Logo Passei Direto
Buscar
Discutimos o que são aprendizagem supervisionada e não supervisionada. Vimos que é na forma como tratamos as variáveis estudadas que se dá a diferença entre esses dois tipos de aprendizagens, supervisionada e não supervisionada. Esses dois tipos são os mais importantes dentre os diversos tipos de aprendizagem.
Está correto o que se afirma em:
I. Na aprendizagem supervisionada, definimos uma das variáveis estudadas como sendo a variável resposta, a qual responde em função dos valores assumidos pelas outras variáveis, as quais são chamadas de variáveis de entrada.
II. Especificamente na aprendizagem supervisionada, também denominamos uma variável resposta de variável de saída ou variável dependente.
III. Especificamente na aprendizagem supervisionada, também denominamos uma variável de entrada de variável regressora, variável preditora ou variável independente.
IV. Na aprendizagem não supervisionada, tratamos todas as variáveis estudadas da mesma forma, sem procurar explicar o comportamento de uma delas em função dos valores assumidos pelas outras.
User badge image
Testando o Conhecimento

há 6 meses

Respostas

User badge image

Ed Verified user icon

há 6 meses

Vamos analisar cada afirmativa: I. Na aprendizagem supervisionada, definimos uma das variáveis estudadas como sendo a variável resposta, a qual responde em função dos valores assumidos pelas outras variáveis, as quais são chamadas de variáveis de entrada. Verdadeiro, essa definição está correta e descreve bem a aprendizagem supervisionada. II. Especificamente na aprendizagem supervisionada, também denominamos uma variável resposta de variável de saída ou variável dependente. Verdadeiro, essa afirmativa está correta, pois a variável resposta é frequentemente chamada de variável de saída ou dependente. III. Especificamente na aprendizagem supervisionada, também denominamos uma variável de entrada de variável regressora, variável preditora ou variável independente. Verdadeiro, essa afirmativa também está correta, pois as variáveis de entrada são frequentemente chamadas de variáveis independentes, preditoras ou regressoras. IV. Na aprendizagem não supervisionada, tratamos todas as variáveis estudadas da mesma forma, sem procurar explicar o comportamento de uma delas em função dos valores assumidos pelas outras. Verdadeiro, essa afirmativa está correta, pois na aprendizagem não supervisionada não há uma variável resposta definida, e todas as variáveis são tratadas de maneira semelhante. Portanto, todos os itens I, II, III e IV estão corretos. A alternativa correta que contém todos os itens verdadeiros é: todas as alternativas estão corretas. Como não há uma opção que refira isso, você deve verificar as opções disponíveis.

Essa resposta te ajudou?

0
Dislike0
left-side-bubbles-backgroundright-side-bubbles-background

Crie sua conta grátis para liberar essa resposta. 🤩

Já tem uma conta?

Ao continuar, você aceita os Termos de Uso e Política de Privacidade

Ainda com dúvidas?

Envie uma pergunta e tenha sua dúvida de estudo respondida!

Essa pergunta também está no material:

Mais perguntas desse material

Naturalmente, dados ocupam uma posição central, tanto na estatística quanto na ciência dos dados. Entendê-los, saber da sua natureza, o que representam, é de suma importância, antes da realização de qualquer análise ou projeto. Os dados são divididos entre quantitativos e qualitativos, na estatística e na ciência dos dados. Relativamente aos qualitativos, analise as af irmativas a seguir e assinale V para a(s) Verdadeira(s) e F para a(s) Falsa(s).
Assinale a alternativa que apresenta a sequência correta.
1. ( ) Dados qualitativos dicotômicos são dados observados de variáveis qualitativas que podem assumir apenas dois níveis (também chamados de classes) como seus valores, tais como sexo (feminino ou masculino), ocupação (empregado ou desempregado), localização (bairro ou centro), emprego estável (sim ou não), inadimplente (sim ou não).
2. ( ) Dados qualitativos politômicos são aqueles oriundos de variáveis qualitativas que podem assumir três ou mais níveis como seus valores, tais como classe social (A, B, C, D e E), escolaridade (fundamental, médio, superior), gravidade da doença (baixa, média, alta).
3. ( ) A função table() do R permite a contagem da frequência de cada nível assumido por uma variável qualitativa em uma dada amostra, e foi usada pela jovem cientista de dados para contar a frequência de pessoas com ou sem emprego estável e se ficaram ou não inadimplentes com o pagamento das faturas do cartão no período amostrado.
4. ( ) Um mosaicplot permite a visualização gráfica da relação entre duas variáveis qualitativas. Foi usado por uma jovem cientista de dados para examinar a possível relação entre duas variáveis qualitativas dicotômicas: pessoas com ou sem emprego estável e se ficaram ou não inadimplentes com o pagamento das faturas do cartão de crédito ao longo do período amostrado. Ela percebeu, ao ver o gráfico resultante (ver figura adiante), que parece haver um maior nível de inadimplência com o cartão entre aquelas que não têm emprego estável.

Continuando com o mesmo caso da questão anterior, relativa à aprovação, pelos bancos, de crédito na forma de cartão de crédito, como se fazia, no passado, a aprovação da concessão de cartões de crédito pelos bancos? E, hoje em dia, como os bancos fazem essa aprovação?
Assinale a alternativa que apresenta a sequência correta.
1. ( ) No passado, os bancos faziam, e ainda fazem, ao menos em parte, a aprovação da concessão de cartões de crédito através da definição de regras que devem ser atendidas por cada cliente, tais como idade, emprego estável, renda fixa, dívidas pequenas, nome limpo e casa própria.
2. ( ) Hoje em dia, dentre outras alternativas, uma que é frequentemente usada pelos bancos são algoritmos de aprendizagem supervisionada que classificam se o cliente é um potencial bom ou mau pagador.
3. ( ) Para usarmos algoritmos de classificação com esse propósito de aprovar ou não cartões de crédito, precisamos de dados. Ensinamos ao algoritmo, com base nos dados que lhe são passados, a predizer clientes que são maus pagadores potenciais das faturas do cartão. Dessa forma, se o algoritmo, ao ser alimentado com os dados referentes a um novo cliente, classificar esse cliente como um mau pagador potencial, o banco não aprovará o cartão.
4. ( ) Para equipes de análise de crédito, poder contar com a ajuda de um software com a capacidade de recomendar a aprovação ou não da concessão do cartão é de grande valor.
5. ( ) A recomendação feita pelo software poderá ser tratada ao lado de outras regras de crédito para uma decisão final sobre a concessão de cartão para o cliente.

Mais conteúdos dessa disciplina