Vista previa del material en texto
Dirección del Módulo de Matemática:
Prof. Sara Pettina
Coordinación General del Módulo de Matemática:
Prof. Marianela Bello
Co-Coordinación del Módulo de Matemática:
Prof. Germán Diez
Dictado de clases presenciales:
Prof. Matías Albornoz
Prof. Gabriel Aluz
Prof. Sofía Amorós
Prof. Melanie Antolinez
Prof. Giuliana Calani
Prof. Carolina Camargo
Prof. Sebastián Egea
Prof. Carolina Gonzalez
Prof. Lorena Granero
Prof. Alejandra Larralde
Prof. Agostina Ligutti
Prof. Carolina Maza
Prof. Paula Sosa
Prof. Matías Vidoret
Dictado de clases de tutorías:
Cristina Berea
León Diaz
Ana Paula Donaire
Carolina Fernández
Katherina Fernández
Gonzalo Molina
Wanda Perez de Luis
Daniel Yacante
2
Página
Símbolos matemáticos 3
UNIDAD N° 4: Conceptos básicos de geometría y trigonometría
TEMA N° 1: Punto, recta y ángulos 4
1.- Puntos y rectas 4
2.- Ángulos 6
3.- Sistemas de medición de ángulo 13
TEMA N° 2: Triángulos y razones trigonométricas 19
1.- Triángulos 19
2.- Teorema de Pitágoras 21
3.- Razones trigonométricas 22
4.- Identidades trigonométricas 36
5.- Ecuaciones trigonométricas 38
TEMA N° 3: Perímetro y superficie de polígonos regulares 39
1.- Polígonos 39
2.- Clases de polígonos 39
3.- Perímetros y áreas de polígonos regulares 40
4.- Resumen de elementos y fórmulas de perímetros y áreas 41
TEMA N° 4: Fórmulas de volumen de algunos cuerpos geométricos 42
Bibliografía 47
3
ℕ: Números naturales (a;b): Intervalo abierto
ℤ: Números enteros (a;b]: Intervalo semiabierto por la izquierda
ℚ: Números racionales [a;b): Intervalo semiabierto por la derecha
𝕀: Números irracionales [a;b]: Intervalo cerrado
ℝ: Números reales ϕ: Número irracional fi =
1+√5
2
: Existe π: número irracional pi (3,1415…)
∄: No existe e: Número e o constante de Euler (2,7182…)
: Para todo 𝑓: 𝐴 → 𝐵: función de A en B
: Conjunto vacío 𝑓−1: Función inversa
∪: Unión ≅ : Aproximadamente igual
: Intersección f o g: Composición de las funciones f y g.
: Pertenece f(x): función de x
: No pertenece Dom f: Dominio de la función f
∞: Infinito Rec f: Recorrido de la función f
−∞: Menos infinito % : Porcentaje
a = b: a igual a b : Incluido
a ≠ b: a distinto de b ⊈: No incluido
a > b: a mayor a b ∆: Discriminante
a < b: a menor a b |a|: Valor absoluto de a, para a ℝ
a ≥ b: a mayor o igual que b ∆= |
a b
c d
| = ad − bc: determinante
a ≤ b: a menor o igual que b
Nota: Agrega los que vayas utilizando y no aparezcan en la lista.
4
TEMA N° 1: PUNTO, RECTA Y ÁNGULOS
1.- PUNTOS Y RECTAS
PUNTO: Indica una posición en el plano o en el espacio.
Para nombrarlos se utilizan letras mayúsculas. Por ejemplo: • A
RECTA: Es una sucesión continua e indefinida de puntos en una sola dimensión.
Las rectas se representan indicando dos puntos que pertenecen a ella.
Por ejemplo: Recta 𝐴𝐵 ⃡
POSICIONES RELATIVAS DE DOS RECTAS EN EL PLANO
RECTAS PARALELAS: Se denominan a las rectas que tienen la misma pendiente, pero entre
sí, guardan una cierta distancia. Son aquellas que nunca se cruzan o no tienen un punto de
intersección. Para referirse a ellas se utiliza la siguiente simbología: 𝐴𝐵 ⃡ // 𝐶𝐷 ⃡ , lo que se lee la
recta AB es paralela a la recta CD.
RECTAS COINCIDENTES: Tienen infinitos puntos de intersección.
RECTAS SECANTES: Se cortan en un único punto (P).
A B
C D
P
A B
5
RECTAS PERPENDICULARES: Al cortarse forman 4
ángulos rectos: AB ⃡ ⊥ CD ⃡ , lo que se lee, la recta AB es
perpendicular a la recta CD.
POSICIONES RELATIVAS DE UNA RECTA Y UNA CIRCUNFERENCIA
SEMIRRECTA O RAYO: Una semirrecta es cada una de las partes en que queda dividida una
recta por uno cualquiera de sus puntos. Es una parte de una recta, que tiene un límite o un
punto extremo. Se denota: 𝐴𝐵 .
SEGMENTO: Es un fragmento de la recta que está comprendido entre dos puntos, llamados
puntos extremos o finales. Por ejemplo: segmento 𝐴𝐵̅̅ ̅̅
ACTIVIDADES
1.- Dada la siguiente figura, nombrar:
a) Tres puntos.
b) Tres rectas que contengan al punto A.
c) Dos semirrectas con extremo B.
d) Cuatro segmentos con extremo A.
e) Dos rectas que contengan al punto D.
A B
A B
A
B
C D
E
6
2.- Dada la siguiente figura, nombrar:
a) Un par de rectas perpendiculares.
b) Un par de rectas secantes no perpendiculares.
c) Un par de rectas coincidentes.
d) Tres semirrectas.
e) Cinco segmentos.
2.- ÁNGULOS
ÁNGULO: Es la porción del plano limitada por dos semirrectas que comparten un mismo origen
llamado vértice. Cada semirrecta recibe el nombre “lado del ángulo”. Simbólicamente se escribe:
𝐴𝑂�̂�, que implica que es un ángulo con vértice en O.
Ejemplo: El ángulo AOB̂, de medida , siendo O el vértice del ángulo.
NOTACIÓN DE ÁNGULOS: En general, a la medida de los ángulos se la nombra utilizando
letras del alfabeto griego tales como (Alfa), (Beta), (Gamma), (Delta), (Omega)
AMPLITUD DE UN ÁNGULO: Es el tamaño de la abertura
entre las dos semirrectas que forman un ángulo. En general,
se usa el sistema sexagesimal para su medición.
CLASIFICACIÓN DE LOS ÁNGULOS SEGÚN SUS MEDIDAS
COMPLETO: Mide 360°
LLANO: Mide 180°
A
D
C
B
E
F
G
7
RECTO: Mide 90°
AGUDO: Si mide entre
0° y 90°
OBTUSO: Si mide entre
90° y 180°
NULO: Mide 0°
CONVEXO: Si mide menos
de 180°
CÓNCAVO: Si
mide más de 180°
CLASIFICACIÓN DE LOS ÁNGULOS SEGÚN LA SUMA DE SUS MEDIDAS
COMPLEMENTARIOS: dos ángulos son complementarios si suman 90°.
SUPLEMENTARIOS: dos ángulos son suplementarios si suman 180°.
CLASIFICACIÓN DE LOS ÁNGULOS SEGÚN SU POSICIÓN RELATIVA
ÁNGULOS CONSECUTIVOS: Son aquellos ángulos que tienen el vértice y un
lado común.
ÁNGULOS ADYACENTES: Son aquellos que tienen el vértice y un lado
común; y los otros lados forman una recta.
Dos ángulos adyacentes son suplementarios y forman un ángulo llano.
ÁNGULOS OPUESTOS POR EL VÉRTICE: Teniendo el vértice común, los
lados de uno son prolongación de los lados del otro. Dos ángulos opuestos por
el vértice tienen igual medida. Los ángulos 1 y 3 son iguales; los
ángulos 2 y 4 son iguales.
Clasificación de las
expresiones algebraicas
https://youtu.be/Ov1K_SxHn-s
https://youtu.be/Ov1K_SxHn-s
8
ÁNGULOS CONGRUENTES: Dos ángulos son congruentes cuando
miden lo mismo, aunque su posición u orientación sean distintas. Las
partes coincidentes de los ángulos congruentes se llaman homólogas o correspondientes.
ÁNGULOS MAYORES DE UN GIRO: Un ángulo de un giro completo es un ángulo equivalente
a 360°. En algunas ocasiones se trabajan con ángulos mayores que un giro. En estos casos se
debe buscar su ángulo congruente comprendido entre 0° y 360°.
Por ejemplo: Un ángulo de 60° es congruente con uno de 420°, ya que sus lados y vértices
coinciden. Esto es porque 420° = 360° + 60°, es decir, que un ángulo de 420° es igual a un giro más
60°. Pero no podemos decir que son iguales, ya que claramente 60° ≠ 420°, la relación de
congruencia entre ambos se indica así: 𝟔𝟎° ~ 𝟒𝟐𝟎°
ÁNGULOS DE LADOS PARALELOS: Dos ángulos cuyos lados correspondientes son
paralelos, tienen igual medida.
