INTEGRAL Apostila (2)
43 pág.

INTEGRAL Apostila (2)


DisciplinaCálculo I94.800 materiais1.624.392 seguidores
Pré-visualização7 páginas
RESUMO
Nesta Unidade tratamos o conceito de função primiti-
YD\ufffd\ufffdH\ufffdFRP\ufffdLVVR\ufffdFRPSUHHQGHX\ufffdWDPEpP\ufffdD\ufffdGHÀQLomR\ufffdGH\ufffdLQWHJUDO\ufffd
LQGHÀQLGD\ufffdH\ufffdVXDV\ufffdSURSULHGDGHV\ufffd\ufffd$SUHQGHX\ufffdD\ufffdFDOFXODU\ufffdR\ufffdYDORU\ufffd
de algumas integrais imediatas, bem como a calcular uma 
LQWHJUDO\ufffdGHÀQLGD\ufffdDSOLFDQGR\ufffdR\ufffd7HRUHPD\ufffd)XQGDPHQWDO\ufffdGR\ufffd&iO-
FXOR\ufffd\ufffd9RFr\ufffdWDPEpP\ufffdDSUHQGHX\ufffdDOJXPDV\ufffdWpFQLFDV\ufffdGH\ufffdFiOFXOR\ufffdGH\ufffd
integrais e de integrais impróprias.
—
—
—
—
—
Curso de Graduação em Administração a Distância
322
RESPOSTAS
Exercícios propostos \u2013 1
1) a)F (x) \ufffd 5
3
x3 
 7
2
x2 
 2x + K .
 b)F (x) \ufffd < 4 x
<
1
4 
 K .
 c)F (x) \ufffd < 2 x
<
1
2 
 K .
d)F (x) \ufffd ln (x <1) 
 K .
 e)F (x) \ufffd e
4 x
4
 K .
2) a)F (x) \ufffd <2cos x 
 sen x < x
3
6
 K e K \ufffd /
3
384
.
 b) F (x) \ufffd 3 x
1
3 
 x
2
2
 K eK \ufffd <3.
 c) F (x) \ufffd sec x 
 sen x 
 K eK \ufffd < 3
2
.
 d) F (x) \ufffd 3
7
x
7
3 
 ex 
 K e K = 1.
e) F (x) \ufffd senx 
 cosx 
 K e K = \u20131.
3) a)
x5
5
< 8
3
x3 
16x 
C .
 b) ln x 
 6 x
1
3 
 C .
 
 c) 
x4
4
< 4
3 x
3
2
< 3
x
 C .
 d) 4x < x
2
2
< x
3
3
C .
 e) < 1
2x2
C .
\u2022
Módulo 2
323
Exercícios propostos \u2013 2
1) 
33
2
.
2) a)
/ 2
8
1; b) 21
4
; c) 1; d)e2 <1.
Exercícios propostos \u2013 3
1) 
1
5 7 - 5x\ufffd 	2
C . 2) <1
x
 C .
3) 
1
7
sen 7t < /\ufffd 	 
C . 4) <1
6
1< 2x2\ufffd 	
3
2 
C .
5) 
3
3
arctg
x
3
C . 6) 1
4
. 
7)
5
2
= ln 4\ufffd 	2 . 8) 10 <1.
Exercícios propostos \u2013 4
1) exx2 
 ex 
C .
2) 
1
3
x3 ln x < x
3
9
C .
3) 
2
3
x3/ 2 ln x < 4x
3/ 2
9
C .
4) < 1
2
cosx sen x 
 x
2
C .
5) 
1
2
ln x\ufffd 	2 
C .
6) <xe<x < e<x 
C .
 
Exercícios propostos \u2013 5
1) 2 . 2)< 1
4
. 3)
/
2
. 4)› . 5)' .
\u2022
\u2022
\u2022