Buscar

APOL Calculo diferencial e integral a várias variáveis

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 3, do total de 73 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 6, do total de 73 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 9, do total de 73 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Prévia do material em texto

Questão 1/10 - Cálculo Diferencial e Integral a Várias Variáveis
Leia o trecho de texto a seguir: 
"Na intenção de calcular ∫dc∫h(x)g(x)f(x,y)dydx∫cd∫g(x)h(x)f(x,y)dydx, inicialmente integramos f(x,y)f(x,y) em relação a yy, mantendo xx fixo. Os limites de integração g(x)g(x) e h(x)h(x) dependerão desse valor fixo de xx, o que resultará na quantidade  ∫h(x)g(x)f(x,y)dy∫g(x)h(x)f(x,y)dy. E, então, integraremos quantidade posterior em relação a xx, considerando este uma variável entre os limites constantes de integração cc e dd". 
Após esta avaliação, caso queira ler o texto integralmente, ele está disponível em:  RODRIGUES, A. C. D; SILVA, A. R. H. S. Cálculo diferencial e integral de várias variáveis. Curitiba: InterSaberes, 2016, p. 46. 
Considerando o trecho de texto acima e os conteúdos do livro-base Cálculo diferencial e integral de várias variáveis, dada a integral a dupla ∫2−1∫20x2y3dydx∫−12∫02x2y3dydx  , identifique a alternativa correta que apresenta o valor correspondente às integrais:
Nota: 0.0
	
	A
	6
	
	B
	10
	
	C
	12
Comentário: Esta é a alternativa correta, conforme cálculo a seguir: 
∫2−1∫20x2y3dydx==∫2−1x2∫20y3dydx=∫2−1x2⋅[y44]20dx=∫2−1x2⋅[244−044]20dx=∫2−1x2⋅[4−0]dx=∫2−14x2dx=4⋅[x33]2−1=4⋅[233−(−1)33]==4⋅93==12∫−12∫02x2y3dydx==∫−12x2∫02y3dydx=∫−12x2⋅[y44]02dx=∫−12x2⋅[244−044]02dx=∫−12x2⋅[4−0]dx=∫−124x2dx=4⋅[x33]−12=4⋅[233−(−1)33]==4⋅93==12
(livro-base, p. 43-72). 
	
	D
	15
	
	E
	16
Questão 2/10 - Cálculo Diferencial e Integral a Várias Variáveis
Leia o trecho de texto a seguir: 
"Na equação da curva, em que y=f(x)y=f(x), considerando-se f e sua derivada (f') contínuas num trecho de intervalo fechado [a,b][a,b] e sendo a função f(x)f(x) maior que e igual a zero, com xx sendo um elemento que pertence ao intervalo [a,b][a,b], a área na superfície S gerada pelo giro da curva C ao redor do eixo das abscissas x será definida por: A=2π∫baf(x)√1+[f′(x)]2dxA=2π∫abf(x)1+[f′(x)]2dx ". 
Após esta avaliação, caso queira ler o texto integralmente, ele está disponível em:  RODRIGUES, A. C. D; SILVA, A. R. H. S. Cálculo diferencial e integral de várias variáveis. Curitiba: InterSaberes, 2016, p. 18. 
Considerando o trecho de texto acima e os conteúdos do livro-base Cálculo diferencial e integral de várias variáveis, calcule o valor da área de uma superfície cônica gerada pela revolução do segmento de reta dado pela equação y=3x+2y=3x+2 , no intervalo fechado [0,2][0,2] em torno do eixo das abscissas. Em seguida, assinale a alternativa correta que corresponde a esse valor: 
Nota: 0.0
	
	A
	25π√2025π20 u.a.
	
	B
	20π√1020π10 u.a.
Comentário: Esta é a alternativa correta, conforme solução: 
A=2π∫20y(x)√1+[y′(x)]2dx=2π∫20(3x+2)√1+32dx=2π√10∫20(3x+2)dxA=2π√103(3x+22)2∣∣∣20=π√103[(3⋅2+2)2−4]=60π√103=20π√10u.a.A=2π∫02y(x)1+[y′(x)]2dx=2π∫02(3x+2)1+32dx=2π10∫02(3x+2)dxA=2π103(3x+22)2|02=π103[(3⋅2+2)2−4]=60π103=20π10u.a. 
(livro-base, p. 15-20). 
	
	C
	22π√1222π12 u.a 
	
	D
	23π√1323π13 u.a.
	
	E
	21π√1521π15 u.a.
Questão 3/10 - Cálculo Diferencial e Integral a Várias Variáveis
Leia o trecho de texto a seguir: 
"[Em integrais repetidas] na intenção de calcular ∫dc∫h(x)g(x)f(x,y)dydx∫cd∫g(x)h(x)f(x,y)dydx, inicialmente integramos f(x,y)f(x,y) em relação a yy, mantendo xx fixo. Os limites de integração g(x)g(x) e h(x)h(x) dependerão desse valor fixo de xx, o que resultará na quantidade ∫h(x)g(x)f(x,y)dy∫g(x)h(x)f(x,y)dy. E, então, integraremos a quantidade posterior em relação a xx, considerando este uma variável entre os limites constantes de integração cc e dd".
Após esta avaliação, caso queira ler o texto integralmente, ele está disponível em:  RODRIGUES, A. C. D; SILVA, A. R. H. S. Cálculo diferencial e integral de várias variáveis. Curitiba: InterSaberes, 2016, p. 46.
Considerando o trecho de texto acima e os conteúdos do livro-base Cálculo diferencial e integral a várias variáveis, assinale a alternativa correta que apresenta o valor da integral repetida  ∫21∫21xydydx∫12∫12xydydx: 
Nota: 0.0
	
	A
	9494
Comentário: Esta é a alternativa correta, pois para calcular a integral repetida, primeiro considera uma das variáveis constante. Em nosso caso, consideraremos a variável x. Então,
∫21∫21xydydx=∫21x[∫21ydy]dx=∫21x[y22]21dx=∫21x[222−122]dx=∫21x32dx=32∫21xdx=32x22∣∣∣21=32[222−122]=32⋅32=94∫12∫12xydydx=∫12x[∫12ydy]dx=∫12x[y22]12dx=∫12x[222−122]dx=∫12x32dx=32∫12xdx=32x22|12=32[222−122]=32⋅32=94
(Livro-base p. 43-47). 
	