BISECTRIZ DE UN ÁNGULO: La bisectriz de un ángulo es una
semirrecta con origen en el vértice del ángulo, que lo divide en dos
ángulos de igual medida.
En el caso particular de ángulos adyacentes, las
bisectrices correspondientes a dos ángulos
adyacentes son perpendiculares entre sí.
ÁNGULOS DETERMINADOS POR DOS RECTAS PARALELAS Y UNA SECANTE
Dos rectasparalelas cortadas por una tercera determinan
ocho ángulos: Esta distribución numérica permite caracterizar
parejas de ángulos según su posición, haciendo notar que los
ángulos 3, 4, 5 y 6 son interiores (o internos) y los ángulos 1,
2, 7 y 8 son exteriores (o externos) respecto a las rectas.
9
ÁNGULOS INTERNOS (3, 4, 5 y 6)
Los ángulos internos, de un mismo lado de la transversal a dos rectas paralelas,
son suplementarios (suman 180º).
Ángulos 3 y 5 son suplementarios (suman 180º) Ángulos 4 y 6 son suplementarios (suman 180º)
ÁNGULOS EXTERNOS (1, 2, 7 y 8)
Los ángulos externos, de un mismo lado de la transversal a dos rectas paralelas,
son suplementarios (suman 180º).
Ángulos 1 y 7 son suplementarios (suman 180º) Ángulos 2 y 8 son suplementarios (suman 180º)
ÁNGULOS CORRESPONDIENTES
Son aquellos que están al mismo lado de las paralelas y de la transversal.
1 y 5 son ángulos
correspondientes
(congruentes)
2 y 6 son ángulos
correspondientes
(congruentes)
3 y 7 son ángulos
correspondientes
(congruentes)
4 y 8 son ángulos
correspondientes
(congruentes)
10
Si dos rectas paralelas son cortadas por una transversal, entonces cada par de ángulos
correspondiente es congruente (tienen la misma amplitud) entre sí.
ÁNGULOS ALTERNOS INTERNOS
Son aquellos ángulos interiores que están a distinto lado de la transversal y de las paralelas.
3 y 6 son ángulos alternos internos (congruentes) 4 y 5 son ángulos alternos internos (congruentes)
Si dos rectas paralelas son cortadas por una transversal, entonces cada par de ángulos
alternos internos es congruente entre sí.
ÁNGULOS ALTERNOS EXTERNOS
Son aquellos ángulos exteriores que están a distinto lado de la transversal y de las paralelas.
1 y 8 son ángulos alternos externos (congruentes) 2 y 7 son ángulos alternos externos (congruentes)
Si dos rectas paralelas son cortadas por una transversal, entonces cada par de ángulos
alternos externos es congruente entre sí.
Clasificación de las
expresiones algebraicas
https://youtu.be/YmeL3BCdFdM
11
ÁNGULOS ORIENTADOS
Un ángulo es positivo cuando su sentido de giro es antihorario
(contrario a las agujas del reloj); mientras, que será negativo, si su sentido
es horario o igual que las agujas del reloj.
ÁNGULOS EN EL PLANO CARTESIANO
El sistema de coordenadas cartesianas divide
al plano en 4 regiones llamadas cuadrantes.
Cualquiera sea la orientación de los ángulos,
el nombre de los cuadrantes no varía.
El eje horizontal (generalmente de las x) se
denomina eje de abscisas, mientras que el vertical
(generalmente de las y), es el eje de ordenadas. El
origen está dado por el punto donde se cortan
ambos ejes y sus coordenadas son (0;0).
Cuando se quiere identificar un punto del plano
cartesiano se escribe primero el valor de abscisa,
seguido por punto y coma, y luego el valor de
ordenada.
Por ejemplo: En la siguiente gráfica el punto A =
(2;2) se ubica en la intersección de dos unidades de x
(eje de abscisas u horizontal) y dos unidades de y (eje
de ordenadas o vertical).
Trate de comprobar si están bien identificado los restantes puntos del gráfico.
12
ACTIVIDADES
3.- Sabiendo que ŵ = 100° y L1 // L2 y t: es una recta transversal, determinar el valor de x̂, ŷ, ẑ
4.- Dada la siguiente gráfica, nombrar:
a) Un ángulo agudo.
b) Un par de ángulos complementarios.
c) Un par de ángulos suplementarios.
d) Dos ángulos rectos adyacentes.
5.- Calcular la medida de los ángulos pedidos en cada caso:
a) x = ……….
b) y = ………… ; x = …………….
w
x
y
z
L1 L2
t
2x+3 x
A
D
C
B
E
F
G
x
Y2 +3450°
13
6.- Clasificar los siguientes ángulos según sus medidas.
a) α̂ = 180° b) β̂ = 95°
c) γ̂ = 45° d) δ̂ = 90°
e) ε̂ = 35° 15′ 10′′ f) ω̂ = 360°
7.- Si a = 30°, calcular el valor de b, c, e, h+b, c+f
3.- SISTEMAS DE MEDICIÓN DE ÁNGULOS
Los sistemas de medición de ángulos más utilizados son: el Sistema Sexagesimal, el Sistema
Centesimal y el Sistema Circular o Radial.
A.- SISTEMA SEXAGESIMAL
En el sistema sexagesimal, la unidad de medida es el grado, que corresponde a la 360-ava
parte de la circunferencia. A su vez, cada grado sexagesimal se divide en 60 partes iguales llamadas
minutos, y cada minuto se divide en 60 partes iguales llamadas segundos.
Entre los usos actuales de este sistema están los siguientes:
MEDICIÓN DEL TIEMPO
Para la medición del tiempo se combina el sistema sexagesimal con el sistema duodecimal
(base 12). Una hora se divide en 60 minutos y un minuto en 60 segundos, para medir el número de
horas de un día se utilizan dos bloques de 12 horas. Entonces,
1 hora = 60 minutos, o bien, 1 h = 60’
1 minuto = 60 segundos, o bien, 1 m = 60’’
1 hora = 3.600 segundos, o bien, 1 h = 3.600’’
a
c
d
f
hg
b
e
14
Para expresar una unidad de medición de tiempo del sistema sexagesimal en una unidad del
sistema decimal (segundos), se procede según la siguiente fórmula:
h (horas) m (minutos) s (segundos) = h . 602 + m . 60 + s
Ejemplo: Expresar 3 horas, 50 minutos y 34 segundos, en segundos:
3 h 50’ 34’’ = 3 h . 60 m . 60 s + 50 . 60 m + 34 s = 13.834’’
3 h 50’ 34’’ = 3 . 602 + 50 . 60 + 34 = 13.834’’
MEDICIÓN DE ÁNGULOS
Las unidades utilizadas para medir ángulos son:
grado, minuto y segundo.
Para medir ángulos se utiliza un transportador, el
cual se asemeja a un semicírculo graduado.
Las equivalencias entre las unidades utilizadas
para medir ángulos son las siguientes:
1 grado = 60 minutos, o bien, 1° = 60’
1 minuto = 60 segundos, o bien, 1’ = 60’’
Para transformar una unidad de medida en otra del sistema sexagesimal se debe considerar
lo siguiente:
☺ Para transformar grados en minutos, se multiplica por 60. Por ejemplo: 20° equivale a 1.200
minutos, ya que 20 grados * 60 minutos/grado = 1.200 minutos.
☺ Para transformar grados en segundos, se multiplica por 3.600. Por ejemplo: 45° equivalen a
162.000 segundos, ya que 45 grados * 3600 segundos/ grados = 162.000 segundos.
☺ Para transformar minutos en grados, se divide por 60. Por ejemplo: 30 minutos equivalen a
0,5°, ya que 30: 60 = 0,5.
En síntesis,
15
ACTIVIDADES
8.- Expresar en minutos:
a) 58°
b) 36°
c) 36’’
d) 20° 36’ 180’’
9.- Expresar en horas, minutos y segundos:
a) 425’
b) 7.295’’
c) 1.217’
d) 43.280’’
10.- Expresar en grados las siguientes medidas de ángulos:
a) 37° 49’ 48’’
b) 51° 21’ 18’’
c) 49° 38’ 51’’
d) 27° 51’ 36’’
11.- Si un ángulo mide 45° 35’ 24’’
a) ¿Cuántos grados mide el ángulo?
b) ¿Cuántos minutos mide el ángulo?
c) ¿Cuántos segundos mide el ángulo?
