Ed
há 23 horas
Para resolver a questão, precisamos analisar a fórmula G e as alternativas apresentadas, considerando a ordem de precedência dos operadores booleanos. Na álgebra booleana, a precedência é a seguinte: 1. Operador unário ~ (NÃO) 2. Operador binário * (E) 3. Operador binário + (OU) Vamos analisar cada alternativa: a. p + ~q * r: Aqui, primeiro aplicamos o operador ~ em q, depois multiplicamos o resultado por r (E), e por último somamos p (OU). b. p + q * ~r: Novamente, aplicamos o operador ~ em r, multiplicamos o resultado por q (E), e por último somamos p (OU). c. ~p + q * r: Primeiro aplicamos o operador ~ em p, depois multiplicamos q por r (E), e por último somamos o resultado (OU). d. ~p + ~q * r: Aqui, aplicamos o operador ~ em p, depois aplicamos o operador ~ em q e multiplicamos o resultado por r (E), e por último somamos o resultado (OU). e. ~p + q * ~r: Primeiro aplicamos o operador ~ em p, depois aplicamos o operador ~ em r e multiplicamos o resultado por q (E), e por último somamos o resultado (OU). Para determinar qual alternativa apresenta a mesma tabela verdade que a fórmula G, precisaríamos comparar a tabela verdade de G com as tabelas verdade de cada uma das alternativas. Como não temos a tabela verdade de G fornecida, não podemos fazer essa comparação diretamente. Entretanto, se você tiver a tabela verdade de G, você pode construir as tabelas verdade para cada uma das alternativas e verificar qual delas é idêntica à de G. Se precisar de mais ajuda, sinta-se à vontade para perguntar!