	B
	1212
	
	C
	7474
	
	D
	3434
	
	E
	7272
Questão 4/10 - Cálculo Diferencial e Integral a Várias Variáveis
Leia o trecho de texto a seguir:
"Uma sequência numérica é usada em linguagem corrente para dar significado a uma sucessão de objetos e coisas que estão dispostos em ordem definida. Os números também são expressos em sequências que podem ser de algarismos pares, ímpares, decimais ou com um valor incremental [...]". 
Após esta avaliação, caso queira ler o texto integralmente, ele está disponível em:  RODRIGUES, A. C. D; SILVA, A. R. H. S. Cálculo diferencial e integral de várias variáveis. Curitiba: InterSaberes, 2016, p. 101.
Considerando o trecho de texto acima e os conteúdos do livro-base Cálculo diferencial e integral de várias variáveis, assinale a alternativa correta que apresenta a lei de formação da sequência dos números pares positivos (n), considerando que n é um número natural diferente de zero: 
Nota: 0.0
	
	A
	an=2n
Comentário: A sequência dos números pares positivos é 2, 4, 6, 8, 10, ....
Como n começa em 2, pelo enunciado, 
para a alternativa b) teremos 2.1+1 = 3 (o primeiro número par positivo é 2); 
para a alternativa c) teremos 1 + 1 = 2, 2+1=3 (o segundo número par é 4); 
para alternativa d) teremos 2.1-1 = 1 (o primeiro número par é 2);
para a alternativa e) teremos 1-1=0 (o primeiro número par é 2); 
Para a alternativa a), a correta, temos: 2.1=2, 2.2=4, 2.3=6, 2.4=8,... continuando assim a sequência para n natural diferente de zero. Desta forma, obtemos a sequência dos números pares.
(livro-base, p. 101). 
	
	B
	an=2n+1
	
	C
	an=n+1
	
	D
	an=2n-1
	
	E
	an=n-1
Questão 5/10 - Cálculo Diferencial e Integral a Várias Variáveis
Leia o trecho de texto a seguir: 
"[Em integrais repetidas] na intenção de calcular ∫dc∫h(x)g(x)f(x,y)dydx∫cd∫g(x)h(x)f(x,y)dydx, inicialmente integramos f(x,y)f(x,y) em relação a yy, mantendo xx fixo. Os limites de integração g(x)g(x) e h(x)h(x) dependerão desse valor fixo de xx, o que resultará na quantidade ∫h(x)g(x)f(x,y)dy∫g(x)h(x)f(x,y)dy. E, então, integraremos a quantidade posterior em relação a xx, considerando este uma variável entre os limites constantes de integração cc e dd". 
Após esta avaliação, caso queira ler o texto integralmente, ele está disponível em:  RODRIGUES, A. C. D; SILVA, A. R. H. S. Cálculo diferencial e integral de várias variáveis. Curitiba: InterSaberes, 2016, p. 46.
Considerando o trecho de texto acima e os conteúdos do livro-base Cálculo diferencial e integral a várias variáveis, identifique a alternativa correta que apresenta o valor da integral repetida  ∫1−1∫1−1dydx∫−11∫−11dydx é:
Nota: 0.0
	
	A
	2
	
	B
	1
	
	C
	zero
	
	D
	4
Comentário: Esta é a alternativa correta, pois para calcular a integral repetida, primeiro considera uma das variáveis constante. Em nosso caso, consideraremos a variável x. Então,
∫1−1∫1−1dydx=∫1−1[y]1−1dx=∫1−1[1−(−1)]dx=∫1−12dx=2∫1−1dx=2[y]1−1=2[1−(−1)]=4∫−11∫−11dydx=∫−11[y]−11dx=∫−11[1−(−1)]dx=∫−112dx=2∫−11dx=2[y]−11=2[1−(−1)]=4
(Livro-base p. 43-47).
	
	E
	10
Questão 6/10 - Cálculo Diferencial e Integral a Várias Variáveis
Leia o texto a seguir: 
No espaço tridimensional, estabelecemos três relações representadas por valores do conjunto domínio Dm(f), expresso por (x,y,z), com respectiva imagem Im(f) expressa pela função f(x,y,z).
Fonte: Texto elaborado pelo autor da questão. 
Considere o texto acima, os conteúdos do livro-base Cálculo diferencial e integral de várias variáveis e a função f(x,y,z)=x2+y2|√z−1|f(x,y,z)=x2+y2|z−1| com domínio Dom(f)={(x,y,z)∈R3/z>1}Dom(f)={(x,y,z)∈R3/z>1}. Agora, assinale a alternativa correta queapresenta o valor de f(x,y,z)f(x,y,z) no ponto (2,3,5)(2,3,5): 
Nota: 0.0
	
	A
	132132
Comentário: Esta é a alternativa correta, conforme a seguinte solução: substituindo os valores de x, y e z em f(x,y,z) temos:
f(2,3,5)=22+32|√5−1|=4+9|√4|=132.f(2,3,5)=22+32|5−1|=4+9|4|=132.
(livro-base, p. 77). 
	
	B
	145145
	
	C
	133133
	
	D
	115115
	
	E
	154154
Questão 7/10 - Cálculo Diferencial e Integral a Várias Variáveis
Leia o texto a seguir: 
Seja f uma função de duas variáveis x e y, diferenciável num ponto (x0,y0)(x0,y0) do domínio, e sejam as funções dadas por x(t)x(t) e y(t)y(t) diferenciáveis em t0t0, de modo que x(t0)=x0x(t0)=x0 e y(t0)=y0y(t0)=y0, então a função FF composta por ff com xx e yy é tal que:
dFdt=dfdx⋅(x0,y0)⋅dxdt(t0)+dfdy⋅(x0,y0)⋅dydt(t0)dFdt=dfdx⋅(x0,y0)⋅dxdt(t0)+dfdy⋅(x0,y0)⋅dydt(t0).
Fonte: Texto elaborado pelo autor da questão. 
Considerando o texto acima, os conteúdos do livro-base Cálculo diferencial e integral de várias variáveis e a função z=x3−4x2y+xy2−y3+1,z=x3−4x2y+xy2−y3+1, onde x=sentx=sent e y=cost.y=cost., assinale a alternativa correta que apresenta a derivada de zz em relação à variável tt:
Nota: 0.0
	
	A
	dzdt=(3x2−8xy+y2)cost+(4x2−2xy+3y2)sent.dzdt=(3x2−8xy+y2)cost+(4x2−2xy+3y2)sent.
Comentário: Esta é a alternativa correta, pois pela Regra da Cadeia, como xx e yy estão em função de tt, temos
dzdt=∂z∂x⋅dxdt+∂z∂y⋅dydt.dzdt=∂z∂x⋅dxdt+∂z∂y⋅dydt. Portanto, dzdt=(3x2−8xy+y2)cost+(−4x2+2xy−3y2)(−sent)=(3x2−8xy+y2)cost+(4x2−2xy+3y2)sent.dzdt=(3x2−8xy+y2)cost+(−4x2+2xy−3y2)(−sent)=(3x2−8xy+y2)cost+(4x2−2xy+3y2)sent.   
(livro-base, p. 79)
	
	B
	dzdt=(3x2−8xy+y2)sent+(4x2−2xy+3y2)sentdzdt=(3x2−8xy+y2)sent+(4x2−2xy+3y2)sent
	
	C
	dzdt=(3x2−8xy+y2)cost+(4x2−2xy+3y2)costdzdt=(3x2−8xy+y2)cost+(4x2−2xy+3y2)cos⁡t
	
	D
	dzdt=(−8xy+y2)cost+(4x2−2xy)sent.dzdt=(−8xy+y2)cost+(4x2−2xy)sent.
	