12.- Si α = 25° 12’ 45’’ y β = 18° 25’ 51’’. Calcular:
a) α + β
b) α − β
c) El ángulo complementario de α
d) El ángulo complementario de β
e) El ángulo suplementario de α
f) El ángulo suplementario de β
13.- Graficar los siguientes ángulos en el plano cartesiano:
a) = 30°
b) = −80°
c) = 160°
d) = 370°
e) = −110°
16
14.- Resolver:
a) Una persona comenzó su jornada laboral a las 7 horas 50 minutos 40 segundos y la terminó
a las 14 horas 15 minutos 30 segundos. ¿Cuánto tiempo ha estado en el trabajo?
b) Un ángulo mide 45° 18’ 36’’. ¿Cuánto mide su complemento?
c) Francisca ha recorrido 8 km en 1 hora, 30 minutos y 12 segundos. ¿Cuánto tiempo ha
empleado en recorrer un km si ha mantenido el mismo paso durante todo el recorrido?
d) En una casa se han realizado 150 conexiones a Internet en 30 días, con una duracióntotal
de 103 horas 29 minutos y 22 segundos. Si se han conectado todos los días el mismo tiempo,
¿Cuánto ha sido el tiempo de conexión diario? ¿Cuántas conexiones realizó por día? ¿Cuánto
tiempo promedio duró cada conexión diaria?
e) Un ángulo recto se divide en dieciséis ángulos iguales. ¿Cuántos grados, minutos y
segundos mide cada ángulo? ¿Y si se divide en 15 partes iguales?
B.- SISTEMA CENTESIMAL
En este sistema la unidad de medida es el grado centesimal (1g) o también llamado gradián.
Un grado centesimal se subdivide en 100 minutos centesimales (100m) y cada uno de estos minutos
en 100 segundo centesimales (100s), es decir, 1g = 100m = 10.000s. No lo utilizaremos durante este
curso de ingreso.
C.- SISTEMA CIRCULAR O RADIAL
En este sistema la unidad de medida es el radián (1 rad). Se llama
radián al ángulo que, teniendo su vértice en el centro de un círculo, corta
en su circunferencia un arco de longitud igual al radio de la
circunferencia.
Si se sabe que una circunferencia completa tiene 360° y su longitud es 𝟐 𝐫, entonces:
Longitud de la circunferencia = 360° = 2 rad
Entonces 𝟏 𝒓𝒂𝒅 ≈
𝟑𝟔𝟎°
𝟐𝝅
≈ 𝟓𝟕, 𝟐𝟗𝟔° 𝟓𝟕° 𝟏𝟕’ 𝟒𝟔’’
Clasificación de las
expresiones algebraicas
https://youtu.be/L5GNg9a_gSc
https://youtu.be/L5GNg9a_gSc
17
Teniendo en cuenta la igualdad de la longitud de la
circunferencia medida en grados o radianes, por medio de la aplicación
de una regla de tres simple directa, se pueden convertir grados
sexagesimales en radianes y viceversa. Se debe tener en cuenta que
al ser un número irracional, en general, los ángulos se expresan en
términos de radianes. Por ejemplo:
Si se quiere convertir un ángulo del sistema sexagesimal de
90° a radianes, del sistema radial, se debe hacer el siguiente planteo:
Luego, si despejo: 𝑥 =
90° ∙2 𝜋 𝑟
360°
=
1
2
𝜋 𝑟, es decir, que el ángulo de 90° equivale a un ángulo
de
𝟏
𝟐
𝝅 𝒓, lo que se lee, un medio Pi radianes.
90° =
𝟏
𝟐
𝝅 𝒓
Ahora se analiza cómo convertir un ángulo del sistema radial al sexagesimal. Dado el ángulo
de 1,5 radianes:
Luego, si despejo: 𝑥 =
1,5 𝜋 𝑟 ∙360°
2 𝜋 𝑟
= 270°
𝟏, 𝟓 𝛑 𝐫 = 𝟐𝟕𝟎°
Cuando se trabaja con la calculadora hay que configurar el modo, según el cálculo que se
desea realizar, pruebe en su calculadora científica, si no dispone puede encontrar varias
aplicaciones gratuitas para el celular.
DEG o D: Permite operar en sistema sexagesimal.
GRA o G: Es para el sistema centesimal.
RAD o R: Corresponde al sistema circular o radial.
Convertir radianes a grados
Convertir grados a
radianes
Relación entre grados y
radianes
Grados decimales a
sexagesimales
Grados sexagesimales a
centesimales
https://www.youtube.com/watch?v=nKSylFrOzRw
https://youtu.be/seR9VVW4DaI
https://youtu.be/-nz4EpEWhzw
https://youtu.be/8qU5P6BwxWQ
https://youtu.be/ZO8nSJS8Dvs
https://www.youtube.com/watch?v=nKSylFrOzRw
https://youtu.be/seR9VVW4DaI
https://youtu.be/-nz4EpEWhzw
https://youtu.be/8qU5P6BwxWQ
https://youtu.be/ZO8nSJS8Dvs
https://www.youtube.com/watch?v=nKSylFrOzRw
https://youtu.be/seR9VVW4DaI
https://youtu.be/-nz4EpEWhzw
https://youtu.be/8qU5P6BwxWQ
https://youtu.be/ZO8nSJS8Dvs
https://www.youtube.com/watch?v=nKSylFrOzRw
https://youtu.be/seR9VVW4DaI
https://youtu.be/-nz4EpEWhzw
https://youtu.be/8qU5P6BwxWQ
https://youtu.be/ZO8nSJS8Dvs
https://www.youtube.com/watch?v=nKSylFrOzRw
https://youtu.be/seR9VVW4DaI
https://youtu.be/-nz4EpEWhzw
https://youtu.be/8qU5P6BwxWQ
https://youtu.be/ZO8nSJS8Dvs
https://www.youtube.com/watch?v=nKSylFrOzRw
https://youtu.be/seR9VVW4DaI
https://youtu.be/-nz4EpEWhzw
https://youtu.be/8qU5P6BwxWQ
https://youtu.be/ZO8nSJS8Dvs
18
ACTIVIDADES
15.- Completar el siguiente cuadro de equivalencias de ángulos:
SISTEMA ÁNGULOS
SEXAGESIMAL 0° 30° 60° 90°
CIRCULAR O RADIAL π
4
rad
2
3
𝜋 rad
SEXAGESIMAL 135° 150° 210° 225°
CIRCULAR O RADIAL 𝜋 rad 4
3
𝜋 rad
SEXAGESIMAL 270° 330° 360° 38° 15’ 20”
CIRCULAR O RADIAL 5
3
𝜋 rad
7
4
𝜋 rad
16.- Indicar a qué cuadrante pertenece el ángulo ε̂:
a)
1
2
π rad < ε̂ < π rad
b) − π rad < ε̂ < −
1
2
π rad
c) π rad < ε̂ <
3
2
π rad
d) −
3
2
π rad < ε̂ < −π rad
e)
3
2
π rad < ε̂ < 2 π rad
f) 0 π rad < ε̂ <
1
2
π rad
17.- Identificar el cuadrante al que pertenecen los siguientes ángulos:
ÁNGULO 130° π
4
rad
9
4
π rad
520° -120°
CUADRANTE
19
TEMA N° 2: TRIÁNGULOS Y RAZONES TRIGONOMÉTRICAS
1.- TRIÁNGULOS
El triángulo es una de las figuras geométricas cerradas más
simple que existe. Es un polígono de tres lados, tres ángulos
interiores, tres ángulos exteriores y tres vértices. Se distingue por
no poseer diagonales.
Los puntos A, B y C, se llaman vértices y los segmentos 𝐴𝐵̅̅ ̅̅ ,
𝐵𝐶̅̅ ̅̅ y 𝐶𝐴̅̅ ̅̅ , son los lados.
Siendo , , ángulos interiores, también se los puede escribir como: 𝐵𝐴�̂�, 𝐴𝐵�̂� y 𝐴𝐶�̂� (la
letra que se escribe en el medio de las tres que forman parte del nombre del ángulo, es la que
corresponde al vértice de este). Los ángulos exteriores son ’, ’, ’.
A.- PROPIEDADES DE LOS TRIÁNGULOS
DESIGUALDAD TRIANGULAR: La suma de las longitudes de dos lados de un triángulo es
siempre mayor que la longitud del tercer lado. Es decir, si a, b y c son las medidas de tres
segmentos, podemos construir un triángulo con ellos solo sí cumple lo siguiente:
𝑎 + 𝑏 > 𝑐
𝑎 + 𝑐 > 𝑏
𝑏 + 𝑐 > 𝑎
PROPIEDADES DE LOS ÁNGULOS:
☺ La suma de las medidas de los ángulos interiores de un triángulo es 180°.
☺ La suma de las medidas de los ángulos exteriores de un triángulo es 360°.
☺ El ángulo de mayor medida de un triángulo es opuesto al lado de mayor longitud. Del mismo
modo, si dos lados del triángulo tienen igual medida, sus ángulos interiores opuestos también
tienen la misma medida y viceversa.
20
B.- CLASIFICACIÓN DE TRIÁNGULOS
SEGÚN LA MEDIDA DE SUS LADOS: Pueden ser:
☺ EQUILÁTEROS: Tienen todos sus lados de igual medida, al igual que sus ángulos.
