Logo Passei Direto
Buscar
AS E HIPERTROFIA MUSCULAR

4.1) INTRODUÇÃO

Os lipídios constituem um conjunto heterogêneo de substâncias orgânicas insolúveis em água e solúveis em solventes orgânicos (clorofórmio, éter, acetona). São moléculas orgânicas formadas por carbono, hidrogênio e oxigênio, mas também podem conter fósforo, nitrogênio e enxofre. O grupo dos lipídios é representado principalmente pelos triacilgliceróis, pelos fosfolipídios e pelo colesterol. Os lipídios constituem cerca de 34% das calorias da dieta dos seres humanos e estão presentes na dieta na forma de óleos (líquidos) e gorduras (sólidos), sendo que cada grama contém cerca de 9 kcal.

Os lipídios têm diversas funções no organismo. Os triacilgliceróis são uma importante reserva de energia para nosso corpo, sendo armazenados nas células de gordura (adipócitos) e também são a principal fonte de lipídio da dieta humana (cerca de 90%). Triacilgliceróis são moléculas formadas por uma molécula de glicerol ligada a três moléculas de ácidos graxos, que podem ser saturados ou insaturados. Os fosfolipídios são os principais constituintes das membranas celulares. O colesterol é um lipídio que também faz parte da membrana das células, sendo responsável pela fluidez da membrana. O colesterol também é um precursor da vitamina D e dos hormônios esteroides (testosterona, estrogênio, cortisol), além de ser constituinte da bile.

A dieta de um fisiculturista contém geralmente cerca de 20-30% de calorias provenientes de lipídios, na forma de gorduras saturadas, monoinsaturadas e poli-insaturadas (ômega 6 e ômega 3). Diferente das proteínas e carboidratos, a quantidade de lipídios não costuma variar muito entre as fases off season e pré-contest. No entanto, alguns fisiculturistas consomem quantidades maiores de gordura, principalmente na fase de pré-contest. É o caso de adeptos de dieta cetogênica e metabólica, onde as calorias de gordura podem chegar a 50-70% do valor energético total.

4.2) CLASSIFICAÇÃO DAS GORDURAS

Os lipídios podem ser divididos em três grandes grupos: lipídios simples, lipídios compostos e lipídios derivados. O grupo dos lipídios simples é formado pelos ácidos graxos e os triacilgliceróis (gordura). O grupo dos lipídios compostos inclui principalmente os fosfolipídios e as lipoproteínas (LDL, HDL), responsáveis pelo transporte do colesterol na corrente sanguínea. O principal representante do grupo dos lipídios derivados é o colesterol, um esteroide encontrado apenas em alimentos de origem animal, precursor dos ácidos biliares, da vitamina D e dos hormônios esteroides, e também um constituinte da membrana celular.

Figura 4.1. O triacilglicerol é uma molécula formada por um glicerol (álcool) ligado a 3 ácidos graxos. Essa é a forma que a gordura é armazenada nas nossas células de gordura (adipócitos).

Nesse livro vou falar apenas dos lipídios simples, que representam a quase totalidade dos lipídios que ingerimos. Os triacilgliceróis (TG) são os principais representantes dessa classe, os mais abundantes dos lipídios na dieta e no corpo humano. Triacilgliceróis são moléculas formadas por um glicerol (um álcool), ligado a três moléculas de ácidos graxos. Ácidos graxos são cadeias de carbono ligadas a átomos de hidrogênio com um grupo carboxila (COOH) em uma extremidade e um grupo metil (CH3) na outra extremidade. A cadeia carbônica dos ácidos graxos pode ter de 2 a 26 carbonos. A cadeia de carbonos dos ácidos graxos também pode apresentar duplas ligações entre alguns átomos de carbono.

4.2.1) GORDURA SATURADA

Quando não apresenta nenhuma dupla ligação o ácido graxo é considerado saturado e quando apresenta duplas ligações é chamado de insaturado. Os ácidos graxos saturados são encontrados principalmente nos produtos de origem animal, como carnes, ovos e laticínios. A gordura saturada tem sido alvo de intenso debate nos últimos anos acerca da sua possível associação ao aumento de risco cardiovascular. Apesar das divergências entre os estudos, muitos pesquisadores concordam que a gordura saturada pode não ser tão responsável pelo aumento do risco cardiovascular quando comparada com os carboidratos refinados. No entanto, as evidências têm mostrado que substituir gordura saturada por poli-insaturada (ômega 6 e ômega 3) diminui o risco cardiovascular. As diretrizes dos órgãos e organizações de saúde recomendam que a gordura saturada não seja superior a 10% do total de calorias da dieta.