	E
	dzdt=(3x2−8xy+y2)costdzdt=(3x2−8xy+y2)cost
Questão 8/10 - Cálculo Diferencial e Integral a Várias Variáveis
Leia o extrato de texto a seguir: 
"[Em integrais repetidas] na intenção de calcular ∫dc∫h(x)g(x)f(x,y)dydx∫cd∫g(x)h(x)f(x,y)dydx, inicialmente integramos f(x,y)f(x,y) em relação a yy, mantendo xx fixo. Os limites de integração g(x)g(x) e h(x)h(x) dependerão desse valor fixo de xx, o que resultará na quantidade ∫h(x)g(x)f(x,y)dy∫g(x)h(x)f(x,y)dy. E, então, integraremos a quantidade posterior em relação a xx, considerando este uma variável entre os limites constantes de integração cc e dd". 
Após esta avaliação, caso queira ler o texto integralmente, ele está disponível em:  RODRIGUES, A. C. D; SILVA, A. R. H. S. Cálculo diferencial e integral de várias variáveis. Curitiba: InterSaberes, 2016, p. 46.
Considerando o extrato de texto acima e os conteúdos do livro-base Cálculo diferencial e integral a várias variáveis, identifique a alternativa que apresenta o valor da integral repetida  ∫10∫10xdydx∫01∫01xdydx:
Nota: 0.0
	
	A
	1414
	
	B
	1313
	
	C
	11
	
	D
	22
	
	E
	1212
Comentário: Esta é a alternativa correta, pois para calcular a integral repetida, primeiro considera uma das variáveis constante. Em nosso caso, consideraremos a variável x. Então,
∫10∫10xdydx=∫10x[∫10dy]dx=∫10x[y]10dx=∫10x[1−0]dx=∫10xdx=[x22]10=122−022=12∫01∫01xdydx=∫01x[∫01dy]dx=∫01x[y]01dx=∫01x[1−0]dx=∫01xdx=[x22]01=122−022=12
(Livro-base página 43-47). 
Questão 9/10 - Cálculo Diferencial e Integral a Várias Variáveis
Leia o extrato de texto a seguir: 
"[Em integrais repetidas] na intenção de calcular ∫dc∫h(x)g(x)f(x,y)dydx∫cd∫g(x)h(x)f(x,y)dydx, inicialmente integramos f(x,y)f(x,y) em relação a yy, mantendo xx fixo. Os limites de integração g(x)g(x) e h(x)h(x) dependerão desse valor fixo de xx, o que resultará na quantidade ∫h(x)g(x)f(x,y)dy∫g(x)h(x)f(x,y)dy. E, então, integraremos a quantidade posterior em relação a xx, considerando este uma variável entre os limites constantes de integração cc e dd". 
Após esta avaliação, caso queira ler o texto integralmente, ele está disponível em:  RODRIGUES, A. C. D; SILVA, A. R. H. S. Cálculo diferencial e integral de várias variáveis. Curitiba: InterSaberes, 2016, p. 46. 
Considerando o extrato de texto acima e os conteúdos do livro-base Cálculo diferencial e integral a várias variáveis, identifique a alternativa que apresenta o valor da integral repetida ∫20∫20yzdzdy∫02∫02yzdzdy: 
Nota: 0.0
	
	A
	0
	
	B
	2
	
	C
	4
Comentário: Para calcular a integral repetida, primeiro considera uma das variáveis constante. Em nosso caso, consideraremos a variável x. Então,
∫20∫20yzdzdy=∫20y[∫20zdz]dy=∫20y[z22]20dy=∫20y[222−022]dy=∫20y2dy=2∫20ydy=2y22∣∣∣20=2[222−022]=2⋅2=4∫02∫02yzdzdy=∫02y[∫02zdz]dy=∫02y[z22]02dy=∫02y[222−022]dy=∫02y2dy=2∫02ydy=2y22|02=2[222−022]=2⋅2=4
(livro-base, p. 43-47). 
	
	D
	8
	
	E
	16
Questão 10/10 - Cálculo Diferencial e Integral a Várias Variáveis
Leia o texto a seguir: 
Uma indústria produz três tipos de objetos eletrônicos, sendo representados por x1,x2x1,x2 e x3x3, respectivamente. O custo de produção destes objetos é dado pela função C(x1,x2,x3)=50+2x1+2x2+3x3C(x1,x2,x3)=50+2x1+2x2+3x3. 
Fonte: Texto elaborado pelo autor da questão. 
Considerando o texto acima e os conteúdos do livro-base Cálculo diferencial e integral a várias variáveis, suponha que a empresa fabrica, por mês, 30 unidades do produto x1x1, dez unidades do produto x2x2 e 50 unidades do produto x3x3. Agora, assinale a alternativa correta que apresenta o custo dessa produção: 
Nota: 0.0
	
	A
	120
	
	B
	150
	
	C
	180
	
	D
	280
Comentário: Esta é a alternativa correta, pois para calcular o custo de produção basta substituir as variáveis pelos valores determinados de x_1,x_2 e x_3 . Assim teremos:
C(30,10,50) = 50+2.30+2.10+3.50 = 280
(Livro-base p. 75-76). 
	
	E
	350
Questão 1/10 - Cálculo Diferencial e Integral a Várias Variáveis
Leia o fragmento de texto a seguir: 
"A função da derivada parcial em relação a um valor xixi é a derivada de f em relação a xixi uma vez que admitamos todas as outras variáveis como constantes". 
Após esta avaliação, caso queira ler o texto integralmente, ele está disponível em:  RODRIGUES, A. C. D; SILVA, A. R. H. S. Cálculo diferencial e integral de várias variáveis. Curitiba: InterSaberes, 2016, p. 80.
Considerando o fragmento de texto acima e os conteúdos do livro-base Cálculo diferencial e integral de várias variáveis, assinale a alternativa correta que corresponde às derivadas parciais da função f(x,y,z)=3x2+4xy−3zy.f(x,y,z)=3x2+4xy−3zy.
Nota: 0.0
	
	A
	∂f∂x=6x+4y;∂f∂y=4x−3z;∂f∂z=−3y.∂f∂x=6x+4y;∂f∂y=4x−3z;∂f∂z=−3y.
Comentário: Esta é a alternativa correta, pois calculamos a derivada parcial separadamente em relação a cada variável. Assim, temos: 
∂∂x(3x2+4xy−3zy)=6x+4y;∂∂y(3x2+4xy−3zy)=4x−3z;∂∂z(3x2+4xy−3zy)=−3y.∂∂x(3x2+4xy−3zy)=6x+4y;∂∂y(3x2+4xy−3zy)=4x−3z;∂∂z(3x2+4xy−3zy)=−3y. 
(Livro-base, p. 80). 
	