☺ ISÓSCELES: Tienen dos lados de igual medida y dos ángulos de igual medida. El ángulo
desigual está formado por los lados de igual medida.
☺ ESCALENOS: Tienen todos sus lados de diferentes medidas, al igual que sus ángulos.
SEGÚN LA MEDIDA DE SUS ÁNGULOS:
Pueden ser:
☺ RECTÁNGULOS: Tienen un ángulo recto (90°). En un
triángulo rectángulo el lado de mayor longitud, opuesto al
ángulo recto, recibe el nombre de HIPOTENUSA y los dos de menor longitud, CATETOS.
☺ ACUTÁNGULOS: Sus tres ángulos son agudos (menores que 90°).
☺ OBTUSÁNGULOS: Tiene un ángulo obtuso (mayor que 90° y menor que 180°).
Se pueden establecer relaciones entre las clasificaciones de triángulos mencionadas
anteriormente. Por ejemplo: Un triángulo equilátero es siempre acutángulo. Un triángulo
obtusángulo no puede ser equilátero, etc.
21
C.- ÁREA O SUPERFICIE DE UN TRIÁNGULO
2.- TEOREMA DE PITÁGORAS
Algebraicamente, el Teorema de Pitágoras establece que el cuadrado de la hipotenusa de un
triángulo rectángulo es igual a la suma de los cuadrados de los catetos.
Conociendo las medidas de dos lados de un triángulo rectángulo se puede determinar la
medida del tercer lado aplicando el teorema de Pitágoras.
Si a y b son catetos y c es la hipotenusa, entonces:
𝐚𝟐 + 𝐛𝟐 = 𝐜𝟐
𝐜 = √𝐚𝟐 + 𝐛𝟐
𝐚 = √𝐜𝟐 − 𝐛𝟐
𝐛 = √𝐜𝟐 − 𝐚𝟐
ACTIVIDADES
18.- Calcular la medida de la altura de un triángulo equilátero cuyos lados miden 8 cm.
19.- Calcular la longitud de la diagonal de un cuadrado cuyo lado mide 5 cm.
20.- Calcular la longitud de una escalera, sabiendo que está apoyada en una pared a una distancia
de 1,1 metros sobre el suelo y alcanza una altura de 6 metros.21.- Determinar si se puede construir un triángulo con las siguientes medidas, aplique las
propiedades de la desigualdad triangular y propiedades de los ángulos.
a) a= 3 cm, b = 4 cm, c = 5 cm
b) a= 5 cm, b = 3 cm, c = 1 cm
c) = 45°, = 50°, = 85°
d) = 67°, = 22°, = 92°
https://youtu.be/XfVWlO3sRw0
https://youtu.be/XfVWlO3sRw0
https://youtu.be/XfVWlO3sRw0
22
22.- Resolver:
a) Un edificio proyecta una sombra de 50 m de largo, y la distancia entre la punta de la sombra y el
extremo superior del edificio es de 100 m. ¿Cuál es la altura del edificio?
b) ¿Cuál es el área de un rectángulo si su ancho mide 15 cm y su diagonal mide 20 cm?
23.- Hallar el valor del lado desconocido:
a)
b)
x
3.- RAZONES TRIGONOMÉTRICAS
Se llaman razones trigonométricas a las relaciones entre los lados y los ángulos agudos de
cualquier triángulo rectángulo.
Como se observa en la gráfica el vértice C
corresponde al ángulo recto o de 90°; mientras que �̂� y �̂�
son los ángulos agudos.
El lado del triángulo, opuesto al ángulo recto C, es la
hipotenusa del triángulo (c). Siempre es el lado de mayor
medida en un triángulo rectángulo.
Los lados que se oponen a los ángulos agudos se llaman catetos. Según el ángulo que
analicemos, si es �̂� ó �̂�, serán catetos opuestos o catetos adyacentes a cada ángulo.
En la figura se puede identificar que b es el cateto opuesto al ángulo 𝛃; mientras que a será
el cateto adyacente a �̂�.
Si ahora se analiza el ángulo �̂�, el cateto opuesto a �̂� es b, mientras que el cateto adyacente
a �̂� es a.
23
Una vez que se identifican los elementos del triángulo rectángulo, la hipotenusa y los catetos,
las fórmulas para calcular las razones trigonométricas fundamentales y sus recíprocas son:
RAZONES TRIGONOMÉTRICAS
FUNDAMENTALES
RECÍPROCAS DE LAS RAZONES
TRIGONOMÉTRICAS
seno de α̂ = sen ̂ =
cateto opuesto a ̂
hipotenusa
cosecante de α̂ = cosec ̂ =
1
sen ̂
=
hipotenusa
cateto opuesto a ̂
coseno de α̂ = cos ̂ =
cateto adyacente a ̂
hipotenusa
secante de α̂ = sec ̂ =
1
cos ̂
=
hipotenusa
cateto adyacente a ̂
tangente de α̂ = tg ̂ =
cateto opuesto a ̂
cateto adyacente a ̂
tg ̂ =
sen ̂
cos ̂
cotangente de α̂ = cotg ̂ =
1
tg ̂
=
cateto adyacente a ̂
cateto opuesto a ̂
cotg ̂ =
cos ̂
sen ̂
Por ejemplo: Dado el siguiente triángulo, utilizando el Teorema de Pitágoras se puede obtener
la medida de la hipotenusa:
a2 + b2 = c2
32 + 42 = c2
√32 + 42 = c
5 = c
Luego podemos calcular las RAZONES
TRIGONOMÉTRICAS FUNDAMENTALES y sus
RECÍPROCAS del ángulo 𝛅:
RAZONES TRIGONOMÉTRICAS FUNDAMENTALES RECÍPROCAS DE LAS RAZONES TRIGONOMÉTRICAS
sen δ̂ =
cateto opuesto a δ̂
hipotenusa
=
b
c
=
4
5
cosec δ̂ =
1
sen δ̂
=
hipotenusa
cateto opuesto a δ̂
=
c
b
=
5
4
cos δ =
cateto adyacente a δ̂
hipotenusa
=
a
c
=
3
5
sec δ̂ =
1
cos δ̂
=
hipotenusa
cateto adyacente a δ̂
=
c
a
=
5
3
tg δ̂ =
cateto opuesto a δ̂
cateto adyacente a δ̂
=
b
a
=
4
3
cotg δ̂ =
1
tg δ̂
=
cateto adyacente a δ̂
cateto opuesto a δ̂
=
a
b
=
3
4
Cateto opuesto, cateto
adyacente e hipotenusa
Razones trigonométricas de
un ángulo
https://youtu.be/FUMlQtJfrHo?list=PLeySRPnY35dEAIFYvOhtD2cztVuq15qw1
https://youtu.be/GbDpIjp52qA
https://youtu.be/FUMlQtJfrHo?list=PLeySRPnY35dEAIFYvOhtD2cztVuq15qw1
https://youtu.be/GbDpIjp52qA
https://youtu.be/FUMlQtJfrHo?list=PLeySRPnY35dEAIFYvOhtD2cztVuq15qw1
https://youtu.be/GbDpIjp52qA
https://youtu.be/FUMlQtJfrHo?list=PLeySRPnY35dEAIFYvOhtD2cztVuq15qw1
https://youtu.be/GbDpIjp52qA
24
CIRCUNFERENCIA TRIGONOMÉTRICA
Se define como circunferencia trigonométrica, a una circunferencia de radio igual a 1 unidad
y centro en el origen del plano cartesiano (0;0). El origen de los ángulos es el semieje positivo de
las x.
Todo ángulo θ̂, orientado y centrado, determina un punto P sobre la circunferencia
trigonométrica. Este punto P tiene asociado un par (x;y) del plano. Cuando el ángulo varía en el
intervalo [0; 2𝜋], cambia la posición del punto P, cambiando también sus coordenadas. En el
siguiente link puedes ver el comportamiento animado de las razones seno, coseno y tangente
aplicadas al ángulo tita. Comportamiento razones trigonométricas
A continuación, se adjunta una gráfica, donde se puede observar el ángulo tita en la
circunferencia trigonométrica. Observe que el radio de la circunferencia es de 1 unidad, si se
extiende el lado del ángulo tita hasta que corta la circunferencia en el punto P, se obtiene para ese
punto un valor de x (eje de abscisas), que será el valor del coseno del ángulo tita y un valor de y
(eje de ordenadas) que será el valor del seno del ángulo tita.
Luego, se debe trazar una recta tangente a la circunferencia, que solo la toque en el punto
(x;y)=(1;0); y prolongamos el radio que pasa por el punto P hasta que corte a esta tangente. Desde
ese punto de corte hasta el punto (1;0) la medida es el valor de la tangente del ángulo tita.
En el gráfico se han pintado de azul el valor del cos θ̂; de rojo el valor del sen θ̂; y de rosado el
correspondiente a la tg θ̂.
El seno es una medida sobre el eje de ordenadas “y”, mientras que el coseno se mide en el
eje de abscisas “x”. Lo cual ayuda a analizar los signos de las funciones trigonométricas en los
cuatro cuadrantes.
