Logo Passei Direto
Buscar
27. Um estudante tem 5 disciplinas e precisa escolher 3 para se concentrar no próximo semestre. Quantas combinações diferentes ele pode escolher?

a) 60
b) 10
c) 20
d) 15
User badge image
Matematicamente

ano passado

Respostas

User badge image

Ed Verified user icon

ano passado

Para resolver essa questão, precisamos usar a fórmula de combinações, já que a ordem das disciplinas escolhidas não importa. A fórmula para calcular combinações é: \[ C(n, k) = \frac{n!}{k!(n-k)!} \] onde: - \( n \) é o total de disciplinas (5), - \( k \) é o número de disciplinas a serem escolhidas (3). Substituindo os valores: \[ C(5, 3) = \frac{5!}{3!(5-3)!} = \frac{5!}{3! \cdot 2!} \] Calculando os fatoriais: - \( 5! = 5 \times 4 \times 3 \times 2 \times 1 = 120 \) - \( 3! = 3 \times 2 \times 1 = 6 \) - \( 2! = 2 \times 1 = 2 \) Agora, substituindo na fórmula: \[ C(5, 3) = \frac{120}{6 \cdot 2} = \frac{120}{12} = 10 \] Portanto, o número de combinações diferentes que o estudante pode escolher é 10. A alternativa correta é: b) 10.

Essa resposta te ajudou?

0
Dislike0

Experimente
o Premium! 🤩

Libere respostas sem pagar

Ainda com dúvidas?

Envie uma pergunta e tenha sua dúvida de estudo respondida!

Essa pergunta também está no material:

Mais perguntas desse material

Mais conteúdos dessa disciplina