	B
	∂f∂x=4y;∂f∂y=4y−3x;∂f∂z=−3y.∂f∂x=4y;∂f∂y=4y−3x;∂f∂z=−3y.
	
	C
	∂f∂x=−6x−4z;∂f∂y=y;∂f∂z=y.∂f∂x=−6x−4z;∂f∂y=y;∂f∂z=y.
	
	D
	∂f∂x=x;∂f∂y=y;∂f∂z=z.∂f∂x=x;∂f∂y=y;∂f∂z=z.
	
	E
	∂f∂x=−4xyz;∂f∂y=6xyz;∂f∂z=xyz.∂f∂x=−4xyz;∂f∂y=6xyz;∂f∂z=xyz.
Questão 2/10 - Cálculo Diferencial e Integral a Várias Variáveis
Leia o texto a seguir: 
Uma fábrica produz três produtos em quantidades diferentes. Cada produto é representado por x1, x2 e x3, respectivamente, e a função do custo de fabricação desses três produtos é representada por C (x1, x2, x3) = 100 + 2x1 + 2x2 + 3x3.
Fonte: Texto elaborado pelo autor da questão.  
Considerando o texto acima e os conteúdos do livro-base Cálculo diferencial e integral a várias variáveis, identifique a alternativa correta que apresenta o custo da fabricação, se x1=3x1=3, x2=1x2=1 e x3=4x3=4: 
Nota: 0.0
	
	A
	120
Comentário: Esta é a alternativa correta, pois C (3, 1, 4) = 100 + 2.3 + 2.1 + 3.4 = 100+6+2+12 = 120
(livro-base, p. 75-76). 
	
	B
	150
	
	C
	180
	
	D
	200
	
	E
	220
Questão 3/10 - Cálculo Diferencial e Integral a Várias Variáveis
Leia o trecho de texto a seguir: 
"A função da derivada parcial em relação a um valor xi é a derivada de f em relação a xi uma vez que admitamostodas as outras variáveis constantes". 
Após esta avaliação, caso queira ler o texto integralmente, ele está disponível em:  RODRIGUES, A. C. D; SILVA, A. R. H. S. Cálculo diferencial e integral de várias variáveis. Curitiba: InterSaberes, 2016, p. 80.
Considerando o trecho de texto acima e os conteúdos do livro-base Cálculo diferencial e integral de várias variáveis, assinale a alternativa correta que apresenta o valor das derivadas parciais, ao calcular a função f(x,y,z)=3x+5y−6zf(x,y,z)=3x+5y−6z:
Nota: 0.0
	
	A
	fx=3;fy=5;fz=−6fx=3;fy=5;fz=−6
Comentário: Esta é a alternativa correta, pois calculamos a derivada separadamente em relação a cada variável. Então as derivadas parciais de f(x,y,z)=3x+5y−6zf(x,y,z)=3x+5y−6z são:
fx=3fx=3 pois a derivada dos outros termos é zero por não ter o termo xx.
fy=5fy=5 pois a derivada dos outros termos é zero por não ter o termo yy.
fz=−6fz=−6 pois a derivada dos outros termos é zero por não ter o termo zz.
(livro-base, p. 80). 
	
	B
	fx=−3;fy=−5;fz=−5fx=−3;fy=−5;fz=−5
	
	C
	fx=5;fy=3;fz=−6fx=5;fy=3;fz=−6
	
	D
	fx=6;fy=5;fz=−3fx=6;fy=5;fz=−3
	
	E
	fx=−6;fy=5;fz=3fx=−6;fy=5;fz=3
Questão 4/10 - Cálculo Diferencial e Integral a Várias Variáveis
Leia o texto a seguir: 
Se uma função f é contínua e derivável no intervalo fechado [a,b], é possível determinar o comprimento do arco da curva C, de a até b. Lembrando que a fórmula utilizada é C=∫ba√1+[f′(x)]2dxC=∫ab1+[f′(x)]2dx.
Fonte: Texto elaborado pelo autor da questão. 
Considerando o texto acima, os conteúdos do livro-base Cálculo Diferencial e Integral a Várias Variáveis e a função f(x)=2x−8f(x)=2x−8, identifique a alternativa correta que apresenta o comprimento do arco da curva dada por ff  no intervalo fechado [0,2][0,2]: 
Nota: 0.0
	
	A
	2√5u.c.25u.c.
Comentário: Esta é a alternativa correta, pois aplicando a fórmula para calcular o comprimento da curva, teremos:
A=∫ba√1+[f′(x)]2dx=∫20√1+22dx=∫20√5dx=2√5u.c.A=∫ab1+[f′(x)]2dx=∫021+22dx=∫025dx=25u.c.
(Livro-base, p. 21-24). 
	
	B
	3√5u.c.35u.c.
	
	C
	4√u.c.4u.c.
	
	D
	5√8u.c.58u.c.
	
	E
	6√u.c.6u.c.
Questão 5/10 - Cálculo Diferencial e Integral a Várias Variáveis
Leia o trecho de texto a seguir: 
"[Em integrais repetidas] na intenção de calcular ∫dc∫h(x)g(x)f(x,y)dydx∫cd∫g(x)h(x)f(x,y)dydx, inicialmente integramos f(x,y)f(x,y) em relação a yy, mantendo xx fixo. Os limites de integração g(x)g(x) e h(x)h(x) dependerão desse valor fixo de xx, o que resultará na quantidade ∫h(x)g(x)f(x,y)dy∫g(x)h(x)f(x,y)dy. E, então, integraremos a quantidade posterior em relação a xx, considerando este uma variável entre os limites constantes de integração cc e dd".
Após esta avaliação, caso queira ler o texto integralmente, ele está disponível em:  RODRIGUES, A. C. D; SILVA, A. R. H. S. Cálculo diferencial e integral de várias variáveis. Curitiba: InterSaberes, 2016, p. 46.
Considerando o trecho de texto acima e os conteúdos do livro-base Cálculo diferencial e integral a várias variáveis, assinale a alternativa correta que apresenta o valor da integral repetida  ∫21∫21xydydx∫12∫12xydydx: 
Nota: 0.0
	
	A
	9494
Comentário: Esta é a alternativa correta, pois para calcular a integral repetida, primeiro considera uma das variáveis constante. Em nosso caso, consideraremos a variável x. Então,
∫21∫21xydydx=∫21x[∫21ydy]dx=∫21x[y22]21dx=∫21x[222−122]dx=∫21x32dx=32∫21xdx=32x22∣∣∣21=32[222−122]=32⋅32=94∫12∫12xydydx=∫12x[∫12ydy]dx=∫12x[y22]12dx=∫12x[222−122]dx=∫12x32dx=32∫12xdx=32x22|12=32[222−122]=32⋅32=94
(Livro-base p. 43-47). 
	
