A maior rede de estudos do Brasil

Espaços Vetoriais: Produtos Internos Gerais

Em Rn, o produto interno ponderado aparece naturalmente na troca de escala de modelos dotados do produto interno usual ou em modelos de variáveis que medem observações ao longo do tempo, dando diferentes pesos para tempos distintos. Na cartografia e computação gráfica, é possível ver exemplo dessa dinâmica de generalização e flexibilização do produto interno canônico.

Considere um plano de coordenadas ortogonais (u, v) de modo que cada unidade na direção u corresponde a 64 metros e cada unidade na direção v corresponde a 72 metros.

a) Dado o vetor w = (3,2) nas coordenadas (u, v), qual é a sua medida em metros? ​​​​​​​

​​​​​​​b) Sabendo que existe uma norma definida por um produto interno ponderado que faz tal cálculo para qualquer vetor nesse sistema de coordenadas, escreva a matriz A que define o produto interno e a norma em metros.


1 resposta(s)

Essa pergunta já foi respondida por um dos nossos estudantes