Buscar

Modelagem de Sistemas Top 3

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 3, do total de 84 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 6, do total de 84 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 9, do total de 84 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Prévia do material em texto

19/09/21, 01:21 E-book
https://anhembi.blackboard.com/webapps/late-course_content_soap-BBLEARN/Controller?ACTION=OPEN_PLAYER&COURSE_ID=_736400_1&PARENT_ID=_18837329_1&CONTENT_ID=_18837355_1 1/84
MODELAGEM DE SISTEMASMODELAGEM DE SISTEMAS
MODELAGEM DE SISTEMASMODELAGEM DE SISTEMAS
Au to r ( a ) : M e . G u i l h e r m e A f o n s o B e n to M e l l o
R ev i s o r : Fa b i o J o s e R i c a rd o
Tempo de leitura do conteúdo estimado em 1 hora e 48 minutos.
19/09/21, 01:21 E-book
https://anhembi.blackboard.com/webapps/late-course_content_soap-BBLEARN/Controller?ACTION=OPEN_PLAYER&COURSE_ID=_736400_1&PARENT_ID=_18837329_1&CONTENT_ID=_18837355_1 2/84
Introdução
Olá, estudante! É com prazer que apresentamos a você este material. Neste material, vamos estudar
os sinais e sistemas, disciplina com ênfase em modelos matemáticos e analíticos. É necessário um
estudo introdutório, assim como a compreensão das ferramentas de modelagem e análise dos
sistemas lineares contínuos e discretos. Vamos abordar, de forma introdutória, o conceito de sinais,
tipos de classi�cação de sinais, suas transformações no domínio do tempo. No último tópico,
abordaremos a classi�cação dos sistemas lineares mais utilizados, para a análise e processamento
de sinais. O objetivo deste estudo é o de dar embasamento a você, estudante, que lidará, ao longo
de sua vida acadêmica, com a disciplina de sistemas e sinais, e na vida pro�ssional, com diversas
áreas do conhecimento, como processamento de sinais, robótica, circuitos elétricos, sistemas de
comunicação, sistemas de controle etc. Bons estudos!
Vamos iniciar esta unidade curricular compreendendo os elementos passivos da eletrônica, como
resistor, indutor e capacitor, e os circuitos associados em série e paralelo, denominados circuitos
RLC. Esse tipo de circuito é muito comum em �ltros eletrônicos, como os �ltros passa-baixa, que se
destinam, entre outras coisas, a reduzir ou eliminar ruídos.
19/09/21, 01:21 E-book
https://anhembi.blackboard.com/webapps/late-course_content_soap-BBLEARN/Controller?ACTION=OPEN_PLAYER&COURSE_ID=_736400_1&PARENT_ID=_18837329_1&CONTENT_ID=_18837355_1 3/84
Também veremos meios de representação e modelagem de sistemas elétricos, mecânicos e
eletromecânicos, de �uxo e térmicos e o impacto de perturbações sobre os sistemas.
Bons estudos!
Modelagem de Sistemas
Elétricos
19/09/21, 01:21 E-book
https://anhembi.blackboard.com/webapps/late-course_content_soap-BBLEARN/Controller?ACTION=OPEN_PLAYER&COURSE_ID=_736400_1&PARENT_ID=_18837329_1&CONTENT_ID=_18837355_1 4/84
A modelagem de sistemas elétricos é uma atividade comum dos engenheiros que atuam em
processos elétricos e eletrônicos. Essa modalidade está associada, principalmente, à con�guração,
ao mapeamento e ao desenvolvimento de placas de circuitos eletrônicos.
Os sistemas elétricos são todos aqueles processos que envolvem eletricidade, seja tensão em
corrente alternada ou corrente contínua. A corrente contínua refere-se a um estado em que a tensão
de operação é contínua/�xa; a corrente alternada, por sua vez, refere-se à tensão variante no tempo.
A imagem, a seguir, vai auxiliá-lo(a) a compreender isso melhor.
19/09/21, 01:21 E-book
https://anhembi.blackboard.com/webapps/late-course_content_soap-BBLEARN/Controller?ACTION=OPEN_PLAYER&COURSE_ID=_736400_1&PARENT_ID=_18837329_1&CONTENT_ID=_18837355_1 5/84
19/09/21, 01:21 E-book
https://anhembi.blackboard.com/webapps/late-course_content_soap-BBLEARN/Controller?ACTION=OPEN_PLAYER&COURSE_ID=_736400_1&PARENT_ID=_18837329_1&CONTENT_ID=_18837355_1 6/84
Na eletrônica, os sistemas são formados por componentes passivos, ativos e eletromecânicos. Os
componentes ativos são aqueles que podem gerar, ampli�car e chavear o circuito, como
transistores, diodos, reguladores de tensão e transformadores; os eletromecânicos são
componentes que possuem partes móveis e atuam eletricamente, como fusíveis, conectores e
sensores (BRAGA, 2016).
Os passivos são os elementos mais comuns que podem ser encontrados nos aparelhos eletrônicos,
como é o caso dos resistores, indutores e capacitores. Estes não possuem a capacidade de
ampli�car, tampouco de gerar sinais elétricos; contudo, assim como todos os demais componentes
eletrônicos, atuam de alguma maneira na dissipação de calor e na polarização.
O sinal é de�nido por um conjunto de dados, que pode variar em função do tempo ou espaço. Com
relação à amplitude de um sinal, esta varia ao longo do tempo. O sinal existe em um intervalo de
tempo (-∞,+∞), com variação de sua amplitude, e pode ser interpretado por um número que indica
seu tamanho e força. Esse número considera não só a sua amplitude de sinal, mas, também, sua
duração em um determinado intervalo. Por exemplo, se quisermos usar uma função y(t) como
medida do sinal contínuo, também devemos considerar a sua variação ao longo do tempo, que
assume valores reais ou nulos ao longo do tempo(t). Considere a equação 1, segundo Lathi (2006),
como exemplo:                                                
Agora, caro(a) estudante, você pode se perguntar: que o(a) engenheiro(a) necessita saber para
poder modelar um circuito eletrônico, composto dos principais componentes passivos?
19/09/21, 01:21 E-book
https://anhembi.blackboard.com/webapps/late-course_content_soap-BBLEARN/Controller?ACTION=OPEN_PLAYER&COURSE_ID=_736400_1&PARENT_ID=_18837329_1&CONTENT_ID=_18837355_1 7/84
Na modelagem de circuitos elétricos e eletrônicos, geralmente se utilizam os conhecimentos e as
leis relacionados aos sistemas eletrônicos, como Lei de Ohm, Lei de Kirchhoff, Lei de Faraday e de
Maxwell. A Lei de Ohm é a mais importante, pois dá “vida” à matemática relacionada aos
componentes envolvendo eletricidade.
RELAÇÕES DE TENSÃO ERELAÇÕES DE TENSÃO E
CORRENTE PARA CADA UM DOSCORRENTE PARA CADA UM DOS
COMPONENTESCOMPONENTES 
Deve-se conhecer as relações de tensão e corrente para cada um dos
componentes, sendo equações 3.1 e 3.2, tensão e corrente para o resistor;
equações 3.3 e 3.4 para o capacitor; e equações 3.5 e 3.6 para o indutor.
19/09/21, 01:21 E-book
https://anhembi.blackboard.com/webapps/late-course_content_soap-BBLEARN/Controller?ACTION=OPEN_PLAYER&COURSE_ID=_736400_1&PARENT_ID=_18837329_1&CONTENT_ID=_18837355_1 8/84
#PraCegoVer: o infográ�co apresenta seis tópicos em linha horizontal. O título do infográ�co é "Relações
de tensão e corrente para cada um dos componentes”. Abaixo do título, há o seguinte texto: “Deve-se
conhecer as relações de tensão e corrente para cada um dos componentes, sendo Equações 3.1 e 3.2,
tensão e corrente para o resistor; Equações 3.3 e 3.4 para o capacitor; e Equações 3.5 e 3.6 para o
Fonte: Adaptada de Tsimafei Evseev / 123RF.
19/09/21, 01:21 E-book
https://anhembi.blackboard.com/webapps/late-course_content_soap-BBLEARN/Controller?ACTION=OPEN_PLAYER&COURSE_ID=_736400_1&PARENT_ID=_18837329_1&CONTENT_ID=_18837355_1 9/84
indutor”. Abaixo do texto, o primeiro tópico é “Tensão no resistor” e, ao clicar nele, há o número “3.1” e,
abaixo, a equação: “ ”. O segundo tópico é “Corrente no resistor” e, ao clicar nele, é apresentado
o número “3.2” e, abaixo, a equação: “ ”. O terceiro tópico é “Tensão no capacitor” e, ao clicar nele,
há o número “3.3” e, abaixo, a equação “ ”. O quarto tópico é “Corrente no capacitor”
e, ao clicar nele, é apresentado o número “3.4” e, abaixo, a equação “ ”. O quinto tópico é
“Tensão no indutor” e, ao clicar nele, é apresentado o número “3.5” e, abaixo, a equação “
”. O sexto tópico é "Corrente no indutor” e, ao clicar nele, é apresentado o número “3.6”
e, abaixo, a equação “ ”.
Você precisa ter noções destas equações iniciais para desenvolver quaisquer projetos envolvendo
os elementos básicos da eletrônica, para o controle e comando de dispositivos em geral.
Observe o circuito na Figura 3.2, um circuito RLC em série.
= R. iVR
=iR
V
R
(t) = i (t) . dtVc
1
C
∫
(t) = C.iC
dv(t)
dt
(t) = L.VL
di(t)
dt
(t) = v (t) . dtiL
1
L
∫
19/09/21, 01:21 E-book
https://anhembi.blackboard.com/webapps/late-course_content_soap-BBLEARN/Controller?ACTION=OPEN_PLAYER&COURSE_ID=_736400_1&PARENT_ID=_18837329_1&CONTENT_ID=_18837355_110/84
19/09/21, 01:21 E-book
https://anhembi.blackboard.com/webapps/late-course_content_soap-BBLEARN/Controller?ACTION=OPEN_PLAYER&COURSE_ID=_736400_1&PARENT_ID=_18837329_1&CONTENT_ID=_18837355_1 11/84
Segundo Oliveira (2019), a utilização das equações diferenciais é bastante ampla na engenharia,
porque por meio delas é possível descrever vibrações em vigas e sistemas elétricos; entretanto,
alguns parâmetros poderão apenas ser obtidos computacionalmente, devido à complexidade de
alguns sistemas. Com isso, pode-se reescrever o circuito apresentado na Figura 3.2 na forma de
equações diferenciais ordinárias (EDO).
Pela lei de análise das malhas de Kirchhoff, pode-se a�rmar que a soma das quedas de tensão em
uma malha é zero; pela lei dos nós, a soma das correntes em um nó é zero.
Na modelagem de circuitos RLC, frequentemente, busca-se a corrente passante pelo indutor e
a queda de tensão no capacitor . Outro fator importante é que as EDO são referentes a
derivadas, então, é necessário tornar a Equação 3.1 uma função apenas de derivadas. Para tanto, é
necessário realizar a derivada da equação.
Outro fator importante, é deixar o item de maior grau com coe�ciente 1.
