Ed
mês passado
Para encontrar o valor de \( dy \) dado \( f(x) = 2x^2 \) e \( dx = 0,01 \), precisamos primeiro calcular a derivada da função \( f(x) \). 1. Calcular a derivada \( f'(x) \): \[ f'(x) = \frac{d}{dx}(2x^2) = 4x \] 2. Substituir \( x = 2 \) na derivada: \[ f'(2) = 4 \cdot 2 = 8 \] 3. Calcular \( dy \) usando a fórmula \( dy = f'(x) \cdot dx \): \[ dy = f'(2) \cdot dx = 8 \cdot 0,01 = 0,08 \] Portanto, o valor de \( dy \) é \( 0,08 \). A alternativa correta é: e. 0,08.
Já tem uma conta?
Ao continuar, você aceita os Termos de Uso e Política de Privacidade