Logo Passei Direto
Buscar

Cálculo

Outros

Se \( \sin(\alpha) = 0.6 \), qual é o valor de \( \cos(\alpha) \)? A) \( 0.8 \) B) \( 0.4 \) C) \( 0.5 \) D) \( 0.3 \)

User badge image
Questões Para o Saber

há 12 meses

Respostas

User badge image

Ed Verified user icon

há 12 meses

Para encontrar o valor de \( \cos(\alpha) \) dado que \( \sin(\alpha) = 0.6 \), podemos usar a identidade fundamental da trigonometria: \[ \sin^2(\alpha) + \cos^2(\alpha) = 1 \] Substituindo \( \sin(\alpha) \): \[ (0.6)^2 + \cos^2(\alpha) = 1 \] Calculando \( (0.6)^2 \): \[ 0.36 + \cos^2(\alpha) = 1 \] Agora, isolando \( \cos^2(\alpha) \): \[ \cos^2(\alpha) = 1 - 0.36 \] \[ \cos^2(\alpha) = 0.64 \] Agora, tiramos a raiz quadrada para encontrar \( \cos(\alpha) \): \[ \cos(\alpha) = \sqrt{0.64} = 0.8 \] Portanto, a resposta correta é: A) \( 0.8 \)

Essa resposta te ajudou?

0
Dislike0
left-side-bubbles-backgroundright-side-bubbles-background

Crie sua conta grátis para liberar essa resposta. 🤩

Já tem uma conta?

Ao continuar, você aceita os Termos de Uso e Política de Privacidade

Ainda com dúvidas?

Envie uma pergunta e tenha sua dúvida de estudo respondida!

Essa pergunta também está no material:

Mais perguntas desse material

Qual é o valor de \(\cos(135^\circ)\)?

a) -\frac{1}{2}
b) \frac{1}{2}
c) -\frac{\sqrt{2}}{2}
d) \frac{\sqrt{2}}{2}

Mais conteúdos dessa disciplina