Equaç o 3.1 :  v (t) − R. i (t) − L. − i (t) . dt = 0a~
di (t)
dt
1
C
∫
(t)iL
(t)vC
Equaç o 3.2 :  R. + L. + i (t) = 0a~
di (t)
dt
i (t)d2
dt2
1
C
19/09/21, 01:21 E-book
https://anhembi.blackboard.com/webapps/late-course_content_soap-BBLEARN/Controller?ACTION=OPEN_PLAYER&COURSE_ID=_736400_1&PARENT_ID=_18837329_1&CONTENT_ID=_18837355_1 12/84
A equação diferencial que descreve o sistema é dada por:
São parâmetros que exigem que se conheçam as condições iniciais do sistema, que varia de
processo para processo. Por exemplo, ƛ está relacionado à ordem do sistema: se o sistema tem
ordem 2, então é preciso localizar os dois valores de ƛ. Um exemplo é reescrever a Equação 3.3
para:
Alguns processos devem sempre ser levados em consideração, e é tarefa do(a) engenheiro(a) estar
atento a todas as informações que são fornecidas. Isso é comum a todos os processos, sejam eles
simples, como um simples projeto de eletrônica, até todo o controle industrial de quadros de
comando, controle de inversores de frequência, equipamentos eletromecânicos etc.
E para o sistema RLC em paralelo? O que fazer? Deve-se fazer o mesmo. A �gura, a seguir, vai poder
ilustrar isso melhor.
Equaç o 3.3 :   + . + i (t) = 0a~
i (t)d2
dt2
R
L
di (t)
dt
1
C.L
Equaç o 3.4 :  ( . )+ i (∞)a~ ∑
i=1
n
Ai e
− .tλi
Equaç o 3.5 :   + .λ + = 0a~ λ2
R
L
1
C.L
19/09/21, 01:21 E-book
https://anhembi.blackboard.com/webapps/late-course_content_soap-BBLEARN/Controller?ACTION=OPEN_PLAYER&COURSE_ID=_736400_1&PARENT_ID=_18837329_1&CONTENT_ID=_18837355_1 13/84
Na resolução do circuito RLC em paralelo, o processo de resolução é o mesmo, aplicar a Lei de
Ohm. Como os elementos estão em paralelo, a diferença de potencial (ddp) é igual nos três termos,
então:
19/09/21, 01:21 E-book
https://anhembi.blackboard.com/webapps/late-course_content_soap-BBLEARN/Controller?ACTION=OPEN_PLAYER&COURSE_ID=_736400_1&PARENT_ID=_18837329_1&CONTENT_ID=_18837355_1 14/84
Conhecendo as equações que descrevem as tensões e correntes elétricas dos elementos passivos
(resistor, capacitor e indutor) e substituindo-as na Equação 3.6, tem-se:
Pode-se reescrever e, derivando a Equação 3.7, obtém-se:
Repare que as Equações 3.3 e 3.8 são bem parecidas e o andamento da resolução do sistema
também. No entanto, o(a) engenheiro(a) deve saber trabalhar bem, con�gurar e modelar os
processos baseado na Transformada de Laplace e realizar a Transformada inversa de Laplace, pois
além de reduzir as equações diferenciais, pode-se apontar se o circuito está estável ou não, com
base nos polos e zeros da função de transferência. A Transformada de Laplace usa a equação
característica dada pela Equação 3.9, na qual há a mudança de domínio do tempo (t) para a
frequência (s):
Equaç o 3.6 :   + + = 0a~ iR iL iC
Equaç o 3.7 :   + v (t) . dt + C. = 0a~
v
R
1
L
∫ dv (t)
dt
Equaç o 3.8 :  C. + . + . v = 0a~ v′′
1
R
v′
1
L
Equaç o 3.9 :  L {f (t)} = f (t) .  dta~ ∫
0
∞
e−st
19/09/21, 01:21 E-book
https://anhembi.blackboard.com/webapps/late-course_content_soap-BBLEARN/Controller?ACTION=OPEN_PLAYER&COURSE_ID=_736400_1&PARENT_ID=_18837329_1&CONTENT_ID=_18837355_1 15/84
Sendo que s = σ+j.ω.
Para Pérez (2012), a Transformada de Laplace apresenta uma de�nição da relação da saída pela
entrada do sistema, solucionando equações de forma mais acessível, sem a presença de tantas
derivadas, comuns nas EDO.
Todavia, um sistema nem sempre é tão simples. A maioria dos sistemas tem uma in�nidade de
recursos que os protegem de possíveis perturbações e desvios, como é o caso de controladores.
Veja no elemento a seguir as perturbações de entradas mais comuns (BOJORGE, 2009):
Clique nas abas a seguir para visualizar o respectivo conteúdo:
Portanto, cada perturbação causa um tipo de alteração no sistema, e essas perturbações são
comuns para o estudo experimental e teórico. Além disso, os sistemas são divididos em duas
partes: resposta natural, transitória ou homogênea, etapa que ocorre após a modi�cação do estado
 Impulso Degrau Pulso Rampa Senoidal
Impulso: a perturbação do tipo impulso é momentânea, ou seja, ocorre em um instante de tempo e não
ocorre novamente. Pode compreender a vibração de um sensor em um determinado momento.
19/09/21, 01:21 E-book
https://anhembi.blackboard.com/webapps/late-course_content_soap-BBLEARN/Controller?ACTION=OPEN_PLAYER&COURSE_ID=_736400_1&PARENT_ID=_18837329_1&CONTENT_ID=_18837355_1 16/84
da entrada até o período de assentamento do sistema; e resposta estacionária ou forçada, que
remete ao desempenho do sistema no período estacionário (DRIEMEIER, 2019).
Veja o caso da Equação 3.8, realizar a Transformada de Laplace e, posteriormente, aplicar a entrada
do tipo degrau unitário (ou seja, degrau de amplitude 1).
Isolando V(s) na equação e considerando que v(0) é uma constante, teremos:
Agora, aplicando a entrada degrau à função de transferência apresentada na Equação 3.11, tem-se:
No circuito RLC paralelo da Figura 3.3, suponha que o valor do resistor R seja 1 Ω, o do indutor L seja
10 H e o do capacitor C seja 2 mF. Podemos reescrever a Equação 3.12 de resposta à entrada do
tipo degrau assim:
Equaç o 3.10 : C. [ .V (s) − s. v (0) − (0)] + . [s.V (s) − v (0)] + .V (s) = 0 a~ s2 v′
1
R
1
L
Equaç o 3.11 : V (s) =a~
V (0) . [C. s + ]1
R
C. + . s +s2 1
R
1
L
Equaç o 3.12 : V (s) = { } .a~
V (0) . [C. s + ]1
R
C. + . s +s2 1
R
1
L
1
s
19/09/21, 01:21 E-book
https://anhembi.blackboard.com/webapps/late-course_content_soap-BBLEARN/Controller?ACTION=OPEN_PLAYER&COURSE_ID=_736400_1&PARENT_ID=_18837329_1&CONTENT_ID=_18837355_1 17/84
Observe que a entrada do tipo degrau provoca uma modi�cação na resposta do sistema, visto que
ele acrescenta mais um polo no processo, e eventualmente esse polo também pode interferir na
estabilidade. Por isso, é necessário conhecer onde os polos e zeros do sistema estão localizados
no lugar das raízes (root locus).
Reescrevendo a Equação 3.13, em função dos polos e zeros, tem-se:
Para identi�car os zeros da equação, iguala-se o numerador a zero e, por �m, calculam-se os valores
para “s”. E faz-se o mesmo para o denominador, assim, encontram-se os polos do sistema. Para a
Equação 3.20, o zero está em -500, e os polos estão em 0, -0,1 e -500. Você pode compreender isso
melhor na Figura 3.4.
Equaç o 3.13 : V (s) = .a~
V (0)
s
[ + 1]s500
(s + 500) . (s + )110
Equaç o 3.14 :  V (s) = V (0) .a~
[ + 1]s500
s. (s + 500) . (s + 0, 1)
19/09/21, 01:21 E-book
https://anhembi.blackboard.com/webapps/late-course_content_soap-BBLEARN/Controller?ACTION=OPEN_PLAYER&COURSE_ID=_736400_1&PARENT_ID=_18837329_1&CONTENT_ID=_18837355_1 18/84
19/09/21, 01:21 E-book
https://anhembi.blackboard.com/webapps/late-course_content_soap-BBLEARN/Controller?ACTION=OPEN_PLAYER&COURSE_ID=_736400_1&PARENT_ID=_18837329_1&CONTENT_ID=_18837355_1 19/84Podemos dizer que um sistema é estável se seus polos estiverem no semiplano esquerdo do plano
de coordenadas complexo de “s”. Segundo Rodrigues (2019, p. 1), a estabilidade está relacionada a
esta de�nição: “um sistema é considerado estável se para toda entrada limitada, ele produz uma
saída limitada”, independentemente do estado inicial. Uma entrada limitada sempre possui um
limite inferior e um limite superior (RODRIGUES, 2019). Vamos �xar o conteúdo visto até aqui? Na
atividade, a seguir, coloque seu conhecimento em uso.
Conhecimento
Teste seus Conhecimentos 
(Atividade não pontuada) 
19/09/21, 01:21 E-book
https://anhembi.blackboard.com/webapps/late-course_content_soap-BBLEARN/Controller?ACTION=OPEN_PLAYER&COURSE_ID=_736400_1&PARENT_ID=_18837329_1&CONTENT_ID=_18837355_1 20/84
Todo e qualquer sistema pode ser modelado, desde sistemas considerados simples até os mais
robustos e complexos. Para tanto, é preciso encontrar suas equações características, bem como
realizar ensaios para proteger o sistema de determinadas entradas, como estar sujeito às
perturbações (BOJORGE, 2009). As harmônicas são exemplos de perturbações que interferem no
funcionamento dos mais diversos equipamentos industriais e provocam ruídos, principalmente a
terceira e a quinta harmônicas.
BOJORGE, N. SINAIS . Niterói: UFRJ, 2010. Disponível em:
http://www.eq.ufrj.br/docentes/ninoska/docs_PDF/Aula_Modelagem_%20LADEQ_1sem09.
pdf. Acesso em: 30 maio 2021.
Assinale a alternativa que representa o tipo de sinal que captura apenas os valores modulares,
neste caso, o instante positivo.
a) São interferências de composição do tipo impulso.
b) São interferências do tipo degrau com amplitude �xa.
c) São interferências de composição do tipo rampa.
d) São interferências de composição da senoide básica.
e) São interferências de composição do tipo pulso.
http://www.eq.ufrj.br/docentes/ninoska/docs_PDF/Aula_Modelagem_%20LADEQ_1sem09.pdf
19/09/21, 01:21 E-book
https://anhembi.blackboard.com/webapps/late-course_content_soap-BBLEARN/Controller?ACTION=OPEN_PLAYER&COURSE_ID=_736400_1&PARENT_ID=_18837329_1&CONTENT_ID=_18837355_1 21/84
Assim como os processos elétricos e eletrônicos, podemos representar os sistemas mecânicos e
eletromecânicos na forma de equações diferenciais ordinárias. Nos sistemas mecânicos há
basicamente dois modelos existentes, o translacional e o rotacional.
Clique nas setas dos slides de texto a seguir para visualizar o conteúdo:
Modelagem de Sistemas
Mecânicos e
Eletromecânicos
19/09/21, 01:21 E-book
https://anhembi.blackboard.com/webapps/late-course_content_soap-BBLEARN/Controller?ACTION=OPEN_PLAYER&COURSE_ID=_736400_1&PARENT_ID=_18837329_1&CONTENT_ID=_18837355_1 22/84
Veja melhor como isso funciona nas imagens a seguir.
