Logo Passei Direto
Buscar
6. Mackenzie-SP Para que a equação kx2 + x + 1 = 0, com k inteiro e diferente de zero, admita uma raiz inteira, deveremos ter k igual a:

a) –4
b) 2
c) 4
d) –2
e) 8
User badge image
Matematicamente

há 2 anos

Respostas

User badge image

Ed Verified user icon

há 2 anos

Para que a equação kx² + x + 1 = 0 admita uma raiz inteira, o discriminante da equação deve ser um quadrado perfeito. O discriminante é dado por Δ = 1 - 4k. Assim, Δ deve ser um quadrado perfeito. Como Δ = 1 - 4k, temos que 1 - 4k = m², onde m é um número inteiro. Isolando k, temos: k = (1 - m²)/4. Portanto, para que k seja um número inteiro, (1 - m²) deve ser divisível por 4. As únicas opções que satisfazem essa condição são a) –4 e d) –2. Assim, a resposta correta é a letra d) –2.

Essa resposta te ajudou?

0
Dislike0
left-side-bubbles-backgroundright-side-bubbles-background

Crie sua conta grátis para liberar essa resposta. 🤩

Já tem uma conta?

Ao continuar, você aceita os Termos de Uso e Política de Privacidade

Ainda com dúvidas?

Envie uma pergunta e tenha sua dúvida de estudo respondida!

Essa pergunta também está no material:

Mais perguntas desse material

3. UFPB A metade do número 221 + 412 é:

O enunciado apresenta uma pergunta clara e objetiva.
a) 220 + 223
b) 221/2 + 46
c) 212 + 421
d) 220 + 46
e) 222 + 413

9. U.E. Maringá-PR Com relação aos números reais, é correto afirmar que:

O enunciado apresenta uma pergunta clara e objetiva.
Somente a soma das alternativas corretas é a resposta.

12. Fatec-SP Se o número real x é tal que x = a + 1, então a3 + 1 é igual a:

O enunciado apresenta uma pergunta clara e objetiva.
O enunciado apresenta a expressão matemática de forma clara e objetiva.
a) x3 – 3x
b) x3 – 2x
c) x3 – x
d) x3 + x
e) x3

13. UFMT Julgue as sentenças abaixo. ( ) 10 > 323 ( ) Se a, b ∈ |R∗+ , a/b + b/a = 1 ( ) {x ∈ |R | x2 4+ = x – 4} = ∅

O enunciado apresenta uma pergunta clara e objetiva.
O enunciado apresenta as sentenças de forma clara e objetiva.

14. UEMS A navegação da sentença ∀x, x + a ≠ b é:

O enunciado apresenta uma pergunta clara e objetiva.
O enunciado apresenta a sentença de forma clara e objetiva.
a) ∃x, x + a ≠ b
b) ∃x, x + a = b
c) ∀x, x + a = b
d) ∃x, x – a ≠ b
e) ∀x, x – a ≠ b

Mais conteúdos dessa disciplina