	B
	1212
	
	C
	7474
	
	D
	3434
	
	E
	7272
Questão 6/10 - Cálculo Diferencial e Integral a Várias Variáveis
Leia o trecho de texto a seguir:
"Uma sequência numérica é usada em linguagem corrente para dar significado a uma sucessão de objetos e coisas que estão dispostos em ordem definida. Os números também são expressos em sequências que podem ser de algarismos pares, ímpares, decimais ou com um valor incremental [...]". 
Após esta avaliação, caso queira ler o texto integralmente, ele está disponível em:  RODRIGUES, A. C. D; SILVA, A. R. H. S. Cálculo diferencial e integral de várias variáveis. Curitiba: InterSaberes, 2016, p. 101.
Considerando o trecho de texto acima e os conteúdos do livro-base Cálculo diferencial e integral de várias variáveis, assinale a alternativa correta que apresenta a lei de formação da sequência dos números pares positivos (n), considerando que n é um número natural diferente de zero: 
Nota: 0.0
	
	A
	an=2n
Comentário: A sequência dos números pares positivos é 2, 4, 6, 8, 10, ....
Como n começa em 2, pelo enunciado, 
para a alternativa b) teremos 2.1+1 = 3 (o primeiro número par positivo é 2); 
para a alternativa c) teremos 1 + 1 = 2, 2+1=3 (o segundo número par é 4); 
para alternativa d) teremos 2.1-1 = 1 (o primeiro número par é 2);
para a alternativa e) teremos 1-1=0 (o primeiro número par é 2); 
Para a alternativa a), a correta, temos: 2.1=2, 2.2=4, 2.3=6, 2.4=8,... continuando assim a sequência para n natural diferente de zero. Desta forma, obtemos a sequência dos números pares.
(livro-base, p. 101). 
	
	B
	an=2n+1
	
	C
	an=n+1
	
	D
	an=2n-1
	
	E
	an=n-1
Questão 7/10 - Cálculo Diferencial e Integral a Várias Variáveis
Leia o extrato de texto a seguir: 
"[Em integrais repetidas] na intenção de calcular ∫dc∫h(x)g(x)f(x,y)dydx∫cd∫g(x)h(x)f(x,y)dydx, inicialmente integramos f(x,y)f(x,y) em relação a yy, mantendo xx fixo. Os limites de integração g(x)g(x) e h(x)h(x) dependerão desse valor fixo de xx, o que resultará na quantidade ∫h(x)g(x)f(x,y)dy∫g(x)h(x)f(x,y)dy. E, então, integraremos a quantidade posterior em relação a xx, considerando este uma variável entre os limites constantes de integração cc e dd". 
Após esta avaliação, caso queira ler o texto integralmente, ele está disponível em:  RODRIGUES, A. C. D; SILVA, A. R. H. S. Cálculo diferencial e integral de várias variáveis. Curitiba: InterSaberes, 2016, p. 46..
Considerando o extrato de texto acima e os conteúdos do livro-base Cálculo diferencial e integral a várias variáveis, assinale a alternativa correta que apresenta o valor da integral repetida  ∫21∫102xydydx∫12∫012xydydx: 
Nota: 0.0
	
	A
	11
	
	B
	3232
Comentário: Esta é a alternativa correta, pois para calcular a integral repetida, primeiro considera uma das variáveis constante. Em nosso caso, consideraremos a variável x. Então,
∫21∫102xydydx=2∫21x[∫10ydy]dx=2∫21x[y22]10dx=2∫21x[122−022]dx=2∫21x12dx=∫21xdx=x22∣∣∣21222−12242−12=32∫12∫012xydydx=2∫12x[∫01ydy]dx=2∫12x[y22]01dx=2∫12x[122−022]dx=2∫12x12dx=∫12xdx=x22|12222−12242−12=32
(Livro-base p. 43-47). 
	
	C
	1212
	
	D
	5252
	
	E
	7272
Questão 8/10 - Cálculo Diferencial e Integral a Várias Variáveis
Leia o trecho de texto a seguir: 
"[Em integrais repetidas] na intenção de calcular ∫dc∫h(x)g(x)f(x,y)dydx∫cd∫g(x)h(x)f(x,y)dydx, inicialmente integramos f(x,y)f(x,y) em relação a yy, mantendo xx fixo. Os limites de integração g(x)g(x) e h(x)h(x) dependerão desse valor fixo de xx, o que resultará na quantidade ∫h(x)g(x)f(x,y)dy∫g(x)h(x)f(x,y)dy. E, então, integraremos a quantidade posterior em relação a xx, considerando este uma variável entre os limites constantes de integração cc e dd". 
Após esta avaliação, caso queira ler o texto integralmente, ele está disponível em:  RODRIGUES, A. C. D; SILVA, A. R. H. S. Cálculo diferencial e integral de várias variáveis. Curitiba: InterSaberes, 2016, p. 46.
Considerando o trecho de texto acima e os conteúdos do livro-base Cálculo diferencial e integral a várias variáveis, identifique a alternativa correta que apresenta o valor da integral repetida  ∫1−1∫1−1dydx∫−11∫−11dydx é:
Nota: 0.0
	
	A
	2
	
	B
	1
	
	C
	zero
	
	D
	4
Comentário: Esta é a alternativa correta, pois para calcular a integral repetida, primeiro considera uma das variáveis constante. Em nosso caso, consideraremos a variável x. Então,
∫1−1∫1−1dydx=∫1−1[y]1−1dx=∫1−1[1−(−1)]dx=∫1−12dx=2∫1−1dx=2[y]1−1=2[1−(−1)]=4∫−11∫−11dydx=∫−11[y]−11dx=∫−11[1−(−1)]dx=∫−112dx=2∫−11dx=2[y]−11=2[1−(−1)]=4
(Livro-base p. 43-47).
	
	E10
Questão 9/10 - Cálculo Diferencial e Integral a Várias Variáveis
Leia o extrato de texto a seguir: 
"[Em integrais repetidas] na intenção de calcular ∫dc∫h(x)g(x)f(x,y)dydx∫cd∫g(x)h(x)f(x,y)dydx, inicialmente integramos f(x,y)f(x,y) em relação a yy, mantendo xx fixo. Os limites de integração g(x)g(x) e h(x)h(x) dependerão desse valor fixo de xx, o que resultará na quantidade ∫h(x)g(x)f(x,y)dy∫g(x)h(x)f(x,y)dy. E, então, integraremos a quantidade posterior em relação a xx, considerando este uma variável entre os limites constantes de integração cc e dd". 
Após esta avaliação, caso queira ler o texto integralmente, ele está disponível em:  RODRIGUES, A. C. D; SILVA, A. R. H. S. Cálculo diferencial e integral de várias variáveis. Curitiba: InterSaberes, 2016, p. 46. 
Considerando o extrato de texto acima e os conteúdos do livro-base Cálculo diferencial e integral a várias variáveis, identifique a alternativa que apresenta o valor da integral repetida ∫20∫20yzdzdy∫02∫02yzdzdy: 
Nota: 0.0
	
	A
	0
	
	B
	2
	
	C
	4
Comentário: Para calcular a integral repetida, primeiro considera uma das variáveis constante. Em nosso caso, consideraremos a variável x. Então,
∫20∫20yzdzdy=∫20y[∫20zdz]dy=∫20y[z22]20dy=∫20y[222−022]dy=∫20y2dy=2∫20ydy=2y22∣∣∣20=2[222−022]=2⋅2=4∫02∫02yzdzdy=∫02y[∫02zdz]dy=∫02y[z22]02dy=∫02y[222−022]dy=∫02y2dy=2∫02ydy=2y22|02=2[222−022]=2⋅2=4
(livro-base, p. 43-47). 
	