Si analiza el valor del seno y del coseno podrá concluir que siempre varían en el intervalo
[−1; 1], ya que son los valores que pueden tomar x e y en la circunferencia trigonométrica.
https://www.geogebra.org/m/gf35VZ2t
25
SIGNOS DE LAS RAZONES TRIGONOMÉTRICAS
El seno será positivo en los cuadrantes con semieje positivo en las “y”, de lo contrario será
negativo.
El coseno será positivo en los cuadrantes con semieje positivo de las “x”, caso contrario, será
negativo.
Para saber el signo de la tangente debemos prolongar el lado del ángulo hasta que corte a la
recta tangente a la circunferencia (que la toca en el punto (1;0)) y ahí se observa si la tangente es
positiva (semieje positivo de las y) o negativa (semieje negativo de las y).
I CUADRANTE II CUADRANTE III CUADRANTE IV CUADRANTE
Recomendación: Aprender a analizar el signo de las funciones trigonométricas en cada cuadrante
es mejor que estudiarlo de memoria.
RAZONES TRIGONOMÉTRICAS DE ÁNGULOS NOTABLES
En trigonometría, la palabra “notable” se utiliza para referirse a procesos o valores que están
bien definidos o muy comunes, y por ende, se reconocen y memorizan fácilmente.
26
En este sentido, los ángulos notables son aquellos que tienen valores que aparecen muy
seguido en la vida cotidiana.
Estos ángulos son los de 30°, 45°, 60° y 90°. Para los ángulos notables se puede encontrar
las razones trigonométricas sin conocer las medidas exactas de los triángulos que los contienen, ya
que ellos están contenidos en dos triángulos muy especiales e importantes en geometría, los
triángulos isósceles rectángulos y los triángulos equiláteros.
El triángulo equilátero que se requiere es aquel cuyos tres lados tienen una longitud de 1
unidad; además, cada uno de sus ángulos mide 60°.
Ya que se tiene el triángulo equilátero, de éste se formarán dos triángulos a partir de su altura.
Estos nuevos triángulos estarán compuestos por un ángulo de 30° y 60°. Finalmente, para obtener
el valor de una relación trigonométrica, ya sea para 30° o 60°, sólo hay que utilizar sus definiciones.
Para encontrar los valores de las funciones trigonométricas del ángulo notable de 45° se utiliza
un triángulo rectángulo isósceles. En dicho triángulo, se cumple que dos de sus lados tienen la
misma longitud. Además, como el triángulo es rectángulo, uno de los ángulos es de 90°, por lo quelos otros dos medirán 45°. Por conveniencia hay que asignar a la hipotenusa el valor de 1 unidad.
A continuación, se utiliza el teorema de Pitágoras para encontrar la longitud de sus catetos.
Finalmente, para obtener el valor de las funciones trigonométricas solo hay que utilizar sus
definiciones.
Luego se obtienen los siguientes valores para las razones trigonométricas de dichos ángulos:
α̂
(grados)
0° 30° 45° 60° 90° 135° 180° 225° 270° 360°
α̂
(radianes)
0 1
6
π
1
4
π
1
3
π
1
2
π
3
4
π
π 5
4
π
3
2
π
2π
sen α̂ 0 1
2
√2
2
√3
2
1 √2
2
0 −√2
2
−1 0
cos α̂ 1 √3
2
√2
2
1
2
0 −√2
2
-1 −√2
2
0 1
tg α̂ 0 √3
3
1 √3 No
definido
-1 0 1 No
definido
0
Seno, coseno y tangente de
30° 45° 60° | Sin calculadora
https://youtu.be/rQSuqLrhn7E
27
RESOLUCIÓN DE TRIÁNGULOS RECTÁNGULOS
Para hallar el valor de los lados y ángulos de un triángulo rectángulo se necesitan al menos
dos datos. Los conocimientos previos necesarios para resolverlos son:
a) Las definiciones de las tres razones trigonométricas: seno, coseno y tangente.
b) El Teorema de Pitágoras.
c) La relación entre los ángulos agudos de un triángulo rectángulo y los lados del triángulo.
A fin de organizar el estudio de este tema, se analizan 5 casos diferentes a partir de ejemplos,
donde lo importante es observar los datos que da el problema y la metodología de resolución:
☺ PRIMER CASO: DATOS: VALOR DE UN ÁNGULO AGUDO Y LA HIPOTENUSA
Por ejemplo: Si se desea calcular el otro ángulo agudo y los catetos:
Datos {
β̂ = 65°
a = 19,2 cm
Incógnitas {
Ĉ =?
b =?
c =?
Siempre conviene graficar la situación planteada.
Sabiendo que la suma de los ángulos interiores de un triángulo es 180°, se puede calcular por
diferencia el valor del ángulo desconocido: Ĉ = 180° − 90° − 65° = 25°
Por medio de las razones trigonométricas se pueden calcular los lados desconocidos del
triángulo:
Cálculo de b:
sen β̂ =
cateto opuesto
hipotenusa
sen 65° =
b
19,2
b = 19,2 ∙ sen 65° = 17,40110951 ≅ 17,40 cm
Cálculo de c:
cos β̂ =
cateto adyacente
hipotenusa
cos 65° =
c
19,2
c = 19,2 ∙ cos 65° = 8,114270625 ≅ 8,11 cm
Con el Teorema de Pitágoras puede verificar los resultados obtenidos.
28
Recomendación: Siempre vea como calcular las incógnitas a partir de los datos del problema,
evitando calcular las siguientes incógnitas a partir de los valores calculados en ejercicios
anteriores. Esto evitará que, si cometió un error en el primer cálculo, arrastre el error al resto del
ejercicio.
☺ SEGUNDO CASO: DATOS: VALOR DE UN ÁNGULO AGUDO Y SU CATETO OPUESTO
Datos {β̂ = 38°17′
b = 20 cm
Incógnitas {
Ĉ =?
a =?
c =?
Sabiendo que la suma de los ángulos interiores de un triángulo es 180°, se puede calcular por
diferencia el valor del ángulo desconocido: Ĉ = 180° − 90° − 38°17′ = 51°43′
Cálculo de a:
sen β̂ =
cateto opuesto
hipotenusa
sen 38°17′ =
20
a
a =
20
sen 38°17′
= 32,28145694 ≅ 32,28 cm
Cálculo de c:
tg β̂ =
cateto opuesto
cateto adyacente
tg 38°17′ =
20
c
c =
20
tg 38°17′
= 25,33954345 ≅ 25,34 cm
☺ TERCER CASO: DATOS: VALOR DE UN ÁNGULO AGUDO Y SU CATETO ADYACENTE
Datos {
β̂ = 43°29′
c = 13,2 cm
Incógnitas {
Ĉ =?
a =?
b =?
Sabiendo que la suma de los ángulos interiores de un triángulo es 180°, se puede calcular por
diferencia el valor del ángulo desconocido: Ĉ = 180° − 90° − 43°29′ = 46°31′
29
Cálculo de a:
cos β̂ =
cateto adyacente
hipotenusa
cos 43°29′ =
13,2
a
a =
13,2
cos 43°29′
= 18,19247871 ≅ 18,19 cm
Cálculo de b:
tg β̂ =
cateto opuesto
cateto adyacente
tg 43°29′ =
b
13,2
b = 13,2 ∙ tg 43°29′ = 12,51903677 ≅ 12,52 cm
☺ CUARTO CASO: DATOS: HIPOTENUSA Y UN CATETO
En este caso se debe saber que cuando se conoce el valor del seno, coseno o tangente de
un ángulo desconocido, se puede hallar el valor del ángulo mediante la función inversa del seno
(arcoseno), del coseno (arco coseno) o de la tangente (arcotangente).
Por ejemplo:
sen ̂ = 1 → ̂ = arcosen 1 = sen-1 = 90°
cos ̂ = 1 → ̂ = arcocos 1 = cos-1 = 0°
tg ̂ = 5 → ̂ = arcotag 5 = tag-1 = 78° 41’ 24”
Los ángulos se deben expresar en grados (°), minutos (‘) y segundos (“).
Con la calculadora se puede obtener pulsando la combinación de teclas: INV SEN (shift
sin), INV COS (shift cos), INV TAN (shift tan).
En el caso anterior, al sacar el valor de , la calculadora arroja el siguiente resultado:
= inv tg 5 =shift tan 5 = 78,69006752597978691352549456166, ahora aprieta la tecla ° ‘ ‘’ (grados minutos
y segundos) y obtiene el resultado para el ángulo delta.
30
Si no tuviera calculadora, para pasar un valor a grados, minutos y segundos debe proceder de la
siguiente manera:
78,69006752597978691352549456166 → tomo la parte entera como grados 78°
(78,69006752597978691352549456166 – 78) * 60 minutos = 41,404051558787214811529673699608 41’
(41,404051558787214811529673699608 – 41)*60 segundos=24,243093527232888691780421976502 24”
Ahora podemos continuar resolviendo el ejemplo planteado:
Datos {
a = 25
c = 12 cm
Incógnitas {
Ĉ =?