Translacional: há uma massa que se desloca, como é o caso do sistema massa-mola-
amortecedor (Figura 3.5). 
19/09/21, 01:21 E-book
https://anhembi.blackboard.com/webapps/late-course_content_soap-BBLEARN/Controller?ACTION=OPEN_PLAYER&COURSE_ID=_736400_1&PARENT_ID=_18837329_1&CONTENT_ID=_18837355_1 23/84
19/09/21, 01:21 E-book
https://anhembi.blackboard.com/webapps/late-course_content_soap-BBLEARN/Controller?ACTION=OPEN_PLAYER&COURSE_ID=_736400_1&PARENT_ID=_18837329_1&CONTENT_ID=_18837355_1 24/84
19/09/21, 01:21 E-book
https://anhembi.blackboard.com/webapps/late-course_content_soap-BBLEARN/Controller?ACTION=OPEN_PLAYER&COURSE_ID=_736400_1&PARENT_ID=_18837329_1&CONTENT_ID=_18837355_1 25/84
Pode-se dizer que esses dois sistemas apresentados nas �guras denotam a base de elementos
mecânicos. O sistema massa-mola-amortecedor está associado à modelagem mecânica
translacional, pois há um bloco de massa “m” que se desloca, neste caso, para cima ou para baixo.
A EDO que descreve esse movimento é dada por:
Observe que a Equação 3.15, descrita pelo teorema do movimento do baricentro, assemelha-se aos
casos anteriores (elétricos) quanto à forma, inclusive o mecanismo de resolução é igual. E podemos
condicionar os estágios iniciais da equação, de modo que a Transformada de Laplace para o
sistema pode ser dada por:
Organizando a Equação 3.17, a função de transferência para o sistema da Figura 3.5 é:
No caso do sistema do modelo rotativo da Figura 3.6, não será utilizado o teorema do movimento
do baricentro, pois o objeto não está se deslocando além dos objetos que o prendem, mas está
Equaç o 3.15 :  f (t) = m. + b. + k. ya~ y ′′ y ′
Equaç o 3.16 :  F (s) = m. [ .Y (s) − s. y (0) − (0)] + b. [s.Y (s) − y (0)] + k.Y (s)a~ s2 y ′
Equaç o 3.17 :  F (s) = Y (s) . [m. + b. s + k] − y (0) . [m. s + b] − m. (0)a~ s2 y ′
Equaç o 3.18 : Y (s) =a~
F (s) + y (0) . [m. s + b] − m. (0)y ′
[m. + b. s + k]s2
19/09/21, 01:21 E-book
https://anhembi.blackboard.com/webapps/late-course_content_soap-BBLEARN/Controller?ACTION=OPEN_PLAYER&COURSE_ID=_736400_1&PARENT_ID=_18837329_1&CONTENT_ID=_18837355_1 26/84
girando mediante elementos que impedem o giro. Que fatores devemos levar em consideração
quanto ao modelo rotativo?
Momento de inércia.
Torque.
Amortecedor angular.
Mola angular.
Então como descrever o movimento da haste em relação ao centro do objeto? Aqui, será utilizado o
teorema do momento angular. A força aplicada, neste caso, o torque 𝜏, é contrária aos elementos
que impedem o giro, como a mola, o amortecedor e o momento de inércia do próprio corpo.
Diferentemente do modelo translacional, que refere-se ao deslocamento em um ou mais eixos (x, y e
z), no modelo rotativo há uma variação angular no tempo θ(t). Desta maneira, os parâmetros de
variação angular devem ser considerados.
Agora compare as duas Equações formadas, 3.15 e 3.19:
Equaç o 3.19 :  τ (t) = J . + b. + k. θa~ θ′′ θ′
Equaç o 3.15 :  f (t) = m. + b. + k. ya~ y ′′ y ′
Equaç o 3.19 :  τ (t) = J . + b. + k. θa~ θ′′ θ′
19/09/21, 01:21 E-book
https://anhembi.blackboard.com/webapps/late-course_content_soap-BBLEARN/Controller?ACTION=OPEN_PLAYER&COURSE_ID=_736400_1&PARENT_ID=_18837329_1&CONTENT_ID=_18837355_1 27/84
Notou que, basicamente, são as mesmas equações? É claro que cada caso é um caso, mas pode-se
analisar as equações de forma análoga, assim como nos circuitos RLC, na Equação 3.3:
Equaç o 3.3 :   (t) + . (t) + = 0a~ i′′
R
L
i′
1
C.L
19/09/21, 01:21 E-book
https://anhembi.blackboard.com/webapps/late-course_content_soap-BBLEARN/Controller?ACTION=OPEN_PLAYER&COURSE_ID=_736400_1&PARENT_ID=_18837329_1&CONTENT_ID=_18837355_1 28/84
Para Carvalho (2000), apesar de as equações resultantes não serem muito “atraentes” para se fazer
o cálculo manual, podem ser simuladas, elaboradas e veri�cadas em computadores. Há ainda
dispositivos e equipamentos que podem utilizar ambos os modelos no desenvolvimento de ações,
como um motor elétrico rotativo, composto de uma haste conectada no eixo do motor ligado a uma
engrenagem, e esta engrenagem, a uma cremalheira, como você pode ver representado na Figura
3.7.
19/09/21, 01:21 E-book
https://anhembi.blackboard.com/webapps/late-course_content_soap-BBLEARN/Controller?ACTION=OPEN_PLAYER&COURSE_ID=_736400_1&PARENT_ID=_18837329_1&CONTENT_ID=_18837355_1 29/84
19/09/21, 01:21 E-book
https://anhembi.blackboard.com/webapps/late-course_content_soap-BBLEARN/Controller?ACTION=OPEN_PLAYER&COURSE_ID=_736400_1&PARENT_ID=_18837329_1&CONTENT_ID=_18837355_1 30/84
Observe que, no caso da Figura 3.7, há uma combinação de elementos mecânicos (translacional e
rotativo), relacionados à transmissão do movimento. Para tanto, devemos analisar quantos corpos e
variáveis estão contidos no sistema, até porque a quantidade de variáveis do sistema vai
determinar o número de equações existentes. Deve-se, então, veri�car se as variáveis têm relação
umas com as outras, a �m de determinar o número de graus de liberdade do sistema.
Como você viu no exemplo apresentado da Figura 3.7, deve-se analisar corpo a corpo. O primeiro
dos corpos é o elemento conectado ao eixo do motor, identi�cado como objeto 1.
O primeiro passo é identi�car as forças atuantes neste objeto.
Há um torque 𝜏(t) sendo induzidopara provocar o movimento; esse torque pode ser advindo do
motor. Há uma restrição do movimento causada pelo momento de inércia, pelo amortecedor e
pela haste que transmite o movimento ao objeto 2 (pinhão).
Observe que a haste que transmite o movimento do motor para o pinhão está correlacionada e
condicionada à rotação do objeto 1, que é θ1, e do objeto 2, que é θ2. Então, deve-se reescrever a
equação por:
b1
Equaç o 3.20 : τ (t) = J . + b. + k. θa~ θ1′′ θ1′
Equaç o 3.21 : τ (t) = J . + b. + k. ( − )a~ θ1′′ θ1′ θ1 θ2
19/09/21, 01:21 E-book
https://anhembi.blackboard.com/webapps/late-course_content_soap-BBLEARN/Controller?ACTION=OPEN_PLAYER&COURSE_ID=_736400_1&PARENT_ID=_18837329_1&CONTENT_ID=_18837355_1 31/84
Em relação ao objeto 2 (pinhão), pode-se descrever duas forças atuantes: o elemento que promove
giro do objeto e a rotação da haste, que neste caso têm os mesmos valores, sendo:
Lembre-se de que o torque é igual à força multiplicada pela distância. Para que possa entender isso,
vou dar o exemplo de acionar uma maçaneta. Veja a Figura 3.8.
Equaç o 3.22 : k. ( − ) =a~ θ1 θ2 τP
19/09/21, 01:21 E-book
https://anhembi.blackboard.com/webapps/late-course_content_soap-BBLEARN/Controller?ACTION=OPEN_PLAYER&COURSE_ID=_736400_1&PARENT_ID=_18837329_1&CONTENT_ID=_18837355_1 32/84
Quanto mais próximo do eixo da maçaneta a força for aplicada, menor será o torque. Entretanto,
pode ser aplicada menos força na extremidade da maçaneta, e o torque vencerá o momento de
19/09/21, 01:21 E-book
https://anhembi.blackboard.com/webapps/late-course_content_soap-BBLEARN/Controller?ACTION=OPEN_PLAYER&COURSE_ID=_736400_1&PARENT_ID=_18837329_1&CONTENT_ID=_18837355_1 33/84
inércia da maçaneta e promoverá a abertura da porta.
Então, o torque é dado por:
Essa situação ocorre exatamente na transmissão de força do pinhão para a cremalheira, em uma
força , relacionada ao raio do pinhão “r”. Então:
Reescrevendo a Equação 3.22, você obtém:
Sabe-se que o arco de uma circunferência é dado por:
Relacionando o arco como a quantidade de deslocamento do pinhão em relação à cremalheira,
pode-se a�rmar que:
Equaç o 3.23 : τ = F . da~
FP
Equaç o 3.24 :   = r .  a~ τP FP
Equaç o 3.25 :  k. ( − ) = r .  a~ θ1 θ2 FP
Equaç o 3.26 :   =a~ FP
k. ( − )θ1 θ2
r
Equaç o 3.27 :  Arco  =  Raio. nguloa~ â
Equaç o 3.28 : x = . ra~ θ2
19/09/21, 01:21 E-book
https://anhembi.blackboard.com/webapps/late-course_content_soap-BBLEARN/Controller?ACTION=OPEN_PLAYER&COURSE_ID=_736400_1&PARENT_ID=_18837329_1&CONTENT_ID=_18837355_1 34/84
Por �m, analisando o objeto 3, relacionado à cremalheira, e o deslocamento da massa “m”, tem-se
que:
Substituindo a Equação 3.28 na Equação 3.30, tem-se que:
Temos duas Equações (3.21 e 3.31) em função de e .
Essas duas equações representam o funcionamento de todo o sistema da Figura 3.7. Isso serve
para quaisquer tipos de sistemas, assim como para processos eletromecânicos, que relacionam
dispositivos elétricos/eletrônicos com dispositivos mecânicos. Um exemplo de dispositivo
eletromecânico são os motores, que produzem uma saída mecânica para uma entrada elétrica. Veja
um exemplo de como isso ocorre na Figura 3.9.