4.2.2) GORDURA MONOINSATURADA

Os ácidos graxos monoinsaturados (MUFA) possuem uma dupla ligação e podem ser sintetizados pelo nosso organismo, sendo o mais conhecido o ácido oleico (ômega 9). A gordura monoinsaturada está presente em uma grande variedade de alimentos, de fontes animais e vegetais, mas os alimentos mais abundantes em ácidos graxos monoinsaturados são o azeite de oliva, o abacate e as oleaginosas (nozes e castanhas). Os ácidos graxos monoinsaturados mostraram importantes benefícios metabólicos em alguns estudos, como melhora da sensibilidade à insulina e redução da pressão arterial. Além disso, o mais significativo é uma melhora do perfil lipídico quando se substitui ácidos graxos saturados por MUFA, com redução dos níveis de LDL. Dietas ricas em MUFA, como a dieta mediterrânea, podem ainda aumentar os níveis de HDL e reduzir os triglicerídeos.

4.2.3) GORDURA POLI-INSATURADA

Os ácidos graxos poli-insaturados (PUFA) possuem mais de uma dupla ligação na cadeia carbônica e a posição da primeira dupla ligação em relação ao grupo metil determina o tipo de ácido graxo poli-insaturado. Ácidos graxos ômega 3 (ácido alfa-linolênico) possuem a primeira dupla ligação no terceiro carbono depois do grupo metil, enquanto os ácidos graxos ômega 6 (ácido linoleico) possuem a primeira dupla ligação no sexto carbono depois do grupo metil. Os ácidos graxos ômega 3 e ômega 6 não podem ser sintetizados pelo nosso organismo e por esse motivo são chamados de “ácidos graxos essenciais”, pois devem ser obtidos pela alimentação.

O ácido graxo linoleico (ômega 6) está presente em diversos alimentos, principalmente nos óleos de origem vegetal (soja, canola, girassol e milho) e nas oleaginosas. O ácido graxo alfa-linolênico (ômega 3) está presente em alguns alimentos de origem vegetal, como óleo de canola, óleo de soja, chia e linhaça. O ácido alfa-linolênico também é precursor de outros ácidos graxos essenciais do tipo ômega 3, que desempenham importantes funções fisiológicas no nosso organismo, como é o caso do ácido eicosapentaenoico (EPA, C 20:5 ω3) e do ácido docosaexaenoico (DHA, C 22:6 ω3), presentes principalmente em peixes de água fria (salmão, cavala, sardinha e atum).

Como os ácidos graxos n-6 são precursores de eicosanoides pró-inflamatórios, sugere-se que maiores ingestões sejam prejudiciais, e a relação (4:1) de ácidos graxos n-6 a n-3 tem sido sugerida por alguns especialistas como sendo particularmente importante. No entanto, segundo o grande pesquisador Walter Willett, esta hipótese baseia-se em evidências mínimas, e, nos seres humanos, maiores ingestões de ácidos graxos n-6 não foram associadas com

User badge image
Questões para o Sucesso

ano passado

Respostas

User badge image

Ed Verified user icon

ano passado

Você precisa criar uma nova pergunta com as opções de múltipla escolha para que eu possa ajudá-lo.

Essa resposta te ajudou?

0
Dislike0

Ainda com dúvidas?

Envie uma pergunta e tenha sua dúvida de estudo respondida!

