Buscar

Exercicios Resolvidos do Halliday sobre Rotação- Cap11- Exercicio 79

Prévia do material em texto

79. We choose positive coordinate directions (different choices for each item) so that each is accelerating
positively, which will allow us to set a2 = a1 = Rα (for simplicity, we denote this as a). Thus, we choose
rightward positive for m2 = M (the block on the table), downward positive for m1 = M (the block
at the end of the string) and (somewhat unconventionally) clockwise for positive sense of disk rotation.
This means that we interpret θ given in the problem as a positive-valued quantity. Applying Newton’s
second law to m1, m2 and (in the form of Eq. 11-37) to M , respectively, we arrive at the following three
equations (where we allow for the possibility of friction f2 acting on m2).
m1g − T1 = m1a1
T2 − f2 = m2a2
T1R− T2R = Iα
(a) From Eq. 11-13 (with ω0 = 0) we find
θ = ω0t+
1
2
αt2 =⇒ α = 2θ
t2
.
(b) From the fact that a = Rα (noted above), we obtain a = 2Rθ/t2.
(c) From the first of the above equations, we find
T1 = m1 (g − a1) = M
(
g − 2Rθ
t2
)
.
(d) From the last of the above equations, we obtain the second tension:
T2 = T1 − Iα
R
= M
(
g − 2Rθ
t2
)
− 2Iθ
Rt2
	Main Menu
	Chapter 1 Measurement
	Chapter 2 Motion Along a Straight Line
	Chapter 3 Vectors
	Chapter 4 Motion in Two and Three Dimensions
	Chapter 5 Force and Motion I
	Chapter 6 Force and Motion II
	Chapter 7 Kinetic Energy and Work
	Chapter 8 Potential Energy and Conservation of Energy
	Chapter 9 Systems of Particles
	Chapter 10 Collisions
	Chapter 11 Rotation
	11.1 - 11.10
	11.1
	11.2
	11.3
	11.4
	11.5
	11.6
	11.7
	11.8
	11.9
	11.10
	11.11 - 11.20
	11.11
	11.12
	11.13
	11.14
	11.15
	11.16
	11.17
	11.18
	11.19
	11.20
	11.21 - 11.30
	11.21
	11.22
	11.23
	11.24
	11.25
	11.26
	11.27
	11.28
	11.29
	11.30
	11.31 - 11.40
	11.31
	11.32
	11.33
	11.34
	11.35
	11.36
	11.37
	11.38
	11.39
	11.40
	11.41 - 11.50
	11.41
	11.42
	11.43
	11.44
	11.45
	11.46
	11.47
	11.48
	11.49
	11.50
	11.51 - 11.60
	11.51
	11.52
	11.53
	11.54
	11.55
	11.56
	11.57
	11.58
	11.59
	11.60
	11.61 - 11.70
	11.61
	11.62
	11.63
	11.64
	11.65
	11.66
	11.67
	11.68
	11.69
	11.70
	11.71 - 11.80
	11.71
	11.72
	11.73
	11.74
	11.75
	11.76
	11.77
	11.78
	11.79
	11.80
	11.81 - 11.90
	11.81
	11.82
	11.83
	11.84
	11.85
	11.86
	11.87
	11.88
	11.89
	11.90
	11.91 - 11.100
	11.91
	11.92
	11.93
	11.94
	11.95
	11.96
	11.97
	11.98
	11.99
	11.100
	11.101 - 11.103
	11.101
	11.102
	11.103
	Chapter 12 Rolling, Torque, and Angular Momentum
	Chapter 13 Equilibrium and Elasticity
	Chapter 14 Gravitation
	Chapter 15 Fluids
	Chapter 16 Oscillations
	Chapter 17 Waves—I
	Chapter 18 Waves—II
	Chapter 19 Temperature, Heat, and the First Law of Thermodynamics
	Chapter 20 The Kinetic Theory of Gases
	Chapter 21 Entropy and the Second Law of Thermodynamics
	Chapter 22 Electric Charge
	Chapter 23 Electric Fields
	Chapter 24 Gauss’ Law
	Chapter 25 Electric Potential
	Chapter 26 CapacitanceChapter 27 Current and Resistance
	Chapter 27 Current and Resistance
	Chapter 28 Circuits
	Chapter 29 Magnetic Fields
	Chapter 30 Magnetic Fields Due to Currents
	Chapter 31 Induction and Inductance
	Chapter 32 Magnetism of Matter: Maxwell’s Equation
	Chapter 33 Electromagnetic Oscillations and Alternating Current
	Chapter 34 Electromagnetic Waves
	Chapter 35 Images
	Chapter 36 Interference
	Chapter 37 Diffraction
	Chapter 38 Special Theory of Relativity
	Chapter 39 Photons and Matter Waves
	Chapter 40 More About Matter Waves
	Chapter 41 All About Atoms
	Chapter 42 Conduction of Electricity in Solids
	Chapter 43 Nuclear Physics
	Chapter 44 Energy from the Nucleus
	Chapter 45 Quarks, Leptons, and the Big Bang

Continue navegando