Equaç o 3.29 :   = P +a~ FP Fb2
Equaç o 3.30 : = m. + .a~
k. ( − )θ1 θ2
r
x′′ b2 x
′
Equaç o 3.31 : = m. r. + . r.a~
k. ( − )θ1 θ2
r
θ2
′′ b2 θ2
′
θ1 θ2
Equaç o 3.21 : τ (t) = J . + b. + k. ( − )a~ θ1′′ θ1′ θ1 θ2
Equaç o 3.31 : = m. r. + . r.a~
k. ( − )θ1 θ2
r
θ2
′′ b2 θ2
′
19/09/21, 01:21 E-book
https://anhembi.blackboard.com/webapps/late-course_content_soap-BBLEARN/Controller?ACTION=OPEN_PLAYER&COURSE_ID=_736400_1&PARENT_ID=_18837329_1&CONTENT_ID=_18837355_1 35/84
19/09/21, 01:21 E-book
https://anhembi.blackboard.com/webapps/late-course_content_soap-BBLEARN/Controller?ACTION=OPEN_PLAYER&COURSE_ID=_736400_1&PARENT_ID=_18837329_1&CONTENT_ID=_18837355_1 36/84
Na Figura 3.9, você pôde observar que há um sistema eletrônico ligado a um motor, que promove
movimento angular do eixo. Como proceder neste caso? Resolva as equações como no caso
anterior da Figura 3.7, na qual há uma transmissão de movimentos entre os circuitos.
Agora que conhece um pouco sobre transmissão do movimento, vamos aplicar os conceitos de
transmitir a corrente para o motor. A primeira etapa é identi�car a equação que descreve o sistema:
Além disso, observa-se que o resistor R, o indutor L e o motor estão em série, então a corrente
passante nos três elementos é igual. é a força eletromotriz (fem) do motor – que é o
potencial elétrico fornecido por um dispositivo elétrico, como motores e geradores –, e essa força
eletromotriz é dada por (NISE, 2012):
Sendo que é a constante de proporcionalidade da força eletromotriz.
Equaç o 3.32 :  v (t) = (t) + (t) + (t)a~ vR vL vM
(t)Vm
Equaç o 3.33 :   (t) = .a~ vM kM
dθ (t)
dt
kM
19/09/21, 01:21 E-book
https://anhembi.blackboard.com/webapps/late-course_content_soap-BBLEARN/Controller?ACTION=OPEN_PLAYER&COURSE_ID=_736400_1&PARENT_ID=_18837329_1&CONTENT_ID=_18837355_1 37/84
O torque desenvolvido no motor é proporcional à corrente passante por ele multiplicada por , que
é a constante de proporcionalidade do torque do motor. Essa constante depende do campo
magnético e das características do motor, dada por:
Reescrevendo a Equação 3.36 com base nas Equações 3.33 e 3.35, você obtém:
Fazendo-se a Transformada de Laplace da Equação 3.36:
Segundo Nise (2012), o carregamento mecânico equivalente típico em um motor tem parâmetros
como inércia, “J”, e amortecimento, “b”, de armadura e da carga re�etida para armadura do motor,
cuja Transformada de Laplace é:
kT
Equaç o 3.34 :  τ (t) = . i (t)a~ kT
Equaç o 3.35 :  i (t) =  a~
τ (t)
kT
Equaç o 3.36 :  v (t) = R. i (t) + L. + .a~
di (t)
dt
kM
dθ (t)
dt
Equaç o 3.37 : V (s) = R.   + L. s. + . s. Θ (s)a~
τ (s)
kT
τ (s)
kT
kM
Equaç o 3.38 : V (s) = . [R + L. s] + . s. Θ (s)a~
τ (s)
kT
kM
19/09/21, 01:21 E-book
https://anhembi.blackboard.com/webapps/late-course_content_soap-BBLEARN/Controller?ACTION=OPEN_PLAYER&COURSE_ID=_736400_1&PARENT_ID=_18837329_1&CONTENT_ID=_18837355_1 38/84
Considerando que a saída do sistema é θ(t), a entrada é v(t), e promovendo a substituição da
Equação 3.39 na Equação 3.38, a função de transferência do sistema apresentado na Figura 3.9 é:
De fato é um grande trabalho de atenção e dedicação para o cálculo da função de transferência de
um circuito eletromecânico. Entretanto, grande parte dos processos industriais é formada por
dispositivos elétricos e mecânicos, como apresentado na Figura 3.9.
Assim como nos dispositivos elétricos, em dispositivos mecânicos e eletromecânicos, como
motores e geradores, podemos aplicar perturbações na entrada do sistema para estudo
experimental e teórico. Exercite um pouco do conteúdo que viu até aqui na atividade a seguir.
Equaç o 3.39 :  τ (s) = J . . Θ (s) + b. s. Θ (s)a~ s2
Equaç o 3.38 : V (s) = . [R + L. s] + . s. Θ (s)a~
[J . . Θ (s) + b. s. Θ (s)]s2
kT
kM
Equaç o 3.39 : =a~
Θ (s)
V (s)
kT
R.J
s. [s + .(b + )]1
J
.kT kM
R
19/09/21, 01:21 E-book
https://anhembi.blackboard.com/webapps/late-course_content_soap-BBLEARN/Controller?ACTION=OPEN_PLAYER&COURSE_ID=_736400_1&PARENT_ID=_18837329_1&CONTENT_ID=_18837355_1 39/84
Conhecimento
Teste seus Conhecimentos 
(Atividade não pontuada) 
Assim como os processos elétricos, os projetos mecânicos merecem interpretação e modelagem.
Até porque grande parte dos processos e diagramas industriais é repleta de estruturas mecânicas,
motores, sistemas de amortecimento de impactos etc. Entre os dispositivos mecânicos, há dois
tipos especí�cos: os translacionais e os rotativos. Os translacionais são sistemas mais conhecidos
na engenharia, presentes em diversos processos industriais até equipamentos automotivos, como
a estrutura do sistema de amortecimento de veículos.
Suponha um sistema de amortecimento cuja função força seja dada por:
Se o coe�ciente de amortecimento for igual a 0,2 N.s/m, calcule a força no instante de 1 segundo.
Assinale a alternativa correta.
a) f(1) =-8 N.
f (t) = 5.t + − 10b−2.t
19/09/21, 01:21 E-book
https://anhembi.blackboard.com/webapps/late-course_content_soap-BBLEARN/Controller?ACTION=OPEN_PLAYER&COURSE_ID=_736400_1&PARENT_ID=_18837329_1&CONTENT_ID=_18837355_1 40/84
b) (1) = 15 N.
c) f(1) = 4 N.
d) f(1) = -7,096 N.
e) f(1) = -3,354 N.
Modelagem de Sistemas
de Fluxo
19/09/21, 01:21 E-book
https://anhembi.blackboard.com/webapps/late-course_content_soap-BBLEARN/Controller?ACTION=OPEN_PLAYER&COURSE_ID=_736400_1&PARENT_ID=_18837329_1&CONTENT_ID=_18837355_1 41/84
A Lei de Conservação de Massa, proposta por Antoine Lavoisier em 1790, estabelece que na
natureza nada se cria, nada se perde, tudo se transforma. Também denominada Lei de Lavoisier, a
lei é condição essencial para o balanceamento e a compreensão de equações químicas (DUARTE,
2021).
O deslocamento de um �uido em tubulações também pode ser analisado mediante modelos
matemáticos, e a simulação desses modelos pode auxiliar o(a) engenheiro(a) a con�gurar diversos
atributos, como a operação e o monitoramento, além de permitir melhorias no processo (AYUB;
PEREIRA, 2016).
A modelagem de sistemas de �uxo busca analisar velocidades super�ciais e reais, pressão e
temperatura que correspondem à conservação da massa e ao movimento e energia,
respectivamente.
Veja, então, o elemento a seguir para conhecer as propriedades dos �uidos (líquidos e gases) e suas
equações características:
Observação: R é a constante universal dos gases, oriunda da equação de Émile Clapeyron, e
equivale a 0,082 atm.L/mol.K ou 8,31 J/mol.K. Conheça mais sobre a equação de Clapeyron
acessando o link no box a seguir.
19/09/21, 01:21 E-book
https://anhembi.blackboard.com/webapps/late-course_content_soap-BBLEARN/Controller?ACTION=OPEN_PLAYER&COURSE_ID=_736400_1&PARENT_ID=_18837329_1&CONTENT_ID=_18837355_1 42/84
Com base na equação de Clapeyron, evidenciamos também a relação entre os gases, como
transformações isobáricas, isocóricas e isotérmicas. Na transformação isobárica, descrita pela lei
de Charles e Gay-Lussac, ainda que o volume e a temperatura de um �uido variem, a pressão
permanecerá a mesma. A transformação isocórica, comum a gases con�nados, estabelece que
ainda que se alterem pressão e temperatura, o volume permanecerá o mesmo. Por �m, nas
19/09/21, 01:21 E-book
https://anhembi.blackboard.com/webapps/late-course_content_soap-BBLEARN/Controller?ACTION=OPEN_PLAYER&COURSE_ID=_736400_1&PARENT_ID=_18837329_1&CONTENT_ID=_18837355_1 43/84
transformações isotérmicas, de�nidas pela lei de Boyle-Mariotte, a temperatura permanece a
mesma (SCHULZ, 2009).
Sobre os �uidos, há outros tipos de atributos de grande relevância: vazão, escoamento e
viscosidade. A vazão (Q) é a relação entre o volume do �uido em relação a um intervalo de tempo,
de�nido na Equação 3.40; se em um duto houver deslocamento de �uido em escoamento uniforme,
então a vazão será determinada pela área da seção transversal multiplicada pela velocidade de
escoamento do �uido, como na Equação 3.41 (SILVA JÚNIOR, 2016).
Viscosidade é uma propriedade física caracterizada pela resistência de um �uido ao escoamento; já
o escoamento é análogo à corrente elétrica e está relacionado à capacidade do �uido de se
deslocar de forma laminar (paralela ao duto) ou turbulenta, cuja trajetória é aleatória.
A temperatura é uma variável que promove a variação da viscosidade em líquidos. Quando há
elevação da temperatura, há um aumento da velocidade de cada molécula e, consequentemente,
redução da viscosidade do �uido, como representado na Equação 3.42 (FONTANA, 2018).
Equaç o 3.40 : Q =a~
dV
dt
Equaç o 3.41 : Q = S. va~
Equaç o 3.42 : μ (T ) = .a~ μ0 e
E
R.T
19/09/21, 01:21 E-book
https://anhembi.blackboard.com/webapps/late-course_content_soap-BBLEARN/Controller?ACTION=OPEN_PLAYER&COURSE_ID=_736400_1&PARENT_ID=_18837329_1&CONTENT_ID=_18837355_1 44/84
Outra equação, senão uma das mais importantes na mecânica dos �uidos, é a equação de Bernoulli,
utilizada para caracterizar o comportamento de �uidos passantes em uma tubulação. Esta equação
é obtida por meio do teorema de conservação de energia mecânica, de�nido pela Equação 3.43:
Sendo que:
: energia mecânica aplicada em um corpo ou �uido.
: energia cinética, relacionada ao movimento do �uido.
: energia potencial gravitacional, referente à diferença de altura.
Todos os parâmetros anteriores são levados em consideração na modelagem de um sistema de
�uxo. Vale lembrar, por exemplo, que em um mesmo duto ou tubulação pode haver a presença de
mais de um �uido ao mesmo tempo, e, nesse caso, todos os componentes presentes deverão ser
analisados.
Para ilustrar isso de modo que você possa compreender melhor, observe o esquema na Figura 3.10,
de uma tubulação na qual há dois �uidos muito comuns em ambientes industriais operando
simultaneamente, a água (w) e o óleo (o), com suas respectivas variáveis.
