Logo Passei Direto
Buscar

Matemática

Engenharias
escreva a razão entre a área da região sombreada e a área da região não sombreada na figura ao lado. para facilitar admita que o quadrado pequeno tem lado de 5 cm.
User badge image
Emanuel Menezes

há 3 dias

Respostas

User badge image

Ed Verified user icon

há 3 dias

Para calcular a razão entre a área da região sombreada e a área da região não sombreada, precisamos conhecer as áreas de ambas as regiões. 1. Área do quadrado pequeno: Se o lado do quadrado pequeno é 5 cm, a área é: \[ A_{pequeno} = lado^2 = 5^2 = 25 \, \text{cm}^2 \] 2. Área da região não sombreada: Para calcular isso, precisamos saber a área total da figura (que pode incluir outros quadrados ou formas) e subtrair a área do quadrado pequeno. Se a figura total for um quadrado maior, por exemplo, com lado de 10 cm, a área total seria: \[ A_{total} = 10^2 = 100 \, \text{cm}^2 \] Assim, a área da região não sombreada seria: \[ A_{não sombreada} = A_{total} - A_{pequeno} = 100 - 25 = 75 \, \text{cm}^2 \] 3. Razão entre as áreas: Agora, podemos calcular a razão entre a área sombreada (que é a área do quadrado pequeno) e a área não sombreada: \[ \text{Razão} = \frac{A_{sombreada}}{A_{não sombreada}} = \frac{25}{75} = \frac{1}{3} \] Portanto, a razão entre a área da região sombreada e a área da região não sombreada é \( \frac{1}{3} \).

Essa resposta te ajudou?

0
Dislike0

Ainda com dúvidas?

Envie uma pergunta e tenha sua dúvida de estudo respondida!

Mais conteúdos dessa disciplina