	D
	8
	
	E
	16
Questão 10/10 - Cálculo Diferencial e Integral a Várias Variáveis
Leia o texto a seguir: 
Na intenção de calcular I=∫dc∫g(x)f(x)f(x,y)dydxI=∫cd∫f(x)g(x)f(x,y)dydx, inicialmente integramos f(x,y)f(x,y) em relação a yy, mantendo xx fixo. Depois integramos f(x,y)f(x,y) em relação a xx.
Fonte: Texto elaborado pelo autor da questão. 
Considerando o texto acima e os conteúdos do livro-base Cálculo diferencial e integral de várias variáveis, calcule o valor da integral dupla a seguir, pelo método da iteração: 
I=∫20∫10(x3+xy)dxdy.I=∫02∫01(x3+xy)dxdy.
Agora, assinale a alternativa que indica o resultado correto:
Nota: 0.0
	
	A
	1212
	
	B
	3232
Comentário: Esta é a alternativa correta, conforme solução: 
I=∫20∫10(x3+xy)dxdy=∫20(x44+yx22)∣∣∣x=1x=0dy=∫20(14+y2)dyI=(y4+y24)∣∣∣20=(24+224)=64=32.I=∫02∫01(x3+xy)dxdy=∫02(x44+yx22)|x=0x=1dy=∫02(14+y2)dyI=(y4+y24)|02=(24+224)=64=32.
(livro-base, p. 54-59). 
	
	C
	5252
	
	D
	7272
	
	E
	9292
Questão 4/10 - Cálculo Diferencial e Integral a Várias Variáveis
Leia o extrato de texto a seguir: 
"A função da derivada parcial em relação a um valor xi é a derivada de f em relação a xi uma vez que admitamos todas as outras variáveis como constantes". 
Após esta avaliação, caso queira ler o texto integralmente, ele está disponível em:  RODRIGUES, A. C. D; SILVA, A. R. H. S. Cálculo diferencial e integral de várias variáveis. Curitiba: InterSaberes, 2016, p. 80.
Considerando o extrato de texto acima e os conteúdos do livro-base Cálculo diferencial e integral a várias variáveis, assinale a alternativa correta que corresponde às derivadas parciais da função: f(x,y)=x2y2−3xy−13.f(x,y)=x2y2−3xy−13.
Nota: 0.0
	
	A
	∂f∂x=2xy2−3y+13  e  ∂f∂y=2x2y−3x+13.∂f∂x=2xy2−3y+13  e  ∂f∂y=2x2y−3x+13.   
	
	B
	∂f∂x=2y2−3y  e  ∂f∂y=2y−3.∂f∂x=2y2−3y  e  ∂f∂y=2y−3.   
	
	C
	∂f∂x=2xy2+3y  e  ∂f∂y=2x2y+3x.∂f∂x=2xy2+3y  e  ∂f∂y=2x2y+3x.   
	
	D
	∂f∂x=2x−3y e ∂f∂y=2y−3x.∂f∂x=2x−3y e ∂f∂y=2y−3x.    
	
	E
	∂f∂x=2xy2−3y  e  ∂f∂y=2x2y−3x.∂f∂x=2xy2−3y  e  ∂f∂y=2x2y−3x.   
Comentário: Esta é a alternativa correta, pois calculamos a derivada separadamente em relação a cada variável. Assim,
∂∂x(x2y2−3xy+13)=2xy2−3ye∂∂y(x2y2−3xy+13)=2x2y−3x.∂∂x(x2y2−3xy+13)=2xy2−3ye∂∂y(x2y2−3xy+13)=2x2y−3x.
(livro-base, p. 80). 
Questão 9/10 - Cálculo Diferencial e Integral a Várias Variáveis
Leia o excerto de texto a seguir:
"Em geral, podemos concluir que a derivada direcional de um campo escalar numa determinada direção será o produto escalar dessa direção pelo gradiente do campo escalar". 
Após esta avaliação, caso queira ler o texto integralmente, ele está disponível em:  RODRIGUES, A. C. D; SILVA, A. R. H. S. Cálculo diferencial e integral de várias variáveis. Curitiba: InterSaberes, 2016, p. 86.
Considere o excerto de texto acima, os conteúdos do livro-base Cálculo diferencial e integral de várias variáveis e a função f(x,y)=lnx−lny.f(x,y)=lnx−lny. Agora, assinale a alternativa correta que apresenta a derivada de ff no ponto P=(12,−13)P=(12,−13), na direção do vetor unitário ⃗u=(35,−45).u→=(35,−45).
Nota: 0.0
	
	A
	∂f∂⃗u(35,−13)=85.∂f∂u→(35,−13)=85.   
	
	B
	∂f∂⃗u(35,−13)=−135.∂f∂u→(35,−13)=−135.   
	
	C
	∂f∂⃗u(35,−13)=−65.∂f∂u→(35,−13)=−65.    
Comentário: Esta é a alternativa correta, pois notamos que ∂f∂⃗u(x0,y0)=∇f(x0,y0)⋅⃗u.∂f∂u→(x0,y0)=∇f(x0,y0)⋅u→. Assim, ∂f∂⃗u(1/2,−1/3)=∇f(1/2,−1/3)⋅(3/5,−4/5).∂f∂u→(1/2,−1/3)=∇f(1/2,−1/3)⋅(3/5,−4/5). Como ∂f∂x(x,y)=1x e ∂f∂y(x,y)=−1y,∂f∂x(x,y)=1x e ∂f∂y(x,y)=−1y, temos ∇f(1/2,−1/3)=(2,3)∇f(1/2,−1/3)=(2,3) e, portanto, ∂f∂⃗u(1/2,−1/3)=(2,3)⋅(3/5,−4/5)=−65.∂f∂u→(1/2,−1/3)=(2,3)⋅(3/5,−4/5)=−65.
(livro-base, p. 86). 
	
	D
	−57.−57.   
	