Equaç o 3.43 :   = +a~ EM EC EPG
EM
EC
EPG
19/09/21, 01:21 E-book
https://anhembi.blackboard.com/webapps/late-course_content_soap-BBLEARN/Controller?ACTION=OPEN_PLAYER&COURSE_ID=_736400_1&PARENT_ID=_18837329_1&CONTENT_ID=_18837355_1 45/84
19/09/21, 01:21 E-book
https://anhembi.blackboard.com/webapps/late-course_content_soap-BBLEARN/Controller?ACTION=OPEN_PLAYER&COURSE_ID=_736400_1&PARENT_ID=_18837329_1&CONTENT_ID=_18837355_1 46/84
Note, na Figura 3.10, que os dois �uidos se movem no mesmo sentido, no sentido de “z”, e que a
tensão de cisalhamento da água é contrária ao movimento do �uido. Essas informações
certamente auxiliam a identi�car a sequência dos �uxos para melhor aproveitamento das equações.
 Vazão de água.
 Vazão de óleo (constante).
 Área da seção transversal ocupada por água.
 Área da seção transversal ocupada por óleo.
 Comprimento do trecho da tubulação.
 Direção do escoamento do óleo.
 Ação gravitacional.
 Volume de controle.
 Pressão na entrada do trecho da tubulação.
 Pressão na saída do trecho da tubulação.
 Tensão de cisalhamento.
 Diâmetro da tubulação.
 Velocidade constante do óleo.
 Velocidade constante da água.
Qw
Qo
Sw
So
L
z
g
VC
P1
P2
τw
ϕ
vo
vw
19/09/21, 01:21 E-book
https://anhembi.blackboard.com/webapps/late-course_content_soap-BBLEARN/Controller?ACTION=OPEN_PLAYER&COURSE_ID=_736400_1&PARENT_ID=_18837329_1&CONTENT_ID=_18837355_1 47/84
Observe que, para a modelagem do sistema apresentado na Figura 3.10, há uma grande quantidade
de variáveis que interferem no funcionamento. Vale ressaltar que estamos analisando um pequeno
trecho da tubulação, que re�ete o funcionamento da tubulação como um todo; entretanto, em
outras partes da tubulação pode haver a atuação de mais forças, como a Lei de Pascal etc.
Deve-se considerar a equação de conservação da massa, baseada no Teorema de Transporte de
Reynolds, apresentada na Equação 3.44 (NIECKELE, 2017):
Observação: SC é a superfície de controle da tubulação. Então, considerando a Equação 3.44,
referente à lei de conservação da massa, pode-se a�rmar que a variação da massa do �uido em
relação ao tempo é zero:
Portanto, para o sistema, temos:
Equaç o 3.44 :   = ϕ. ρ. dV + ϕ. ρ.V .n. dSa~
dϕ
dt
∂
∂t
∫
VC
∫
SC
Equaç o 3.45 : = 0a~
dm
dt
Equaç o 3.46 : ϕ. ρ. dV + ϕ. ρ.V .n. dS = 0a~
∂
∂t
∫
VC
∫
SC
19/09/21, 01:21 E-book
https://anhembi.blackboard.com/webapps/late-course_content_soap-BBLEARN/Controller?ACTION=OPEN_PLAYER&COURSE_ID=_736400_1&PARENT_ID=_18837329_1&CONTENT_ID=_18837355_1 48/84
Sabe-se que a vazão do óleo é constante, devido à bomba possuir deslocamento positivo,
independentemente de outras ações envolvidas no processo. Então, a vazão de óleo pode ser
determinada por:
Sendo que ε a fração do volume do óleo, de�nida pela Equação 3.48:
Então, pode-se descrever a modelagem do sistema no que tange ao óleo (Equação 3.49) e à água
(Equação 3.50) conforme a seguir:
Portanto, é preciso conhecer todas as propriedades envolvidas no processo para poder fazer a
modelagem de �uxos, no que tange aos líquidos e gases: as relações fundamentais de Reynolds, o
Equaç o 3.47 :  Qo= .S = ϵ. .Sa~ jo vo
Equaç o 3.48 :a~ (1 + c. )Qw
Qo
−1
Equaç o 3.49 : | − | . ϵ.S − . .L − ϵ. . g.S.L = . [ . ϵ.S.L] = 0a~ P1 P2 τSC SSC ρo ρo
d
dt
vo
Equaç o 3.50 : | − | . (1 − ϵ) .S + . .L − . .L − (1 − ϵ) . . g.S.L =a~ P1 P2 τSC SSC τw Sw ρw
. [ ]ρw
d
dt
vw.(1−ϵ).S.L
19/09/21, 01:21 E-book
https://anhembi.blackboard.com/webapps/late-course_content_soap-BBLEARN/Controller?ACTION=OPEN_PLAYER&COURSE_ID=_736400_1&PARENT_ID=_18837329_1&CONTENT_ID=_18837355_1 49/84
teorema da conservação da massa, os conceitos de escoamento e viscosidade e suas inter-
relações.
A simulação pode ser obtida via software, para vazão da água, supondo escoamento de 32
m³/h, b e n (parâmetros de Blasius). Você pode ver isso no grá�co da Figura 3.11.
Qo
19/09/21, 01:21 E-book
https://anhembi.blackboard.com/webapps/late-course_content_soap-BBLEARN/Controller?ACTION=OPEN_PLAYER&COURSE_ID=_736400_1&PARENT_ID=_18837329_1&CONTENT_ID=_18837355_1 50/84
19/09/21, 01:21 E-book
https://anhembi.blackboard.com/webapps/late-course_content_soap-BBLEARN/Controller?ACTION=OPEN_PLAYER&COURSE_ID=_736400_1&PARENT_ID=_18837329_1&CONTENT_ID=_18837355_1 51/84
As equações e parâmetros de Blasius correspondem a soluções por similaridade em relação às
velocidades do �uido, ainda que varie a distância da camada-limite e a conservação da quantidade
de movimento linear (ARAKI, 2017). E assim como nos dispositivos elétricos, mecânicos e
eletromecânicos, podemos aplicar perturbações na entrada do sistema para estudo experimental e
teórico em sistemas de �uxo, tanto na modelagem para líquidos quanto para gases.
É necessário encontrar a função de transferência do sistema, que relaciona a saída do sistema
(aquilo que se deseja encontrar) com a entrada, que pode ser uma condição ou um
condicionamento de sensores, e, por �m, fazer a multiplicação pela entrada de perturbação. No
último tópico, veremos a modelagem de sistemas térmicos. Mas antes vamos praticar!
praticar
Vamos Praticar
A modelagem de sistemas é uma designação do(a) engenheiro(a) para fazer a descrição �dedigna
dos sistemas e do comportamento deles. É preciso sempre levar em consideração todos os
19/09/21, 01:21 E-book
https://anhembi.blackboard.com/webapps/late-course_content_soap-BBLEARN/Controller?ACTION=OPEN_PLAYER&COURSE_ID=_736400_1&PARENT_ID=_18837329_1&CONTENT_ID=_18837355_1 52/84
elementos que fazem parte do processo. Para Ogata (2014, p. 2), “a teoria de controle moderno
baseia-se na análise do domínio do tempo em sistemas de equações diferenciais. Ela simpli�cou o
projeto de sistemas de controle porque se baseia no modelo de um sistema de controle real”.
Observe a �gura:
19/09/21, 01:21 E-book
https://anhembi.blackboard.com/webapps/late-course_content_soap-BBLEARN/Controller?ACTION=OPEN_PLAYER&COURSE_ID=_736400_1&PARENT_ID=_18837329_1&CONTENT_ID=_18837355_1 53/84
Identi�que os polos e zeros do sistema apresentado na Figura 3.13 para uma entrada degrau
unitário.
19/09/21, 01:21 E-book
https://anhembi.blackboard.com/webapps/late-course_content_soap-BBLEARN/Controller?ACTION=OPEN_PLAYER&COURSE_ID=_736400_1&PARENT_ID=_18837329_1&CONTENT_ID=_18837355_1 54/84
Os sistemas térmicos correspondem a processos nos quais há interação de calor entre corpos ou
entre o meio e corpos. Esses sistemas são componentes da termodinâmica, cuja ciência estuda
características da energia que provoca alterações em outros corpos ou no meio.
No elemento, a seguir, você pode identi�car equipamentos ou sistemas térmicos como:
Modelagem de Sistemas
Térmicos
19/09/21, 01:21 E-book
https://anhembi.blackboard.com/webapps/late-course_content_soap-BBLEARN/Controller?ACTION=OPEN_PLAYER&COURSE_ID=_736400_1&PARENT_ID=_18837329_1&CONTENT_ID=_18837355_1 55/84
Sistemas térmicos provocam um grande impacto no meio ambiente, como a poluição e o
aquecimento global. Mas, é claro, há também fontes de energias alternativas, as chamadas energias
renováveis, como é o caso da energia fotovoltaica e da eólica (YANAGIHARA, 2020).
Caro(a) estudante, você pode perceber o princípio de sistemas térmicos no dia a dia das pessoas. É
muito comum observar a presença das energias térmicas e da troca de calor: uma xícara de café
quente em contato com a mão de uma pessoa; o uso de casacos e jaquetas para manter a
temperatura do corpo; sistemas de ar-condicionado para resfriar ambiente; os princípios de uma
caldeira presente em panelas de pressão.
Geradores de energia elétrica.
Dispositivos de climatização e refrigeração.
Motores térmicos.
Caldeiras.
Turbinas.
Geradores de vapor.
Chillers.
Entre outros.
19/09/21, 01:21 E-book
https://anhembi.blackboard.com/webapps/late-course_content_soap-BBLEARN/Controller?ACTION=OPEN_PLAYER&COURSE_ID=_736400_1&PARENT_ID=_18837329_1&CONTENT_ID=_18837355_1 56/84
A modelagem de sistemas térmicos é baseada em processos nos quais há a troca de calor entre o
meio e um objeto ou entre objetos, e nos princípios da termodinâmica, no que tange à conservação
de energia. Para Souza (2017), durante uma interação entre corpos, ainda que ocorra transformação
de uma energia para outra, o volume de energia permanece o mesmo, o que corresponde à Lei de
Lavoisier.
A transferência de calor entre dois corpos está associada a uma diferença de temperatura (T):
quando os corpos entram em contato, a tendência é atingirem uma temperatura comum, de tal
forma que, caso um deles tenha uma temperatura maior, a quantidade de calor (Q) migra deste
corpo para o de menor temperatura; isso é denominado de �uxo de calor.
Este �uxo de calor pode ser mensurado através da Equação 3.51:
Na Equação 3.51, observe que uma das parcelas está negativa. Isso se dá quando o �uxo de calor
migra dessa parcela para a outra; logo, neste caso, pode-se dizer que a temperatura 1 ( ) é
superior à temperatura 2 ( ).
Nos sistemas térmicos, há elementos considerados puros ou ideais, os quais possuem, em sua
natureza, a capacidade de armazenar e de dissipar a energia. No caso dos armazenadores de
energia na forma de calor, pode-se identi�car a característica de capacitância térmica, assim como
ocorre com um capacitor elétrico. Entretanto, não é possível comparar inteiramente as
Equaç o 3.51 : q = − =a~
dQ1
dt
dQ2
dt
T1
T2
19/09/21, 01:21 E-book
https://anhembi.blackboard.com/webapps/late-course_content_soap-BBLEARN/Controller?ACTION=OPEN_PLAYER&COURSE_ID=_736400_1&PARENT_ID=_18837329_1&CONTENT_ID=_18837355_1 57/84
características elétricas deles, uma vez que a indutância térmica não existe em armazenadores de
energia térmica (FLEURY; DONHA, 2020).
