma
Prilocaína
(S): é lentamente hidrolisado
(R): é rapidamente hidrolisado formando a toluidina, que causa
metemoglobinemia. É um caso de biointoxicação estereoespecífica.
 Atenção! Para visualização completa da tabela utilize a rolagem horizontal
 Quadro: Ações farmacológicas dos enantiômeros. 
Adaptado de: FASSIHI, A. R., 1993, pág. 1-14.
IDENTIFICAÇÃO E CLASSIFICAÇÃO DE
MOLÉCULAS QUIRAIS
A especialista Gabriela de Andrade Danin Barbosa falará de exemplos e exercícios que
envolvam a identificação e classificação de enantiômeros quanto à configuração absoluta
dos carbonos assimétricos (regras de Cahn-Ingold-Prelog) e quanto ao desvio da luz
polarizada. Também abordará a classificação comparativa entre compostos
estereoisômeros (diastero, enantio e composto meso). Assista!
VERIFICANDO O APRENDIZADO
1. O PROPOXIFENO É UM FÁRMACO ANALGÉSICO QUE TAMBÉM
APRESENTA LEVES EFEITOS ANTITUSSÍGENO E DE ANESTESIA
LOCAL, QUE FOI RETIRADO DO MERCADO EM VÁRIOS PAÍSES
DEVIDO AO RISCO DE ARRITMIAS CARDÍACAS. SUA ESTRUTURA
PODE SER VISTA ABAIXO: 
 
ASSINALE A ALTERNATIVA QUE CORRESPONDE AO NÚMERO DE
CARBONOS ASSIMÉTRICOS NA MOLÉCULA DO PROPOXIFENO:
A) 1
B) 2
C) 3
D) 4
E) 5
2. A RESPEITO DOS ESTEREOISÔMEROS, ASSINALE A
ALTERNATIVA CORRETA:
A) Enantiômeros são moléculas que são imagens especulares sobreponíveis uma à
outra.
B) Diastereoisômeros apresentam propriedades físico-químicas como ponto de fusão e
ebulição idênticas entre si.
C) Compostos meso são substâncias que não apresentam centro de quiralidade e, por
isso, não são quirais.
D) Enantiômeros são moléculas que são imagens especulares não sobreponíveis uma à
outra.
E) Enantiômeros e diastereoisômeros são sinônimos utilizados para nos referirmos a
compostos quirais.
GABARITO
1. O propoxifeno é um fármaco analgésico que também apresenta leves efeitos
antitussígeno e de anestesia local, que foi retirado do mercado em vários países
devido ao risco de arritmias cardíacas. Sua estrutura pode ser vista abaixo: 
 
Assinale a alternativa que corresponde ao número de carbonos assimétricos na
molécula do propoxifeno:
A alternativa "B " está correta.
 
Um carbono assimétrico é um carbono que apresenta 4 ligantes diferentes e constitui um
centro de quiralidade. Nessa estrutura, podemos identificar 2 carbonos assimétricos
assinalados pelo asterisco (*) na figura a seguir: 
 
2. A respeito dos estereoisômeros, assinale a alternativa correta:
A alternativa "D " está correta.
 
Os estereoisômeros podem se dividir em diastereoisômeros, que não são a imagem
especular de um outro composto, e os enantiômeros, que são compostos que são a
imagem especular não sobreponível de uma outra estrutura.
CONCLUSÃO
CONSIDERAÇÕES FINAIS
Neste conteúdo, conhecemos os diferentes tipos de isomeria que existem e aprendemos
a reconhecer esses compostos e a importância que eles têm na nossa vida.
Vimos que a isomeria plana pode apresentar cinco tipos diferentes, com propriedades
físico-químicas distintas apesar das fórmulas moleculares iguais.
Pudemos também conhecer os isômeros cis e trans de alcenos e cicloalcanos,
aprendemos a identificar e nomear esses compostos e as diferenças entre as suas
propriedades, assim como a designação E/Z, tão útil na identificação de compostos nos
quais a isomeria cis/trans seria ambígua.
Por fim, vimos o conceito de quiralidade e a diferença entre enantiômeros,
diastereoisômeros e compostos meso, além de termos visto a importância desses
compostos, principalmente na indústria farmacêutica, e como separá-los.
AVALIAÇÃO DO TEMA:
REFERÊNCIAS
CAREY, F. A.; GIULIANO, R. M.; ALLISON, N. T.; BANE, S. L. Organic Chemistry. New
York: McGraw-Hill Education, 2018.
FASSIHI, A. R. Racemates and enantiomers in drug development. International
Journal of Pharmaceutics, 92 (1993), 1-14. Consultado na internet em: 01 de jun. 2021
MCMURRAY, J. Química Orgânica. São Paulo: Cengage Learning, 2010.
RIBEIRO, E. P.; SERAVALLI, E. A. G. Química de Alimentos. São Paulo: Blucher, 2007.
SOLOMONS, T. W. G.; FRYHLE, C. B.; SNYDER, S. A. Organic Chemistry. Hoboken:
John Wiley & Sons, Inc., 2016.
WARREN, S.; GREEVES, N; CLAYDEN, J. Organic Chemistry. Oxford: Oxford
University Press, 2012.
EXPLORE+
Para saber mais sobre os assuntos tratados neste conteúdo, leia:
 
Os fármacos e a quiralidade: uma breve abordagem, de Vera Lúcia Eifler, publicado
na revista Química Nova, em dezembro de 1997, sobre a relação da quiralidade com
os fármacos.
Fármacos e quiralidade, de Fernando A. S. Coelho, publicado na revista Cadernos
Temáticos de Química Nova na Escola, em maio de 2001.
Fármacos quirais em diferentes matrizes ambientais: ocorrência, remoção e
toxicidade, de Ana R. Ribeiro, Carlos Afonso, Paula M. L. Castro e Maria E. Tiritan,
publicado na revista Química Nova, em 2016, que traz uma visão interessante sobre a
importância da quiralidade na contaminação ambiental.
Chirality: a blueprint for the future, de D. Burke e D. J. Henderson, publicado no British
Journal of Anesthesia, em abril de 2002.
Stereochemistry in Drug Action, de Jonathan McConathy e Michael J. Owens,
publicado na revista The Primary Care Companion to the Journal of ClinicalPsychiatry, em 2003.
 
Pesquise na Internet pelas palavras-chave: drug stereochemistry, drug chirality, fármacos
quirais e outras.
CONTEUDISTA
Anna Claudia Silva
 CURRÍCULO LATTES
javascript:void(0);

Outros materiais