β̂ =?
b =?
Cálculo de β̂:
cos β̂ =
cateto adyacente
hipotenusa
cos β̂ =
12
25
β̂ = arcocoseno (
12
25
) = 61,31459799 = 61°18′52′′
Cálculo de Ĉ:
sen Ĉ =
cateto opuesto
hipotenusa
sen Ĉ =
12
25
Ĉ = arcoseno (
12
25
) = 28,68540201 = 28°41′7′′
Cálculo de b:
b2 + c2 = a2
b = √252 − 122 = 21,9317122 ≅ 21,93 cm
31
☺ QUINTO CASO: DATOS: LOS CATETOS
Datos {
b = 15
c = 12 cm
Incógnitas {
Ĉ =?
β̂ =?
a =?
Cálculo de β̂:
tg β̂ =
cateto opuesto
cateto adyacente
tg β̂ =
15
12
β̂ = arcotangente (
15
12
) = 51,34019175 = 51°20′24′′
Cálculo de Ĉ:
tg Ĉ =
cateto opuesto
cateto adyacente
tg Ĉ =
12
15
Ĉ = arcotangente (
12
15
) = 38,65980825 = 38°39′35′′
Cálculo de a:
b2 + c2 = a2
a = √152 + 122 = 19,20937271 ≅ 19,21 cm
ACTIVIDADES
24.- Dada la siguiente figura, calcular:
̂ =
sen ̂ =
cos ̂ =
tg α̂ =
Playlist de Razones
Trigonométricas y resolución de
triángulos rectángulos
https://www.youtube.com/playlist?list=PLeySRPnY35dEAIFYvOhtD2cztVuq15qw1
https://www.youtube.com/playlist?list=PLeySRPnY35dEAIFYvOhtD2cztVuq15qw1
https://www.youtube.com/playlist?list=PLeySRPnY35dEAIFYvOhtD2cztVuq15qw1
https://www.youtube.com/playlist?list=PLeySRPnY35dEAIFYvOhtD2cztVuq15qw1
32
25.- Determinar en cada caso el valor del ángulo correspondiente:
a) sen ̂ = 0,89475
b) cos ̂ = 0,78564
c) tg ̂ = 2,45476
d) cos ̂ = 0,6234
26.- Calcular:
a) sen 35° =
b) cos 120° 30’ 15” =
c) tg 122° 10’ 33” =
d) sen 46° 20’ 3” =
e) cos 76° 12’ 38” =
27.- Marcar la opción correcta:
a) La inversa del coseno es…
El arcoseno
El arcocoseno
La secante
b) La inversa de la tangente es…
La cotangente
La arcotangente
La tangente es la inversa de sí misma.
c) La cosecante es…
La inversa del seno
La recíproca del seno
La opuesta del coseno
33
d) El resultado de multiplicar el coseno por la secante de un mismo ángulo es…
0
1
No se puede saber
e) El resultado de multiplicar el seno por la secante de un mismo ángulo es…
0
1
No se puede saber
f) En la circunferencia trigonométrica el valor del seno se obtiene en el eje de:
Abscisas
Ordenadas
g) En la circunferencia trigonométrica el coseno se calcula sobre el:
Eje horizontal
Eje vertical
h) En el primer cuadrante…
El seno es positivo y el coseno negativo
El seno y el coseno son positivos
El seno es negativo y el coseno positivo
El seno y el coseno son negativosi) En el cuarto cuadrante…
La tangente es negativa
La tangente es positiva
34
28.- Dado el siguiente triángulo rectángulo, calcula la medida de los lados y ángulos desconocidos
en cada caso.
a) Si b = 6 cm y c = 11 cm.
b) Si b = 39 cm y B = 31°.
c) Si c = 8 cm y B = 50°.
d) Si a = 8 cm y C = 65°.
e) Si b = 7 cm y a = 12 cm.
f) Si b = 20 m y C = 37° 20’.
29.- Plantear y resolver los siguientes problemas. Graficar cuando sea posible.
a) ¿Cuál es el ángulo de elevación del sol cuando un mástil de 24 metros proyecta una sombra
de 16 metros?
b) ¿Cuál es la altura de una antena si a una distancia de 250 metros de su base tiene un
ángulo de elevación de 22°?
c) El perímetro de un triángulo isósceles es de 26 cm y su base mide 10 cm, ¿cuál es el valor
de sus ángulos interiores?
d) Con una escalera de 5,8 metros de largo necesitamos alcanzar una lámpara que se
encuentra en una pared a 4 metros de altura, ¿cuál es el ángulo de inclinación que le damos a la
escalera? ¿a qué distancia de la pared debemos colocar el pie de la escalera?
e) Un barrilete se encuentra a 40 metros de altura y su cuerda tiene una longitud de 80 metros,
¿cuál es el ángulo que forma la cuerda con el piso?
f) ¿Cuál es el área de un triángulo equilátero cuyos lados miden 2√3 cm?
g) Calcular la altura de una torre sabiendo que su sombra mide 18 metros cuando el sol forma
un ángulo de 65° con el suelo.
h) Se necesita instalar una torre de 50 metros de altura:
h.1) Calcular la longitud de la cuerda que une el extremo superior de la torre con el punto
de amarre (A) situado a 80 metros de la base.
h.2) Hallar el ángulo que forma la cuerda con la horizontal.
i) Una persona, cuya altura es de 1,80 metros; observa desde el punto A el extremo de
un edificio con un ángulo de 30°. Si avanza 30 metros en línea recta hacia la base del edificio,
observa el mismo extremo con un ángulo de 50°. ¿Qué altura tiene el edificio? ¿Cuál es la distancia
desde la medición del último ángulo hasta la base del edificio?
35
j) ¿Habrán utilizado la plomada los albañiles que levantaron esta
pared de 1,80 metros de altura? Observa los datos del dibujo y las
medidas que tomaron luego de construirla.
k) Una escalera se apoya en una pared tiene un pie a 2,75 metros de esta. Si alcanza a una
ventana que está a 5,30 metros del suelo, ¿qué ángulo determina la escalera con el suelo? ¿cuánto
mide la escalera?
l) Calcular el ángulo agudo de un triángulo rectángulo entre el lado adyacente de longitud a y
su hipotenusa de longitud igual a 5/3 de a. Hallar la longitud del lado que falta.
ll) Dado un triángulo cuyos lados tienen las siguientes longitudes: 3 m, 4 m y 5 m,
respectivamente; hallar los ángulos de este.
Para realizar este tipo de ejercicio se debe repasar el Teorema del Seno y del Coseno:
TEOREMA DEL SENO Y DEL COSENO
En trigonometría, el teorema de los senos o también llamado Ley de los senos, es una
relación de proporcionalidad entre las longitudes de los lados de un triángulo y los senos de sus
respectivos ángulos opuestos. Usualmente se presenta de la siguiente forma:
36
Teorema del coseno: El cuadrado de un lado de un triángulo es igual a la suma de los
cuadrados de los otros dos lados, menos el doble producto de dichos lados por el coseno del ángulo
que forman:
a2 = b2 + c2 − 2bc ∙ cos α
b2 = a2 + c2 − 2ac ∙ cos β
c2 = a2 + b2 − 2ab ∙ cos γ
m) Una valla cuyo perímetro tiene forma triangular mide 20 metros en su lado mayor, 6 metros
en otro y 60° en el ángulo que forman entre ambos. Calcula cuánto mide el perímetro de la valla.
4.- IDENTIDADES TRIGONOMÉTRICAS
Las identidades trigonométricas son igualdades entre expresiones que contienen funciones
trigonométricas y esta igualdad es válida o verdadera para todos los valores del ángulo en los que
están definidas las funciones (y las operaciones aritméticas involucradas).
A partir de las siguientes relaciones básicas entre las funciones trigonométricas de un ángulo,
se pueden comprobar distintas Identidades Trigonométricas:
cosec ̂ =
1
sen ̂
sec ̂ =
1
cos ̂
tg ̂ =
sen ̂
cos ̂
cotg ̂ =
1
tg ̂
=
cos ̂
sen ̂
Para resolver una identidad se desarrolla uno o ambos miembros de la igualdad, SIN
PASAR TÉRMINOS O FACTORES DE UN MIEMBRO AL OTRO DE LA IGUALDAD, tratando de
expresar todo en términos de las funciones seno y coseno.
37
Por ejemplo: Si b y c son los catetos de un triángulo rectángulo y a es su hipotenusa:
sen β̂ =
b
a
⇒ b = a ∙ sen β̂
cos β̂ =
c
a
⇒ c = a ∙ cos β̂
Considerando el Teorema de Pitágoras:
b2 + c2 = a2
(a ∙ sen β̂)2 + (a ∙ cos β̂)2 = a2
(a ∙ sen β̂)2 + (a ∙ cos β̂)2 = a2
a2 ∙ (sen β̂)2 + a2 ∙ (cos β̂)2 = a2
Se dividen todos los términos por a2:
a2
a2
∙ (sen β̂)2 +
a2
a2
∙ (cos β̂)2 =
a2
a2
sen2 β̂ + cos2 β̂ = 1 esta relación se llama Relación Pitagórica o Relación Fundamental de
la Trigonometría.
