Logo Passei Direto
Buscar
Material
páginas com resultados encontrados.
páginas com resultados encontrados.
left-side-bubbles-backgroundright-side-bubbles-background

Crie sua conta grátis para liberar esse material. 🤩

Já tem uma conta?

Ao continuar, você aceita os Termos de Uso e Política de Privacidade

left-side-bubbles-backgroundright-side-bubbles-background

Crie sua conta grátis para liberar esse material. 🤩

Já tem uma conta?

Ao continuar, você aceita os Termos de Uso e Política de Privacidade

Prévia do material em texto

UNIVERSIDADE ESTADUAL DE MATO GROSSO DO SUL
CURSO: SISTEMAS DE INFORMAÇÃO
DISCIPLINA: ESTATÍSTICA E PROBABILIDADE
ALUNO(A):Marco Antonio dos Santos : 21/09/2021
PROVA DA SEGUNDA AVALIAÇÃO a
1- Dois times de futebol, A e B, jogam entre si 6 vezes. Considerando que a
probabilidade de o time A ganhar um jogo é de Encontre:13 . 
a) a probabilidade de o time A ganhar 5 jogos;
P(5) = (6!/5!)*(1/3)^5*(2/3)^6-5
p(5) = 6*1/243*2/3
p(5) = 4/243
b) a probabilidade de A ganhar menos de 3 jogos
p (1) = (6!/1!)*(1/3)^1*(2/3)^5
P (1) = 6 * 1/3* 32/243
p (1) = 192/729
p (2) = (6!/2!)*(1/3)^2*(2/3)^4
p (2) = 15 * 1/9 * 32/81
p(2) = 240/729
192/729 + 240/729 = 432/729
2- Supondo que 70% das pessoas que acessam a página p21 da internet também
acessam a página p22. Qual a probabilidade de que em 10 acessos a página p21, a
maioria também acesse a página p22 {P(X>5)}?
3- Em um sistema de transmissão de dados, existe uma probabilidade igual a 0,05 de
um lote de dados ser transmitido erroneamente. Foram transmitidos 15 lotes de
dados para a realização de um teste de análise da confiabilidade do sistema. Calcule
a probabilidade de que haja erro na transmissão em exatamente 2 dos 15 lotes de
dados
p (2) = (15!/13!*2!) * (0,05)^2 * (1 - 0,05)^14
P (2) = (105) * (0,0025) * (0.48767497911)
p (2) = 0.128013375
4- O tempo para que um sistema computacional execute determinada tarefa é uma
variável aleatória com distribuição normal, com média 320 segundos e desvio
padrão de 7 segundos. Calcule
a) a probabilidade de a tarefa ser executada entre 310 e 330 segundos;
p[310 < X < 330]
p[ ((310 - 320)/7)< Z < ((330 - 320)/7) ]
2*0,4292
0.8584
b) a probabilidade de a tarefa ser executada em menos de 305 segundos
.
5- Seja Z uma variável aleatória com distribuição normal padrão. Calcule:
a) P (Z > 1,15)
P(Z >= 0) + P(0 <= Z <= 1,15)
0.5-0.3729
0.1271
b) P (-2 < Z < 2)
p(-2 <= Z <= 0) + p(0 <= Z <= 2)
p(0 <= Z <= 2) + p(0 <= Z <= 2)
0.4772+0.4772
0.9544
c) P (Z < 1,33)
P(Z <= 0) + P(0 <= Z <= 1,3)
0.5+0.4082
0.9082
d) P (Z> - 1,6)
p(Z >= 0) + p(-1,6 <= Z <= 0)
p(Z >= 0) + p(0 <= Z <= 1,6)
0.5+0.4452
0.9452
BOA PROVA!

Mais conteúdos dessa disciplina