Logo Passei Direto
Buscar
O número de maneiras diferentes de se colocar as letras da sigla CONDER em fila, de modo que a fila comece por uma vogal, é
A) 240.
B) 120.
C) 96.
D) 72.
E) 60.
User badge image
EducaFit

há 9 meses

Respostas

User badge image

Ed Verified user icon

há 9 meses

Para resolver essa questão, vamos analisar a sigla "CONDER". As vogais presentes são "O" e "E". Portanto, temos 2 opções para a primeira letra da fila. Após escolher uma vogal para começar, restam 5 letras para serem organizadas (as 4 letras restantes da sigla e a outra vogal). O número de maneiras de organizar essas 5 letras é dado por 5! (fatorial de 5). Calculando: 1. Escolha da vogal: 2 opções (O ou E). 2. Organizando as 5 letras restantes: 5! = 5 × 4 × 3 × 2 × 1 = 120. Agora, multiplicamos o número de opções de vogais pelo número de arranjos das letras restantes: 2 (vogais) × 120 (arranjos) = 240. Portanto, o número de maneiras diferentes de se colocar as letras da sigla CONDER em fila, de modo que a fila comece por uma vogal, é: A) 240.

Essa resposta te ajudou?

0
Dislike0
left-side-bubbles-backgroundright-side-bubbles-background

Crie sua conta grátis para liberar essa resposta. 🤩

Já tem uma conta?

Ao continuar, você aceita os Termos de Uso e Política de Privacidade

Ainda com dúvidas?

Envie uma pergunta e tenha sua dúvida de estudo respondida!

Mais perguntas desse material

Mais conteúdos dessa disciplina