Essa pergunta também está no material:

Mais perguntas desse material

1.5) RECOMENDAÇÃO DE PROTEÍNA PARA HORMONIZADOS O grande fisiculturista Nasser El Sombaty dizia que consumia apenas 100 g de proteínas em off season, em uma dieta com 80% de carboidratos. Já no período pré-competição (pré-contest) Nasser dizia consumir 400-600 g de proteínas e apenas 80-250 g de carboidratos. Ingerir mais proteínas durante uma dieta hipocalórica faz mais sentido do que ter uma grande ingestão de proteínas em uma dieta hipercalórica. Isso acontece porque durante a restrição calórica a síntese proteica tende a reduzir, enquanto a degradação de proteínas tende a aumentar. A redução das calorias e dos níveis de insulina favorece a oxidação de gorduras e o aumento da gliconeogênese (síntese de glicose a partir de... Para um fisiculturista pesando 120-130 kg (como Nasser El Sombaty) 100 g de proteínas é muito pouco, apesar dos esteroides favorecerem um 'maior aproveitamento das proteínas', aumentando síntese proteica e reduzindo degradação proteica. Seria estranho Nasser mentir a esse respeito, até porque outros fisiculturistas como Mike Mentzer e Tom Platz também relatavam consumir menos proteína que a grande maioria dos fisiculturistas. Para um indivíduo natural que treina musculação a recomendação de proteínas para hipertrofia é de 1,6 a 2,2 g/kg (MORTON, 2018). Para um indivíduo que faz uso de esteroides anabolizantes é de se esperar valores maiores, mas pouco provável algo como 4,0-5,0 g/kg de proteínas, justamente pelos esteroides também reduzirem a degradação proteica, além de aumentar a síntese. O pesquisador Shalender Bhasin (expert em estudos com doses elevadas de testosterona) já realizou diversos estudos com doses suprafisiológicas de testosterona, chegando a utilizar dosagens de 600 mg por semana em indivíduos jovens e idosos. Nos estudos de Bhasin a ingestão de proteínas ficou entre 1,2 a 1,5 g/kg e os ganhos de massa livre de gordura ficaram na média de 6,0 a 8,0 kg (com 600 mg de enantato de testosterona por semana), utilizando somente testosterona por 10 e 20 semanas respectivamente (BHASIN, 1996; BHASIN... lturistas utilize grandes quantidades de proteínas na dieta (> 3,0 g/kg), é possível ter uma ótima resposta utilizando quantidades bem menores, como 1,0 a 1,5 g/kg. Mesmo que essas quantidades possam não ser as melhores para otimizar os ganhos de massa muscular, os estudos de Bhasin dão certo suporte às alegações de Mike Mentzer e Nasser El Sombaty. Acredito que mesmo para fisiculturistas hormonizados uma quantidade de proteínas maior que 2,5 g/kg seja desnecessária para hipertrofia muscular. A quantidade exata não há como saber, até porque depende das dosagens de esteroides e do potencial genético do indivíduo. Lembrando que em déficit calórico e quando o percentual de gordura está baixo uma quantidade maior de proteínas pode ser justificada, principalmente por seus efeitos na preservação da massa muscular, no aumento da saciedade e do gasto energético (HALUCH, 2020).

CASEÍNA E LEITE A caseína é uma proteína de absorção lenta, que libera os aminoácidos de forma lenta na corrente sanguínea, mantendo os níveis desses aminoácidos mais estáveis por várias horas (7-8 horas). A caseína também é uma proteína de alta qualidade, alto valor biológico e rica em aminoácidos essenciais. Comparada a whey, a caseína mostrou menor estímulo na síntese proteica, mas mostrou melhor balanço líquido de leucina, melhor retenção de aminoácidos e menor degradação de proteínas. Enquanto whey é uma proteína mais anabólica, por seu potente efeito estimulador sobre a síntese proteica, a caseína é uma proteína mais anticatabólica, devido ao seu potencial para reduzir a degradação de proteínas. Por esse motivo, especialistas e fisiculturistas gostam do uso da caseína na última refeição, antes de dormir. Nada impede de utilizá-la em outros horários e pode ter um uso interessante após o treino também, principalmente em combinação com whey. Nesse caso, seria mais barato usar o próprio leite como fonte de proteínas, já que é um blend natural composto por 20% de whey e 80% de caseína. Estudos mostraram que o leite apresenta um bom potencial para melhorar a composição corporal, principalmente ajudar no ganho de massa muscular. A mistura de whey com leite também pode ser muito interessante após o treino de hipertrofia, já que oferece uma mistura de proteína rápida com lenta. Atrasar a absorção da proteína não é um problema, já que a “janela anabólica” pós-treino pode durar várias horas (mais detalhes na seção 7.2).

Mais conteúdos dessa disciplina