De ella se deducen las siguientes relaciones:
sen2̂+ cos2̂ = 1
sen ̂ = √1 − cos2̂
cos ̂ = √1 − sen2̂
Veamos otra identidad trigonométrica: Si se quiere comprobar la siguiente identidad:
sen ̂ . sec ̂ = tg ̂ → primero hay que expresarla en términos de seno y coseno
sen ̂ .
1
cos ̂
=
sen ̂
cos ̂
→ Luego se observa que:
sen ̂
cos ̂
=
sen ̂
cos ̂
→ Se comprueba la identidad trigonométrica
Identidades Trigonométricas |
Introducción
Identidades Trigonométricas:
Identidades recíprocas
Playlist de Identidades
Trigonométricas
https://youtu.be/PbvKVSWyvpI?list=PLeySRPnY35dHK3mo8UWd3zAnYCG13OgAR
https://youtu.be/3FjBlgSSlok?list=PLeySRPnY35dHK3mo8UWd3zAnYCG13OgAR
https://www.youtube.com/playlist?list=PLeySRPnY35dHK3mo8UWd3zAnYCG13OgAR
https://youtu.be/PbvKVSWyvpI?list=PLeySRPnY35dHK3mo8UWd3zAnYCG13OgAR
https://youtu.be/3FjBlgSSlok?list=PLeySRPnY35dHK3mo8UWd3zAnYCG13OgAR
https://www.youtube.com/playlist?list=PLeySRPnY35dHK3mo8UWd3zAnYCG13OgAR
https://youtu.be/PbvKVSWyvpI?list=PLeySRPnY35dHK3mo8UWd3zAnYCG13OgAR
https://youtu.be/3FjBlgSSlok?list=PLeySRPnY35dHK3mo8UWd3zAnYCG13OgAR
https://www.youtube.com/playlist?list=PLeySRPnY35dHK3mo8UWd3zAnYCG13OgAR
38
ACTIVIDADES
30.- Comprobar las siguientes identidades trigonométricas:
a) cos ̂ . tg ̂ = sen ̂
b) cos ̂ . cosec ̂ . tg ̂ = 1
c) sec2 ̂ ∙ (cosec2 ̂ − 1) = cosec2 ̂
d) sec2̂ = 1 + tg2̂
e) 1 + cotg2 ̂ = cosec2 ̂
f) cosec2̂ . (1 – cos2 ̂) = 1
g) tg2 ̂ . cosec2 ̂. cotg2̂ . sen2̂ = 1
h) tg ̂ . sen ̂ + cos ̂ = sec ̂
i) cosec ̂ = cotg ̂ . cos ̂ + sen ̂
j) (tg ̂ + cotg ̂) . sen ̂ . cos ̂ = 1
k) tg2 ̂ = sen2̂ . (1 + tg2̂)
l) (1 + tg ̂) . ( 1 – tg ̂) + sec2̂ = 2
m) tg ̂ + cotg ̂ = sec ̂ . cosec ̂
n) tg ̂ . cotg ̂ +
1
cotg2 ̂
= sec2 ̂
ñ) (1 – cos2̂) . (1 + tg2̂) . cotg ̂ = tg ̂
5.- ECUACIONES TRIGONOMÉTRICAS
Las ecuaciones trigonométricas relacionan funciones trigonométricas de un ángulo y números.
Resolver dichas ecuaciones es encontrar la amplitud de un ángulo que haga cumplir la ecuación
planteada.
Para resolverlas se hacen transformaciones necesarias para trabajar con una sola función
trigonométrica, para ello se utilizan las identidades trigonométricas fundamentales. Por ejemplo: Si
se quiere resolver la siguiente ecuación:
2 . cos x = 1 → se requiere determinar el valor del ángulo x.
cos x = ½
x = arcocoseno ½ → x=60°
ACTIVIDADES
31.- Resolver las siguientes ecuaciones:
a) 4 tg2̂ − 1 = 0
b) sec ̂ = 4
c) cos ̂ = −0,5
d) tg ̂ = −1
e) tg ̂ = −3
f) 4 sen ̂ = 1
g) sen ̂ =
√2
2
h) cosec ̂ = 1
i) cosec ̂ = −3
j) cotg ̂ = −2
39
TEMA N° 3: PERÍMETRO Y SUPERFICIE DE POLÍGONOS REGULARES
1.- POLÍGONOSUn polígono es la región del plano limitada por tres o más segmentos. Es una figura
geométrica formada por segmentos consecutivos no alineados, llamados lados.
ELEMENTOS DE UN POLÍGONO
✓ LADOS: Son los segmentos que lo limitan.
✓ VÉRTICES: Son los puntos donde concurren dos lados.
✓ ÁNGULOS INTERIORES: Son los determinados por dos lados consecutivos. La suma de los
ángulos interiores de un polígono es igual a [(𝑛 − 2) · 180°], donde n es el número de lados.
✓ DIAGONAL: Son los segmentos que determinan dos vértices no consecutivos. El número de
diagonales de un polígono es: [𝑛 · (𝑛 − 3) ∶ 2], siendo n igual al número de lados. Por
ejemplo: En un cuadrado: [4 · (4 − 3) ∶ 2] = 2 𝑑𝑖𝑎𝑔𝑜𝑛𝑎𝑙𝑒𝑠
2.- CLASES DE POLÍGONOS
POLÍGONOS REGULARES: Es el que tiene sus ángulos y lados iguales.
Los vértices de un polígono regular están circunscritos en una circunferencia
ELEMENTOS DE UN POLÍGONO REGULAR
✓ Centro: Punto interior que equidista de cada vértice
✓ Radio: Es el segmento que va del centro a cada vértice.
✓ Apotema: Distancia del centro al punto medio de un lado.
✓ Ángulo central: Formado por 2 radios consecutivos. Si n es el número de lados de un
polígono: Ángulo central = 360°: n. Por ejemplo: El ángulo central del pentágono regular es
igual a 360°:5 = 72º
✓ Ángulo interior: Formado por 2 lados consecutivos. Ángulo interior = 180° − Ángulo central.
Por ejemplo: El ángulo interior del pentágono regular = 180° − 72º = 108º
✓ Ángulo exterior: Es el formado por un lado y la prolongación de un lado
consecutivo. Ángulo exterior del pentágono regular = 72º. Los ángulos
exteriores e interiores son suplementarios, es decir, que suman 180º.
40
✓ Contorno del polígono: Es la línea poligonal que lo limita.
✓ Lados del polígono: Segmentos rectilíneos que forman el contorno.
✓ Vértices del polígono: Puntos donde se unen dos lados consecutivos del polígono.
✓ Diagonal del polígono: Segmento que une dos vértices que no son consecutivos.
CLASIFICACIÓN DE LOS POLÍGONOS REGULARES
POLÍGONOS IRREGULARES: Son aquellos polígonos cuyos lados no son de igual longitud
y/o sus vértices no están contenidos en una circunferencia. De acuerdo con el número de sus
lados, se denominan:
3.- PERÍMETROS Y ÁREAS DE LOS POLÍGONOS REGULARES
El perímetro se obtiene sumando las longitudes de sus
lados. En los polígonos regulares se obtiene multiplicando el
número de lados por la longitud de uno de ellos. P = n • l
La superficie o área se calcula dividiéndolo en triángulos,
los que se obtienen uniendo el centro con cada uno de los
vértices.
41
La altura de cada uno de los triángulos coincide con la
apotema del polígono. Se calcula el área de uno de estos
triángulos y se multiplica por el número de triángulos que se han
formado.
El área de un polígono regular es igual al producto de su
perímetro por su apotema dividido entre dos. Esta fórmula permite calcular la apotema de cualquier
polígono regular.
4.- RESUMEN DE ELEMENTOS Y FÓRMULAS DE PERÍMETRO Y ÁREA
42
ACTIVIDADES
32.- Determinar el lado de un triángulo equilátero cuyo perímetro es igual al de un
cuadrado de 12 cm de lado. ¿Serán iguales sus áreas?
33.- Calcular el área de un triángulo equilátero inscrito en una circunferencia de radio 6 cm.
34.- Determinar el área del cuadrado inscrito en una circunferencia de longitud 18,84 m.
35.- El área de un cuadrado es 2304 cm2. Calcular el área del hexágono regular que tiene su mismo
perímetro.
36.- Calcula el área sombreada, sabiendo que el lado del cuadrado es 6 cm y el
radio del círculo mide 3 cm. Recuerda la fórmula del área del círculo que es
igual a 𝛑 ∙ 𝐫𝟐, siendo r la medida del radio.