A capacitância térmica é dependente da capacidade térmica (Equação 3.52), que refere-se à
quantidade de calor que será necessário transmitir para outro corpo a �m de aumentar em um grau
de temperatura, e da grandeza física do calor especí�co (Equação 3.53).
Observe que as equações 3.51 e 3.52 são semelhantes. É possível diferenciá-las assim: a primeira
serve para relação entre corpos, e a segunda, para um único corpo.
Segundo Nishitani (2017), o calor especí�co pode ser aplicado também a gases ideais, na condição
de altas temperaturas e pressões baixas, para volume e pressão constantes. Cada qual com sua
carga de calor especí�co, que aumenta a energia interna das moléculas; no caso de haver pressão
constante, o conjunto também realiza trabalho, mediante a expansão do gás.
Logo, o calor especí�co, quando há aquecimento a pressão constante ( ), é maior do que o
aquecimento a volume constante ( ). Essa diferença pode ser determinada através da Equação
3.54:
Equaç o 3.52 :  C =a~
dQ
dt
Equaç o 3.53 :  c = .a~
1
m
dQ
dT
cP
cV
19/09/21, 01:21 E-book
https://anhembi.blackboard.com/webapps/late-course_content_soap-BBLEARN/Controller?ACTION=OPEN_PLAYER&COURSE_ID=_736400_1&PARENT_ID=_18837329_1&CONTENT_ID=_18837355_1 58/84
Na equação acima, “R” é a constante universal dos gases perfeitos e “M” é a massa molecular do
gás.
Vale ressaltar que o calor especí�co para aquecimento a volume constante e a pressão constante
varia de acordo com a teoria cinéticados gases, para monoatômicos, diatômicos e poliatômicos.
Quer �car por dentro da composição de átomos dos gases e outros elementos? Clique no link do
box a seguir.
Equaç o 3.54 :  Δc = − =a~ cP cV
R
M
19/09/21, 01:21 E-book
https://anhembi.blackboard.com/webapps/late-course_content_soap-BBLEARN/Controller?ACTION=OPEN_PLAYER&COURSE_ID=_736400_1&PARENT_ID=_18837329_1&CONTENT_ID=_18837355_1 59/84
Baseando-se na de�nição do calor especí�co e na Equação 3.53, tem-se que:
Conhecendo a Equação 3.51, do �uxo de calor, e a Equação 3.56, originada do calor especí�co:
É possível a�rmar que a variação de temperatura no tempo é igual ao �uxo de calor dividido pela
capacidade térmica. Assim, dá-se a capacitância térmica.
Equaç o 3.55 :  dQ = m. c. dT = C. dTa~
Equaç o 3.56 : = C.a~
dQ
dt
dT
dt
Equaç o 3.57 : q = C.a~
dT
dt
19/09/21, 01:21 E-book
https://anhembi.blackboard.com/webapps/late-course_content_soap-BBLEARN/Controller?ACTION=OPEN_PLAYER&COURSE_ID=_736400_1&PARENT_ID=_18837329_1&CONTENT_ID=_18837355_1 60/84
De forma análoga, há a capacitância elétrica:
Já os dissipadores de energia, denominados resistência térmica, têm a capacidade de transmitir o
calor de três formas: condução, radiação e convecção. Segundo Incropera et al. (2008, p. 221):
Quando existe um gradiente de temperatura em meio estacionário, que pode ser um
sólido ou um �uido, usa-se o termo condução para referir à transferência de calor através
do meio. O termo convecção refere-se à transferência de calor, que ocorrerá entre uma
superfície e um �uido em movimento, quando eles estiverem a diferentes temperaturas.
Portanto, na condução há a necessidade de contato entre corpos, de modo que o calor migre de um
corpo para outro até que haja uma temperatura comum. Já a convecção pode ser natural ou
forçada e ocorrer a partir de uma superfície sólida, com líquidos ou gases. Para você entender
melhor, um exemplo bem comum disso é uma panela cheia de água sendo aquecida em uma das
bocas do fogão.
Na radiação térmica, a energia é transferida mediante alterações das con�gurações eletrônicas dos
átomos que constituem a matéria, sendo transportada por meio de ondas eletromagnéticas,
Equaç o 3.58 : =a~
dT
dt
q
C
Equaç o 3.59 : =a~
dV
dt
(t)iC
C
19/09/21, 01:21 E-book
https://anhembi.blackboard.com/webapps/late-course_content_soap-BBLEARN/Controller?ACTION=OPEN_PLAYER&COURSE_ID=_736400_1&PARENT_ID=_18837329_1&CONTENT_ID=_18837355_1 61/84
diferentemente da convecção e da condução, que necessitam da proximidade entre corpos
(INCROPERA et al., 2008). Outro exemplo bem cotidiano é um eletrodoméstico que atua com
radiação térmica, como os aparelhos de micro-ondas; no dia a dia, o Sol também age assim sobre
as pessoas, com a ação das ondas ultravioleta.
A condução térmica ( ), como dito anteriormente, depende do contato entre corpos na
transferência de calor e pode ser medida utilizando a transformada de Fourier, dada na Equação
3.60:
“k” é a condutividade térmica do material e “S” é a área da seção por onde a transferência de calor é
conduzida. Um exemplo é uma placa de alumínio (dissipador de calor) de espessura “w” com
temperatura mais baixa, em contato com o processador (p) de um computador em funcionamento,
cuja temperatura está mais elevada.
Por meio da Equação 3.61, obtém-se a resistência térmica de condução:
qk
Equaç o 3.60 :   = −k.S.a~ qk
dT
dx
Equaç o 3.61 : = k.S. = k.S.a~ qk
( − )Tp TAl
w
ΔT
w
Equaç o 3.62 : =a~ Rk
w
k.S
19/09/21, 01:21 E-book
https://anhembi.blackboard.com/webapps/late-course_content_soap-BBLEARN/Controller?ACTION=OPEN_PLAYER&COURSE_ID=_736400_1&PARENT_ID=_18837329_1&CONTENT_ID=_18837355_1 62/84
E, consequentemente, o �uxo de calor por condução:
Observe que a estrutura da placa de alumínio é uma superfície plana, entretanto, a condução
térmica pode ocorrer por cilindro vazado e também mediante uma casca esférica ou de base
circular. Para entender esse exemplo, veja-o ilustrado na Figura 3.12, cuja resistência térmica pode
ser representada pelas equações 3.64 e 3.65, respectivamente:
Equaç o 3.63 : =a~ qk
ΔT
Rk
19/09/21, 01:21 E-book
https://anhembi.blackboard.com/webapps/late-course_content_soap-BBLEARN/Controller?ACTION=OPEN_PLAYER&COURSE_ID=_736400_1&PARENT_ID=_18837329_1&CONTENT_ID=_18837355_1 63/84
19/09/21, 01:21 E-book
https://anhembi.blackboard.com/webapps/late-course_content_soap-BBLEARN/Controller?ACTION=OPEN_PLAYER&COURSE_ID=_736400_1&PARENT_ID=_18837329_1&CONTENT_ID=_18837355_1 64/84
No caso da convecção, o �uxo de calor ( ) é estabelecido pela Lei de Newton, baseado no
coe�ciente médio de convecção ( ). Esse coe�ciente depende da variação da temperatura, da
superfície (geometria e orientação), do �uido (velocidade de deslocamento e suas propriedades), da
área de exposição (S) e, principalmente, da variação de temperatura entre a superfície sólida ( ) e
a do �uido ( ), estabelecida na Equação 3.66. A resistência térmica no per�l da convecção
corresponde à inversa da multiplicação do coe�ciente de convecção multiplicada pela área de
atuação da transferência de calor, apresentada na Equação 3.67 (NISHITANI, 2017; FLEURY; DONHA,
2020).
Assim como na Equação 3.63, a resistência térmica pode ser con�gurada por:
Equaç o 3.64 :   =         Equaç o 3.65 :   =a~ Rk
ln( )re
ri
2.π. k.w
a~ Rk
−re ri
4.π. . . kre ri
qc
hc
TS
TF
Equaç o 3.66 : = .S. ΔTa~ qc hc
¯ ¯¯̄¯
Equaç o 3.67 : =a~ Rc
1
.Shc
¯ ¯¯̄¯
19/09/21, 01:21 E-book
https://anhembi.blackboard.com/webapps/late-course_content_soap-BBLEARN/Controller?ACTION=OPEN_PLAYER&COURSE_ID=_736400_1&PARENT_ID=_18837329_1&CONTENT_ID=_18837355_1 65/84
O coe�ciente médio de convecção corresponde a uma variável que depende da variação de
temperatura entre os corpos; quando a diferença de temperatura é superior a 10 ºC, o coe�ciente
deixa de ser uma constante e, no caso do ar, a equação característica é dada por (GONZALEZ,
2012):
Na radiação térmica, há o conceito de um corpo absorvedor ideal, chamado de corpo negro. Este
corpo negro independe do comprimento e da direção da onda. Além disso, em uma determinada
faixa de temperatura e comprimento de onda, o corpo negro supera em energia toda e qualquer
outra superfície; a radiação emitida pelo corpo negro é denominada difusa, pois emite
independentemente da direção (RAMALHO JÚNIOR; FERRARO; SOARES, 2013; ALBUQUERQUE,
2020). O �uxo de calor de radiação (qr) emitido por este corpo está apresentado na Equação 3.70:
Nesse contexto, 𝝈 é a constante de Stefan-Boltzmann, é a área da superfície do corpo negro e 
é a temperatura da superfície do corpo emissor. Entretanto, a radiação térmica pode ocorrer entre
corpos cinzentos, que são corpos que não são emissores tampouco receptores perfeitos de
radiação, e o �uxo de radiação pode ser determinado por (NISHITANI, 2017):
Equaç o 3.68 : =a~ qc
ΔT
Rc
Equaç o 3.69 :   = 1, 77.a~ har ( − )T1 T2
1/4
Equaç o 3.70 :   σ. .a~ qr= Se Te
4
Se Te
19/09/21, 01:21 E-book
https://anhembi.blackboard.com/webapps/late-course_content_soap-BBLEARN/Controller?ACTION=OPEN_PLAYER&COURSE_ID=_736400_1&PARENT_ID=_18837329_1&CONTENT_ID=_18837355_1 66/84
Na Equação 3.71, há a presença de , que corresponde ao coe�ciente de emissividade da
superfície cinzenta do emissor e do receptor, oriundo da relação entre corpos cinzentos. Então, com
base na resistência térmica de condução e convecção, o �uxo de calor se dá pela diferença de
temperatura dividida pela resistência térmica, que, neste caso de corpos cinzentos, é:
Agora que você já conhece as ferramentas disponíveis, vamos ao exemplo:
Equaç o 3.71 : σ. . . ( − )  a~ qr= Se εe−r Te
4 Tr
4
εe−r
Equaç o 3.72 : =a~ Rr
( − )Te4 Tr4
σ. . . ( − )Se εe−r Te4 Tr4
19/09/21, 01:21 E-book
https://anhembi.blackboard.com/webapps/late-course_content_soap-BBLEARN/Controller?ACTION=OPEN_PLAYER&COURSE_ID=_736400_1&PARENT_ID=_18837329_1&CONTENT_ID=_18837355_1 67/84
Observe que na Figura 3.13 há duas capacitâncias, e , dois corpos separados por um bloco
resistivo ; há, ainda, a atuação da temperaturado ambiente, , no corpo 2, e a resistência 
Figura 3.13 - Exemplo de sistema térmico 
Fonte: Adaptada de Nishitani (2017, p. 25).