	E
	−85.−85.   
Questão 1/10 - Cálculo Diferencial e Integral a Várias Variáveis
Leia a seguinte passagem de texto:
O uso de funções de várias variáveis permite modelar situações problema nos quais uma variável é afetada pelo comportamento de uma infinidade de outras variáveis. Entretanto, para o uso adequado dessa ferramenta é necessário aprender a calcular o valor de uma função de várias variáveis em um determinado ponto.
Fonte: Texto elaborado pelo autor.
Seja AA um conjunto definido no espaço quadridimensional R4R4 e, a função f(x,y,z,t)=x2+y2+z2+t2f(x,y,z,t)=x2+y2+z2+t2, que associa a quádrupla ordenada de números reais à soma de seus quadrados. 
Considerando o texto e os conteúdos discutidos no livro-base Cálculo Diferencial e Integral a várias variáveis, a alternativa que indica o valor correto de f(1,2,3,4)f(1,2,3,4) é:
Nota: 0.0
	
	A
	16
	
	B
	25
	
	C
	30
f(1,2,3,4) = 1² + 2² + 3² + 4² = 1+ 4 + 9 + 16 = 30 
 livro-base:  p. 75-76
	
	D
	36
	
	E
	40
Questão 2/10 - Cálculo Diferencial e Integral a Várias Variáveis
Leia a seguinte passagem do texto:
"A operação de derivada parcial permite encontrar a derivada de uma função de várias variáveis em relação a uma de suas outras funções. A estratégia para o cálculo é considerar todas as outras variáveis como constantes e aplicar as regras de derivação como habitualmente."
Texto elaborado pelo autor.
Após esta avaliação, caso queira ler o texto integralmente, ele está disponível em:  RODRIGUES, A. C. D; SILVA, A. R. H. S. Cálculo diferencial e integral de várias variáveis. Curitiba: InterSaberes, 2016, p. 80.
Assinale a alternativa correta que corresponde às derivadas parciais da função f(x,y,z)=3x2+4xy−3zy.f(x,y,z)=3x2+4xy−3zy..
Nota: 10.0
	
	A
	∂f∂x=6x+4y;∂f∂y=4x−3z;∂f∂z=−3y.∂f∂x=6x+4y;∂f∂y=4x−3z;∂f∂z=−3y.
Você acertou!
Calculamos a derivada parcial separadamente em relação a cada variável. Assim,
∂∂x(3x2+4xy−3zy)=6x+4y;∂∂y(3x2+4xy−3zy)=4x−3z;∂∂z(3x2+4xy−3zy)=−3y.∂∂x(3x2+4xy−3zy)=6x+4y;∂∂y(3x2+4xy−3zy)=4x−3z;∂∂z(3x2+4xy−3zy)=−3y.
	
	B
	∂f∂x=2x+5z;∂f∂y=−3y−2z;∂f∂z=−2x∂f∂x=2x+5z;∂f∂y=−3y−2z;∂f∂z=−2x
	
	C
	∂f∂x=5x−2y;∂f∂y=2x+5y;∂f∂z=3x∂f∂x=5x−2y;∂f∂y=2x+5y;∂f∂z=3x
	
	D
	∂f∂x=2y+5z;∂f∂y=x−z;∂f∂z=−y∂f∂x=2y+5z;∂f∂y=x−z;∂f∂z=−y
	
	E
	∂f∂x=x+4;∂f∂y=x+y;∂f∂z=z∂f∂x=x+4;∂f∂y=x+y;∂f∂z=z
Questão 3/10 - Cálculo Diferencial e Integral a Várias Variáveis
Leia o texto:
Dadas as equações paramétricas das elipses: Elipse 1:{x=2costy=4sent e Elipse 2:{x=2costy=sent,Elipse 1:{x=2costy=4sent e Elipse 2:{x=2costy=sent, seguem os gráficos no plano xy:
Após esta avaliação, caso queira ler o texto integralmente, ele está disponível em:  RODRIGUES, A. C. D; SILVA, A. R. H. S. Cálculo diferencial e integral de várias variáveis. Curitiba: InterSaberes, 2016, p. 25-30.
De acordo com  o livro-base Cálculo diferencial e integral de várias variáveis e a figura, a área em cinza limitada pelas elipses 1 e 2 e pelo eixo y vale:
Nota: 0.0
	
	A
	3 u.a.
	
	B
	2 u.a.
	
	C
	ππ u.a.D
	2π2π u.a.
	
	E
	3π3π u.a.
A=2∫0π2y(t)x′(t)dtA=2∫0π2{[4sent⋅(−2sent)]−[sent⋅(−2sent)]}dtA=2∫0π2(−8sen2t+2sen2t)dt=2∫0π2(−6sen2t)dtA=−12∫0π2(12−12cos2t)dt=12(θ2−14sen2θ)∣∣∣0π2=−12(−π4−0)A=3πu.a.A=2∫π20y(t)x′(t)dtA=2∫π20{[4sent⋅(−2sent)]−[sent⋅(−2sent)]}dtA=2∫π20(−8sen2t+2sen2t)dt=2∫π20(−6sen2t)dtA=−12∫π20(12−12cos2t)dt=12(θ2−14sen2θ)|π20=−12(−π4−0)A=3πu.a.
Fonte: livro-base: RODRIGUES, A. C. D.; SILVA, A. R. H. S. Cálculo diferencial e integral de várias variáveis. Curitiba: Intersaberes, 2016.
Questão 4/10 - Cálculo Diferencial e Integral a Várias Variáveis
Leia o texto:
As técnicas de integração podem ser utilizadas para uma ampla gama de aplicações. As aplicações mais conhecidas são aquelas referentes ao cálculo da área abaixo de uma determinada curva. Entretanto, a extensão dessa operação envolve também o cálculo de grandezas físicas, o cálculo do comprimento de arco e também o cálculo de volume de sólidos.
Fonte: Texto elaborado pelo autor.
Observe o limaçon abaixo:
Fonte: Cálculo diferencial e integral de várias variáveis. Curitiba: Intersaberes, 2016. 
Considerando o limaçon e os conteúdos estudados no livro-base Cálculo diferencial e integral a várias variáveis, assinale a alternativa que apresenta corretamente a área da região cinza do limaçon r=1+2senθr=1+2senθ.
Nota: 0.0
	
	A
	4+32πu.a.4+32πu.a.
Solução:
A=12∫π0[f(θ)]2dθ=12∫π0[1+2senθ]2dθA=12∫π0(1+4senθ+4sen2θ)dθA=12∫π0[1+4senθ+4(12−12cos2θ)]dθA=12∫π0(3+4senθ−2cos2θ)dθ=12(3θ−4cosθ−sen2θ)∣∣∣π0A=12[3π−4(cosπ−cos0)−0]=12(3π+8)=32π+4u.a.A=12∫0π[f(θ)]2dθ=12∫0π[1+2senθ]2dθA=12∫0π(1+4senθ+4sen2θ)dθA=12∫0π[1+4senθ+4(12−12cos2θ)]dθA=12∫0π(3+4senθ−2cos2θ)dθ=12(3θ−4cosθ−sen2θ)|0πA=12[3π−4(cosπ−cos0)−0]=12(3π+8)=32π+4u.a.
livro-base: p. 33-36
	
	B
	3+12πu.a.3+12πu.a.
	