TEMA N° 4: FÓRMULAS DE VOLUMEN DE ALGUNOS CUERPOS GEOMÉTRICOS
VOLUMEN: Es la medida del espacio que ocupa un cuerpo. La medida universal del volumen
es el metro cúbico (m3), existiendo los múltiplos y submúltiplos de esta medida.
CAPACIDAD: Es la medida del volumen que puede contener un cuerpo.
Como en general estas medidas son iguales, se suele calcular la capacidad mediante la
fórmula del volumen.
GENERATRIZ DEL CILINDRO: El cilindro es un cuerpo de revolución generado por un
rectángulo al girar en torno a uno de sus lados. La generatriz es la altura del cilindro y el lado
opuesto. Por tanto, la altura del cilindro será igual a la generatriz: h = g; donde h es la altura
y g es la generatriz
GENERATRIZ DEL CONO: El cono es un cuerpo de revolución generado por un triángulo
rectángulo al girar en torno a uno de sus catetos, la altura del cono y la hipotenusa será la
generatriz. Por el teorema de Pitágoras la generatriz del cono será igual a: g2 = h2 + r2
Donde: g = generatriz, h = altura, r = radio
43
ACTIVIDADES
37.- Calcula el volumen, en centímetros cúbicos, de una habitación que tiene 5 m de largo, 40 dm
de ancho y 2500 mm de alto.
38.- Una piscina tiene 8 m de largo; 6 m de ancho y 1,5 m de profundidad. Se pinta la piscina a
razón de $600 el metro cuadrado. ¿Cuánto costará pintarla? ¿Cuántos litros de agua serán
necesarios para llenarla?
44
39.- Hallar la diagonal, el perímetro y el área del cuadrado:
40.- Hallar la diagonal, el perímetro y el área del rectángulo:
41.- Hallar el perímetro y el área del trapecio rectángulo:
42.- Hallar el perímetro y el área del trapecio isósceles:
43.- Hallar el perímetro y el área del triángulo equilátero:
44.- Hallar el perímetro y el área del pentágono regular:
45.- Hallar el área de un cuadrado inscrito en una circunferencia de 5 cm de radio.
45
46.- Nota: Este ejercicio fue evaluado en el 3° EXAMEN FINAL del Ingreso 2022. NO UTILICE
CALCULADORA PARA SU RESOLUCIÓN.
En la siguiente figura el radio ( r ) es igual a 1 metro. Calcular el área sombreada sabiendo que h es
igual a 6 veces el radio. Expresar el resultado en decímetros cuadrados.
Dato que puede requerir: 𝝅 ≅ 𝟑, 𝟏𝟒
47.- Nota: Este ejercicio fue evaluado en el 2° EXAMEN FINAL del Ingreso 2022. NO UTILICE
CALCULADORA PARA SU RESOLUCIÓN.
Analizar y resolver. En caso de ser necesario, aproximar por redondeo sólo el resultado final.
Una empresa constructora de caminos ha ganado una licitación para la construcción de una ruta
que tiene una orientación Oeste – Este.
Esta ruta atraviesa una montaña de 2500 metros de altura, por lo que se debe construir un túnel a
través de ella, al cual se ingresará por el lado Oeste y se saldrá por el Este.
Usted como Jefe de Operaciones debe calcular la longitud de dicho túnel sabiendo que la montaña
presenta un ángulo de inclinación entre su base y su lado Oeste (ladera de entrada al túnel) de
63° 26’ 6’’; mientras que el ángulo de inclinación entre la base de la montaña y su lado Este (ladera
de salida del túnel) es de 68° 11’ 55’’.
a) Hacer un esquema de la situación e identificar en él los datos del problema.
Gráfico
46
b) Calcular en kilómetros la longitud del túnel a construir
Datos que puede requerir para la resolución:
𝒔𝒆𝒏 𝟔𝟑° 𝟐𝟔′ 𝟔′′ = 𝟎, 𝟖𝟗𝟒𝟒 𝐜𝐨𝐬 𝟔𝟑° 𝟐𝟔′ 𝟔′′ = 𝟎, 𝟒𝟒𝟕𝟐 𝐭𝐚𝐧 𝟔𝟑° 𝟐𝟔′ 𝟔′′ = 𝟐, 𝟎𝟎𝟎𝟎
𝒔𝒆𝒏 𝟒𝟖° 𝟐𝟏′ 𝟓𝟗′′ = 𝟎, 𝟕𝟒𝟕𝟒 𝐜𝐨𝐬 𝟒𝟖° 𝟐𝟏′ 𝟓𝟗′′ = 𝟎, 𝟔𝟔𝟒𝟑 𝐭𝐚𝐧 𝟒𝟖° 𝟐𝟏′ 𝟓𝟗′′ = 𝟏, 𝟏𝟐𝟒𝟗
𝒔𝒆𝒏 𝟔𝟖° 𝟏𝟏′ 𝟓𝟓′′ = 𝟎, 𝟗𝟐𝟖𝟒 𝐜𝐨𝐬 𝟔𝟖° 𝟏𝟏′ 𝟓𝟓′′ = 𝟎, 𝟑𝟕𝟏𝟑 𝐭𝐚𝐧 𝟔𝟖° 𝟏𝟏′ 𝟓𝟓′′ = 𝟐, 𝟓𝟎𝟎𝟎
Respuesta
47
Baeza, Á., Fehrman, P., Rodríguez, C., Molina, R., Norambuena, A., Venegas, S. y Villena, M. (2014).
Aritmética y Álgebra. Manual esencial. Santillana, Tomo I.
Baldor, Aurelio (1980). Álgebra. Madrid, España, Cultural Centroamericana SA.
Berruti, Pedro (1969). “Manual de ingreso en primeraño: Matemáticas y Castellano”, 46° edición, Buenos
Aires, Argentina, Editorial Escolar, Volumen I, 235 páginas.
Cabrera, Mauricio y Valdés, Katherina (2013). Guía de Aprendizaje N° 2: Razones y Proporciones, primer
nivel o ciclo de educación media para personas Jóvenes y Adultas, Ministerio de Educación, Gobierno de
chile.
Centro para la Innovación y Desarrollo de la Educación a Distancia. Matemáticas. 23/07/2020
https://www.matematicasonline.es/cidead/2esomatematicas/
Chorny, F., Krimker, G. y Salpeter, C. (2005). Pitágoras 8 Matemática, Proyecto Mundo para todos,
Argentina, SM.
Corrías, Celina, Gei, Carina, Herrera, Héctor, Julián, Francisca y Rodríguez, María Cecilia (2019). Módulo
de Matemática – Guía de estudio Ingreso 2019 – Parte I y II. Facultad de Ciencias Económicas,
Universidad Nacional de Cuyo, Mendoza, Argentina.
Greco de Laugero, Cecilia, Guevara Molina, Silvia y Zaragoza de Cueto, Liliana (1993). Haciendo…
Aprendemos. Facultad de Filosofía y Letras, Universidad Nacional de Cuyo, Mendoza, Argentina, Editorial
Ex Libris Cooperativa de Trabajo Limitada.
Martinez, Miguel y Rodriguez, Margarita (2005). Matemática. Chile, Mc Graw Hill.
Nuñez, Pamela y Ramírez, Manuel (2009). Apuntes de preparación para la prueba de selección
universitaria. Matemática. Facultad de Ciencias Exactas, Universidad de Chile, Santiago, Chile.
Seveso de Larotonda, J., Wykowski, A., Ferrarini, G., Matemática 8 EGB 1er Año, Serie Vértices, Kapelusz.
Videos recuperados de:
Matemáticas Profe Alex: https://www.youtube.com/channel/UCanMxWvOoiwtjLYm08Bo8QQ
Matemáticas con Grajeda: https://www.youtube.com/channel/UCX-9il8XGlV6kkrIVyTdWQQ
JulioProfe: https://www.youtube.com/channel/UCIkCzk3ezlAxX5r2OFlHLaQ
Tuto mate: https://www.youtube.com/channel/UC4w7epYKiuMvFuBBpTh97IA
Educatina: https://www.youtube.com/channel/UCvYgy9xNtl7jeJAdzppgK8g
Gominol Tree Matemáticas: https://www.youtube.com/channel/UCKyv3xEV-pK9BnKPAwxyE5g
Portaleducativo.net https://portaleducativo.net/
https://www.youtube.com/channel/UCanMxWvOoiwtjLYm08Bo8QQ
https://www.youtube.com/channel/UCX-9il8XGlV6kkrIVyTdWQQ
https://www.youtube.com/channel/UCIkCzk3ezlAxX5r2OFlHLaQ
https://www.youtube.com/channel/UC4w7epYKiuMvFuBBpTh97IA
https://www.youtube.com/channel/UCvYgy9xNtl7jeJAdzppgK8g
https://www.youtube.com/channel/UCKyv3xEV-pK9BnKPAwxyE5g
https://portaleducativo.net/
48
Última fecha de acceso: 09/10/2022.