#PraCegoVer: a �gura apresenta um retângulo dividido em quatro blocos. O primeiro está identi�cado na
cor cinza, com duas inscrições, sendo elas C1 e T1. O segundo bloco, na cor branca, está identi�cado
como R1; o terceiro bloco, na cor cinza, tem duas inscrições, sendo elas C2 e T2. O quarto bloco, na cor
branca, está identi�cado como R2. À esquerda do retângulo, está escrito , com uma seta apontando
da esquerda para direita; à direita do retângulo, está escrito .
(t)qi
Ta
C1 C2
R1 Ta R2
19/09/21, 01:21 E-book
https://anhembi.blackboard.com/webapps/late-course_content_soap-BBLEARN/Controller?ACTION=OPEN_PLAYER&COURSE_ID=_736400_1&PARENT_ID=_18837329_1&CONTENT_ID=_18837355_1 68/84
entre o corpo 2 e o ambiente. Note que há um �uxo de calor forçado entrando no sistema. Na
Figura 3.13, os blocos estão em contato uns com os outros e isolados de outras forças nas partes
inferior e superior da penetração. Então, a primeira coisa a fazer, a partir da Equação 3.58, é
identi�car as capacitâncias que representam o sistema:
A partir da Equação 3.63, do �uxo de carga por condução, tem-se:
Substituindo as Equações 3.74 e 3.75 nas equações das capacitâncias, é possível obter as
equações características desse sistema baseado nos parâmetros apresentados.
(t)qi
Equaç o 3.73 : =a~
dT1
dt
−qi q12
C1
Equaç o 3.73 : =a~
dT2
dt
−q12 q2a
C2
Equaç o 3.74 :   = =a~ q12
ΔT
R1
−T1 T2
R1
Equaç o 3.75 :   = =a~ q2a
ΔT
R2
−T2 Ta
R2
Equaç o 3.76 : = −  a~
dT1
dt
qi
C1
−T1 T2
.C1 R1
19/09/21, 01:21 E-book
https://anhembi.blackboard.com/webapps/late-course_content_soap-BBLEARN/Controller?ACTION=OPEN_PLAYER&COURSE_ID=_736400_1&PARENT_ID=_18837329_1&CONTENT_ID=_18837355_1 69/84
Portanto, para fazer a análise e a modelagem de sistemas que possuem ações e dispositivos
térmicos, é necessário veri�car todos os equipamentos, identi�car o sequencial de acionamentos,
conhecer as equações que são base para discriminar o processo e representá-lo da forma mais �el
possível. Caro(a) estudante, chegamos ao �nal deste tópico e do conteúdo desta unidade; então,
para �xar o que vimos, nada melhor do que praticar. Vamos lá!
praticar
Vamos Praticar
A Lei de Conservação da Energia e da massa é condição sine qua non para análise de processos
que envolvem sistemas de �uxo e sistemas térmicos, e é também fundamental para toda análise
química de matéria, balanceamento e suas equações (DUARTE, 2021).
Equaç o 3.77 : − .( + ) +a~ T1
.C2 R1
T2
C2
1
R1
1
R2
Ta
.C2 R2
19/09/21, 01:21 E-book
https://anhembi.blackboard.com/webapps/late-course_content_soap-BBLEARN/Controller?ACTION=OPEN_PLAYER&COURSE_ID=_736400_1&PARENT_ID=_18837329_1&CONTENT_ID=_18837355_1 70/84
Ao longo desta unidade, foram apresentados diversos mecanismos que envolvem um sistema de
�uxo, e agora está na hora de você modelar um esquema de tubulação para a �gura a seguir.
19/09/21, 01:21 E-book
https://anhembi.blackboard.com/webapps/late-course_content_soap-BBLEARN/Controller?ACTION=OPEN_PLAYER&COURSE_ID=_736400_1&PARENT_ID=_18837329_1&CONTENT_ID=_18837355_1 71/84
Considere:
19/09/21, 01:21 E-book
https://anhembi.blackboard.com/webapps/late-course_content_soap-BBLEARN/Controller?ACTION=OPEN_PLAYER&COURSE_ID=_736400_1&PARENT_ID=_18837329_1&CONTENT_ID=_18837355_1 72/84
Q Vazão do �uido (constante).
S Área da seção transversal ocupada pelo �uido.
L Comprimento do trecho da tubulação.
z Direção do escoamento do óleo.
g Ação gravitacional.
 Volume de controle.
𝜙 Diâmetro da tubulação.
v Velocidade constante do �uido.
Apresente as equações que representam essa seção de tubulação.
VC
19/09/21, 01:21 E-book
https://anhembi.blackboard.com/webapps/late-course_content_soap-BBLEARN/Controller?ACTION=OPEN_PLAYER&COURSE_ID=_736400_1&PARENT_ID=_18837329_1&CONTENT_ID=_18837355_1 73/84
Material
Complementar
19/09/21, 01:21 E-book
https://anhembi.blackboard.com/webapps/late-course_content_soap-BBLEARN/Controller?ACTION=OPEN_PLAYER&COURSE_ID=_736400_1&PARENT_ID=_18837329_1&CONTENT_ID=_18837355_1 74/84
F I L M E
Print the legend
Ano: 2014
 Comentário: O �lme/documentário conta a história da evolução e da
tecnologia, aborda o mercado e a presença das impressoras 3D no mundo
moderno, a modelagem e a simulação em sistemas de impressão 3D, além
de explorar o potencial dessa tecnologia.
Para conhecer mais sobre o �lme, acesse o trailer disponível a seguir.
TRA I LER
19/09/21, 01:21 E-book
https://anhembi.blackboard.com/webapps/late-course_content_soap-BBLEARN/Controller?ACTION=OPEN_PLAYER&COURSE_ID=_736400_1&PARENT_ID=_18837329_1&CONTENT_ID=_18837355_1 75/84
L I V R O
Automação industrial: controle do movimento e
processos contínuos
Alexandre Capelli
Editora: Érica
ISBN: 9788536519616
Comentário: O livro de Alexandre Capelli é um dos grandes referenciais da
área de automação industrial no que tange a dimensionamento, modelagem
e projeção de sistemas industriais.
ACESSAR
19/09/21, 01:21 E-book
https://anhembi.blackboard.com/webapps/late-course_content_soap-BBLEARN/Controller?ACTION=OPEN_PLAYER&COURSE_ID=_736400_1&PARENT_ID=_18837329_1&CONTENT_ID=_18837355_1 76/84
Conclusão
Agora que concluiu esta unidade, caro(a) estudante, pode entender que o que acontece com sistemas
elétricos, mecânicos e eletromecânicos, térmicos e de �uxo é semelhante: deve-se inicialmente conhecer
os elementos básicos, para poder desenvolver as equações que os representam.
É necessário encontrar a função de transferência do sistema, que relaciona a saída com a entrada; outro
fator importante nos sistemas é identi�car se eles são estáveis ou não, identi�cando os polos e zeros do
sistema, então analisar o plano 𝝈+jω no plano de coordenadas.
Vale ressaltar que as perturbações são fatos comuns em ambiente industrial, desde a mudança do estado
de referência de variáveis em sistemas supervisórios e interfaces homem-máquina até impactos externos,
difíceis de controlar, como as interferências por harmônicos na rede.
Portanto, cabe ao(a) engenheiro(a) analisar todo o comportamento dos sistemas para poder dimensioná-
los corretamente, levando em consideração todos os elementos associados. E é fato que muitos sistemas
podem ser in�uenciados por diversos processos, por exemplo, o sistema de controle de uma caldeira, em
que há contribuição térmica, elétrica, mecânica e de �uxo.
19/09/21, 01:21 E-book
https://anhembi.blackboard.com/webapps/late-course_content_soap-BBLEARN/Controller?ACTION=OPEN_PLAYER&COURSE_ID=_736400_1&PARENT_ID=_18837329_1&CONTENT_ID=_18837355_1 77/84
Referências
ALBUQUERQUE, B. M. B. de. Um conto, um quantum:
investigação do potencial de séries de narrativas discretas
para a introdução de tópico da teoria quântica em sala de
aula. (Dissertação). Programa de Pós-Graduação em Ensino
de Física. Universidade Federal do ABC. Santo André, 2020.
Disponível em:
https://propg.ufabc.edu.br/mnpef/Dissert_Defendidas/ 
2020/01.%20Dissertação%20-
%20Bruno%20M.%20B.%20Albuquerque.pdf. Acesso em: 20
maio 2021.
ANDRADE, F. P. Moléculas, íons e seus compostos. Universidade Federal de São João Del Rei, 2018.
Disponível em: https://ufsj.edu.br/portal-
https://propg.ufabc.edu.br/mnpef/Dissert_Defendidas/2020/01.%20Disserta%C3%A7%C3%A3o%20-%20Bruno%20M.%20B.%20Albuquerque.pdf
https://ufsj.edu.br/portal-repositorio/File/frankimica/Quimica%20Fundamental/material%202%20-%20Mol%E9culas,%20%EDons%20e%20seus%20compostos.pdf
19/09/21, 01:21 E-book
https://anhembi.blackboard.com/webapps/late-course_content_soap-BBLEARN/Controller?ACTION=OPEN_PLAYER&COURSE_ID=_736400_1&PARENT_ID=_18837329_1&CONTENT_ID=_18837355_1 78/84
repositorio/File/frankimica/Quimica%20Fundamental/material%202%20-
%20Mol%E9culas,%20%EDons%20e%20seus%20compostos.pdf. Acesso em: 31 maio 2021.
ARAKI, L. K. Convecção externa. Universidade Federal do Paraná, 2017. Disponível em:
http://ftp.demec.ufpr.br/disciplinas/TMEC030/Prof_Luciano/CAP_07_CONVECCAO_EXTERNA.pptx.Acesso em: 30 maio 2021.
AYUB, C. R.; PEREIRA, W. C. S. Modelagem matemática de escoamentos de �uidos compressíveis no
regime transiente em tubulações. 2016. Trabalho de Conclusão de Curso (Graduação em Engenharia
Mecânica) – Centro Tecnológico, Universidade Federal do Espírito Santo, Vitória, 2016. Disponível em:
https://mecanica.ufes.br/sites/engenhariamecanica.ufes.br/�les/�eld/anexo/pg_caio_rev8.pdf. Acesso
em: 31 maio 2021.
BOJORGE, N. Dinâmica e modelagem de processos. Niterói: UFRJ, 2010. Disponível em:
http://www.eq.ufrj.br/docentes/ninoska/docs_PDF/Aula_Modelagem_%20LADEQ_1sem09.pdf. Acesso
em: 30 maio 2021.
BRAGA, N. C. Eletrônica básica. 2. ed. São Paulo: NCB, 2016.
CAPELLI, A. Automação industrial: controle do movimento e processos contínuos. São Paulo: Érica, 2013.
CARVALHO, J. L. M. Sistemas de controle automático. Rio de Janeiro: LTC, 2000.
