Logo Passei Direto
Buscar
Determine as potências indicadas usando o Teorema de De Moivre (a) (1 + ????)20 (b) (2√3 + 2????)5
(a) (1 + ????)20
(b) (2√3 + 2????)5
A forma polar do número complexo ???? = 1 + ???? é ???? = √2(cos ????/4 + ????sen ????/4), encontrada no Exercício 12
Pelo Teorema de De Moivre temos: (1 + ????)20 = (√2)20(cos 20????/4 + ????sen20????/4) = 2^20/2 (cos 5???? + ????sen 5????) = 210(cos(5???? − 4????) + ????sen (5???? − 4????)) = 210(cos ???? + ????sen ????) = 210(−1 + ????. 0) = −210
A forma polar do número complexo ???? = 2√3 + 2???? é ???? = 4 [cos ????/6 + ????sen ????/6], encontrada no Exercício 7
(2√3 + 2????)5 = 45 [cos 5????/6 + ????sen 5????/6] = 45 [cos 5????/6 + ????sen 5????/6] = 45 [−√3/2 + 1/2????] = −45√3/2 + 45/2????
Sabemos que se ???? = ???? + ???????? então ???????? = ????????+???????? = ????????(cos???? + ????sen ????)
????1+2???? = ????1. ????2???? = ????(cos 2 + ????sen 2) = ???? cos 2 + ???? ???? sen 2
User badge image
Questões para o Sucesso

há 2 anos

Respostas

User badge image

Ed Verified user icon

há 2 anos

Para resolver as potências indicadas usando o Teorema de De Moivre, precisamos primeiro encontrar a forma polar dos números complexos dados. (a) A forma polar do número complexo ???? = 1 + ???? é ???? = √2(cos ????/4 + ????sen ????/4), encontrada no Exercício 12. (b) A forma polar do número complexo ???? = 2√3 + 2???? é ???? = 4 [cos ????/6 + ????sen ????/6], encontrada no Exercício 7. Agora, podemos usar o Teorema de De Moivre para encontrar as potências indicadas: (a) (1 + ???? )^20 = (√2)^20(cos 20????/4 + ????sen 20????/4) = 2^10(cos 5???? + ????sen 5????) = 1024(cos 5???? + ????sen 5????) = 1024(cos(5???? - 4????) + ????sen(5???? - 4????)) = 1024(cos ???? + ????sen ????). (b) (2√3 + 2????)^5 = 4^5 [cos 5????/6 + ????sen 5????/6] = 1024(cos 5????/6 + ????sen 5????/6) = 1024(-√3/2 + 1/2????) = -1024√3/2 + 512????. Espero ter ajudado!

Essa resposta te ajudou?

0
Dislike0
left-side-bubbles-backgroundright-side-bubbles-background

Crie sua conta grátis para liberar essa resposta. 🤩

Já tem uma conta?

Ao continuar, você aceita os Termos de Uso e Política de Privacidade

Ainda com dúvidas?

Envie uma pergunta e tenha sua dúvida de estudo respondida!

Essa pergunta também está no material:

Mais perguntas desse material

Determine ???? ∈ ℝ de modo que ???? = 2+????3−???????? seja imaginário puro.

Quais os possíveis valores reais de ???? e ???? que satisfazem a igualdade (???? + ????????)2 = 8?????

Dado o número complexo ???? = 2√3 + 2????, transforme ???? para a forma polar e determine os dois menores valores naturais de ????, para os quais ???????? é imaginário puro.


If z = 1 + i√3, zw̅ = 1. Find the argument α ∈ [0,2????) of zw.

The complex number w is calculated as w = 1/4 + (√3/4)i.
The complex number zw is equal to (-1/2 + √3/2i).
The modulus of zw is equal to 1.
The argument of z is equal to π/3.

Escreva os seguintes números complexos na forma polar:
(a) 4√3 + 4????
(b) −13+√33????
(c) −????
[object Object]
[object Object]
[object Object]

Resolva as equações, considerando ???? ∈ ℂ:
(a) ????4 = 4√3 + 4????
(b) ????3 = 1 + ????
(c) ????5 = −????
(d) ????2 = −5 − 12????
[object Object]
[object Object]
[object Object]
[object Object]

Encontre as raízes complexas cúbicas de ???? = 4√3 + 4???? e as raízes complexas quintas de ???? = 0 − ????.
a) Raízes complexas cúbicas de ???? = 4√3 + 4????
b) Raízes complexas quintas de ???? = 1 + ????
c) Raízes complexas quintas de ???? = 0 − ????
I- A forma polar do número complexo ???? = 4√3 + 4???? é 8(cos(π/6) + i.sen(π/6)).
II- As raízes complexas cúbicas de ???? = 4√3 + 4???? são √8/2(cos(π/24) + i.sen(π/24)), √8/2(cos(13π/24) + i.sen(13π/24)) e √8/2(cos(25π/24) + i.sen(25π/24)).
III- A forma polar do número complexo ???? = 1 + ???? é √2(cos(π/4) + i.sen(π/4)).
IV- As raízes complexas quintas de ???? = 1 + ???? são √2/6(cos(π/20) + i.sen(π/20)), √2/6(cos(9π/20) + i.sen(9π/20)) e √2/6(cos(17π/20) + i.sen(17π/20)).
V- A forma polar do número complexo ???? = 0 − ???? é 1(cos(3π/2) + i.sen(3π/2)).
VI- As raízes complexas quintas de ???? = 0 − ???? são cos(π/2) + i.sen(π/2) e √2/2(cos(7π/10) + i.sen(7π/10)), cos(11π/10) + i.sen(11π/10) e -i.
a) I e II estão corretas.
b) III e IV estão corretas.
c) V e VI estão corretas.
d) Todas as afirmativas estão corretas.
e) Todas as afirmativas estão incorretas.

Mais conteúdos dessa disciplina