DONOSO, J. P. D. Calor, energia e transferência de calor. Instituto de Física de São Carlos da Universidade
de São Paulo, 2012. Disponível em:
https://ufsj.edu.br/portal-repositorio/File/frankimica/Quimica%20Fundamental/material%202%20-%20Mol%E9culas,%20%EDons%20e%20seus%20compostos.pdf
http://ftp.demec.ufpr.br/disciplinas/TMEC030/Prof_Luciano/CAP_07_CONVECCAO_EXTERNA.pptx
https://mecanica.ufes.br/sites/engenhariamecanica.ufes.br/files/field/anexo/pg_caio_rev8.pdf
http://www.eq.ufrj.br/docentes/ninoska/docs_PDF/Aula_Modelagem_%20LADEQ_1sem09.pdf
19/09/21, 01:21 E-book
https://anhembi.blackboard.com/webapps/late-course_content_soap-BBLEARN/Controller?ACTION=OPEN_PLAYER&COURSE_ID=_736400_1&PARENT_ID=_18837329_1&CONTENT_ID=_18837355_1 79/84
http://www.ifsc.usp.br/~donoso/�sica_arquitetura/Transferencia_de_Calor.pdf. Acesso em: 30 maio 2021.
DRIEMEIER, L. Sistemas dinâmicos para mecatrônica: sistemas de primeira ordem. São Paulo: USP, 2019.
Disponível em:
https://edisciplinas.usp.br/plugin�le.php/4669483/mod_resource/content/2/SistemasPrimeiraOrdem.pdf.
Acesso em: 04 maio 2021.
DUARTE, C. J. Método algébrico para balanceamento de reações: uma alternativa não explorada em livros
didáticos de Química. Revista Química Nova na Escola, São Paulo, v. 43, n. 2, p. 183-189, 2021. Disponível
em: http://qnesc.sbq.org.br/online/qnesc43_2/08-EQF-25-20.pdf. Acesso em: 30 maio 2021.
FLEURY, A. T.; DONHA, D. C. Sistemas térmicos. E-disciplinas USP, 2020. Disponível em:
https://edisciplinas.usp.br/plugin�le.php/5720949/mod_resource/content/2/termicos2020.pdf. Acesso
em: 05 maio 2021.
FONTANA, É. Determinação da viscosidade de �uidos newtonianos. Universidade Federal de Santa
Catarina, 2018. Disponível em:
https://fontana.paginas.ufsc.br/�les/2018/08/viscosimetros_newtoniano.pdf. Acesso em: 30 maio 2021.
GOMES, M. H. R. Apostila de mecânica dos �uidos. Juiz de Fora: UFJF, 2012. Disponível em:
https://www.ufjf.br/engsanitariaeambiental/�les/2012/09/Apostila-de-Mecânica-dos-Fluidos.pdf. Acesso
em: 31 maio 2021.
http://www.ifsc.usp.br/~donoso/fisica_arquitetura/Transferencia_de_Calor.pdf
https://edisciplinas.usp.br/pluginfile.php/4669483/mod_resource/content/2/SistemasPrimeiraOrdem.pdf
http://qnesc.sbq.org.br/online/qnesc43_2/08-EQF-25-20.pdf
https://edisciplinas.usp.br/pluginfile.php/5720949/mod_resource/content/2/termicos2020.pdf
https://fontana.paginas.ufsc.br/files/2018/08/viscosimetros_newtoniano.pdf
https://www.ufjf.br/engsanitariaeambiental/files/2012/09/Apostila-de-Mec%C3%A2nica-dos-Fluidos.pdf
19/09/21, 01:21 E-book
https://anhembi.blackboard.com/webapps/late-course_content_soap-BBLEARN/Controller?ACTION=OPEN_PLAYER&COURSE_ID=_736400_1&PARENT_ID=_18837329_1&CONTENT_ID=_18837355_1 80/84
GRANZOTTO, D. G. Modelagem e projeto de um sistema de controle aplicado ao escoamento bifásico de
óleo viscoso e água em padrão anular. 2008. Tese (Mestrado em Ciências e Engenharia de Petróleo) –
Instituto de Geociências, Universidade Estadual de Campinas, Campinas, 2008. Disponível em:
http://repositorio.unicamp.br/jspui/bitstream/REPOSIP/265674/1/Granzotto_DesireeGrenier_M.pdf.
Acesso em: 30 maio 2021.
HELERBROCK, R. Equação de Clapeyron. Mundo Educação, [c2021]. Disponível em:
https://mundoeducacao.uol.com.br/�sica/estudo-dos-gases-equacao-clapeyron.htm. Acesso em: 31 maio
2021.
INCROPERA, F. P. et al. Fundamentos de transferência de calor e de massa. 6. ed. Rio de Janeiro: LTC,
2008.
NIECKELE, A. O. Equações de conservação. Pontifícia Universidade Católica do Rio de Janeiro, 2017.
Disponível em: http://mec�u2.usuarios.rdc.puc-rio.br/Pos_MecFluII_Mec2345/2-MecanicaFluidosII-
EqConservacao_MEC2345.pdf. Acesso em: 30 maio 2021.
NISE, N. S. Engenharia de sistemas de controle. 6. ed. Rio de Janeiro: LTC, 2012.
NISHITANI, W. S. Modelagem analítica: sistemas térmicos. 2017. Disponível em:
https://drive.google.com/�le/d/1Mkul--wMZoKrwOL4YeRY3sljqvzbPMw4/view. Acesso em: 30 maio 2021.
OGATA, K. Engenharia de controle moderno. 5. ed. São Paulo: Pearson, 2010.
http://repositorio.unicamp.br/jspui/bitstream/REPOSIP/265674/1/Granzotto_DesireeGrenier_M.pdf
https://mundoeducacao.uol.com.br/fisica/estudo-dos-gases-equacao-clapeyron.htm
http://mecflu2.usuarios.rdc.puc-rio.br/Pos_MecFluII_Mec2345/2-MecanicaFluidosII-EqConservacao_MEC2345.pdf
https://drive.google.com/file/d/1Mkul--wMZoKrwOL4YeRY3sljqvzbPMw4/view
19/09/21, 01:21 E-book
https://anhembi.blackboard.com/webapps/late-course_content_soap-BBLEARN/Controller?ACTION=OPEN_PLAYER&COURSE_ID=_736400_1&PARENT_ID=_18837329_1&CONTENT_ID=_18837355_1 81/84
OLIVEIRA, R. L. Equações diferenciais ordinárias: métodos de resolução e aplicações. 1. ed. Curitiba,
InterSaberes, 2019. (Biblioteca Laureate).
PÉREZ, S. G. Breves apuntes de la Transformada de Laplace. Departamento de Ingeniería de Sistemas y
Automática en la Universidad de Málaga, 2012. Disponível em:
http://www2.isa.uma.es/C12/Diapositivas/Document%20Library/Transformada%20de%20Laplace.pdf.
Acesso em: 30 maio 2021.
PRINT the legend. [S. l.: s. n.], 2014. 1 vídeo (2m11s). Publicado pelo canal Net�ix. Disponível em:
https://www.youtube.com/watch?v=kp9hD_WSaNM. Acesso em: 30 maio 2021.
RAMALHO JÚNIOR, F.; FERRARO, N. G.; SOARES, P. A. de T. A radiação do corpo negro. In: RAMALHO
JÚNIOR, F.; FERRARO, N. G.; SOARES, P. A. de T. Os fundamentos da Física. Temas especiais. (on-line).
Editora Moderna, 2013. Disponível em:
https://www.moderna.com.br/fundamentos/temas_especiais/radiacao_corpo_negro.pdf. Acesso em: 21
maio 2021.
RODRIGUES, C. E. C. Análise de estabilidade de sistemas feedback. E-disciplinas USP, 2019. Disponível
em: https://edisciplinas.usp.br/plugin�le.php/4535114/mod_resource/content/1/7-
Análise%20de%20estabilidade%20de%20sistemas%20feedback.pdf. Acesso em: 30 maio 2021.
RODRIGUES, N. Aplicação de EDO de 1 ordem em circuitos elétricos. Meu professor de física, 2018.
Disponível em: https://meuprofessorde�sica.com/2018/04/12/aplicacao-de-edo-equacoes-diferenciais-
ordinarias-de-1a-ordem-em-circuitos-eletricos. Acesso em: 30 maio 2021.
http://www2.isa.uma.es/C12/Diapositivas/Document%20Library/Transformada%20de%20Laplace.pdf
https://www.youtube.com/watch?v=kp9hD_WSaNM
https://www.moderna.com.br/fundamentos/temas_especiais/radiacao_corpo_negro.pdf
https://edisciplinas.usp.br/pluginfile.php/4535114/mod_resource/content/1/7-An%C3%A1lise%20de%20estabilidade%20de%20sistemas%20feedback.pdf
https://meuprofessordefisica.com/2018/04/12/aplicacao-de-edo-equacoes-diferenciais-ordinarias-de-1a-ordem-em-circuitos-eletricos
19/09/21, 01:21 E-book
https://anhembi.blackboard.com/webapps/late-course_content_soap-BBLEARN/Controller?ACTION=OPEN_PLAYER&COURSE_ID=_736400_1&PARENT_ID=_18837329_1&CONTENT_ID=_18837355_1 82/84
SCHULZ, D. Leis da termodinâmica. Instituto de Física da Universidade Federal do Rio Grande do Sul, 2009.
Disponível em: https://www.if.ufrgs.br/~dschulz/web/leis_termodinamica.htm. Acesso em: 31 maio 2021.
SILVA JÚNIOR, A. G. Cinemática dos �uidos. Instituto Federal do Rio Grande do Norte, 2016. Disponível
em: https://docente.ifrn.edu.br/andouglassilva/disciplinas/mecanica-dos-�uidos/aula-4-cinematica-dos-
�uidos. Acesso em: 30 maio 2021.
SOUZA,L. G. V. M. Introdução e conceitos básicos I. Passei Direto, 2017. Disponível em:
https://www.passeidireto.com/arquivo/56039371/1-introducao-e-conceitos-basicos-i. Acesso em: 30 maio
2021.
YANAGIHARA, J. I. Sistemas térmicos: introdução. E-disciplinas USP, 2020. Disponível em:
https://edisciplinas.usp.br/plugin�le.php/5577149/mod_resource/content/1/PME3479_Introducao_2020.pdf.
Acesso em: 30 maio 2021.
https://www.if.ufrgs.br/~dschulz/web/leis_termodinamica.htm
https://docente.ifrn.edu.br/andouglassilva/disciplinas/mecanica-dos-fluidos/aula-4-cinematica-dos-fluidos
https://www.passeidireto.com/arquivo/56039371/1-introducao-e-conceitos-basicos-i
https://edisciplinas.usp.br/pluginfile.php/5577149/mod_resource/content/1/PME3479_Introducao_2020.pdf
19/09/21, 01:21 E-book
https://anhembi.blackboard.com/webapps/late-course_content_soap-BBLEARN/Controller?ACTION=OPEN_PLAYER&COURSE_ID=_736400_1&PARENT_ID=_18837329_1&CONTENT_ID=_18837355_1 83/84
19/09/21, 01:21 E-book
https://anhembi.blackboard.com/webapps/late-course_content_soap-BBLEARN/Controller?ACTION=OPEN_PLAYER&COURSE_ID=_736400_1&PARENT_ID=_18837329_1&CONTENT_ID=_18837355_1 84/84

Continue navegando