	C
	2+52πu.a.2+52πu.a.
	
	D
	1+72πu.a.1+72πu.a.
	
	E
	3+52πu.a.3+52πu.a.
Questão 5/10 - Cálculo Diferencial e Integral a Várias Variáveis
Leia o trecho a seguir:
A função da derivada parcial em relação a um valor xixi é a derivada de f em relação a xixi uma vez que admitamos todas as outras variáveis como constantes.
Após esta avaliação, caso queira ler o texto integralmente, ele está disponível em:  RODRIGUES, A. C. D; SILVA, A. R. H. S. Cálculo diferencial e integral de várias variáveis. Curitiba: InterSaberes, 2016, p. 80.
Considere a função:  f(x,y,z) = 3x + 5y -6z. De acordo com os conteúdos da Aula 3 - Tema: Derivadas parciais, ao calcular as derivadas parciais da função acima, obtemos:
Nota: 0.0
	
	A
	fx = 3; fy = 5;   fz = -6
Calculamos a derivada separadamente em relação a cada variável.
De acordo com a vídeo aula:
Observar cada termo separadamente Aplicar as regras de derivação para a variável de análise As demais variáveis são consideradas constantes
(Vídeo aula 3).
	
	B
	fx = -3; fy = -5; fz = -6
	
	C
	fx = 5; fy = 3; fz = 6
	
	D
	fx = 6; fy = 5; fz = -3
	
	E
	fx = -6; fy = 5; fz = 3
Questão 6/10 - Cálculo Diferencial e Integral a Várias Variáveis
Leia o texto:
O processo de integração determinado para uma única variável pode ser generalizado para múltiplas variáveis, gerando as técnicas de integração para integral dupla, integral tripla, integral vetorial e tantas outras técnicas.
Fonte: Texto elaborado pelo autor.
Considerando o texto acima e utilizando as técnicas de integração aprendidas ao longo da Videoaula "Exercícios" - Tema 01: Integrais Duplas - da Aula 05 e do livro-base Cálculo Diferencial e Integral a várias variáveis, indique a alternativa que apresenta o valor correto de 
I.I.
I=∫20∫10(x3+xy)dxdy.I=∫02∫01(x3+xy)dxdy.
Nota: 0.0
	
	A
	1212
	
	B
	3232
Solução:
I=∫20∫10(x3+xy)dxdy=∫20(x44+yx22)∣∣∣x=1x=0dy=∫20(14+y2)dyI=(y4+y24)∣∣∣20=(24+224)=64=32.I=∫02∫01(x3+xy)dxdy=∫02(x44+yx22)|x=0x=1dy=∫02(14+y2)dyI=(y4+y24)|02=(24+224)=64=32.
Fonte: Videoaula Exercícios - videoaula 2 - Tema 01: Integrais Duplas - da Aula 05, 03'10 até 04'27 | e Livro-Base, p. 54-59.
	
	C
	5252
	
	D
	7272
	
	E
	9292
Questão 7/10 - Cálculo Diferencial e Integral a Várias Variáveis
Considerando o livro-base Cálculo diferencial e integral de várias variáveis, considere a área AA da região do primeiro quadrante limitada pela parábola y=x2y=x2, pelo eixo yy e pela reta y=4y=4. É correto afirmar que
Nota: 0.0
	
	A
	A=∫40∫√y0dxdy=163u.a.A=∫04∫0ydxdy=163u.a.
Um esboço desta região é apresentado abaixo:
Note que esta região pode ser descrita como R={(x,y)∈R2; 0≤y≤4 e 0≤x≤√y}.R={(x,y)∈R2; 0≤y≤4 e 0≤x≤y}. Assim, 
A=∫40∫√y0dxdy=∫40(∫√y0dx)dy=∫40√ydy=[23√y3]∣∣∣40=163u.a.A=∫04∫0ydxdy=∫04(∫0ydx)dy=∫04ydy=[23y3]|04=163u.a.            (livro-base p. 54-59)
	
	B
	A=∫40∫√y0dydx=165u.a.A=∫04∫0ydydx=165u.a.
	
	C
	A=∫40∫√y0dxdy=165u.a.A=∫04∫0ydxdy=165u.a.
	
	D
	A=∫40∫√y0dydx=65u.a.A=∫04∫0ydydx=65u.a.
	
	E
	A=∫40∫√y0dxdy=67u.a.A=∫04∫0ydxdy=67u.a.
Questão 8/10 - Cálculo Diferencial e Integral a Várias Variáveis
Leia o texto:
As técnicas de integração podem ser utilizadas para uma ampla gama de aplicações. As aplicações mais conhecidas são aquelas referentes ao cálculo da área abaixo de uma determinada curva. Entretanto, a extensão dessa operação envolve também o cálculo de grandezas físicas, o cálculo do comprimento de arco e também o cálculo de volume de sólidos.
Fonte: Texto elaborado pelo autor da questão.
Com base no texto acima e nos conteúdos discutidos no livro-base Cálculo diferencial e integral a várias variáveis, calcule o valor da área de uma superfície cônica gerada pela revolução do segmento de reta dado pela equação y=3x+2y=3x+2 no intervalo fechado [0,2][0,2] em torno do eixo das abscissas e assinale a alternativa que corresponde a esse valor.
Nota: 0.0
	
	A
	25π√20u.a.25π20u.a.
	
	B
	20π√10u.a.20π10u.a.
Solução:
A=2π∫20y(x)√1+[y′(x)]2dx=2π∫20(3x+2)√1+32dx=2π√10∫20(3x+2)dxA=2π√103(3x+22)2∣∣∣20=π√103[(3⋅2+2)2−4]=60π√103=20π√10u.a.A=2π∫02y(x)1+[y′(x)]2dx=2π∫02(3x+2)1+32dx=2π10∫02(3x+2)dxA=2π103(3x+22)2|02=π103[(3⋅2+2)2−4]=60π103=20π10u.a.
livro-base p. 15-20
	
	C
	22π√12u.a.22π12u.a.
	
	D
	23π√13u.a.23π13u.a.
	
	E
	21π√15u.a.21π15u.a.
Questão 9/10 - Cálculo Diferencial e Integral a Várias Variáveis
Leia a seguinte passagem de texto:
O processo de integração determinado para uma única variável pode ser generalizado para múltiplas variáveis, gerando as técnicas de integração para integral dupla, integral tripla, integral vetorial e tantas outras técnicas.
Fonte: Texto elaborado pelo autor da questão.
Considerando a passagem de texto e o livro-base Cálculo Diferencial e Integral a várias variáveis, marque a alternativa que indica o valor correto para a integral dupla dada por:
   
Nota: 0.0
	
	A
	6
	
	B
	10
	
	C
	12
	
	D
	15
	
	E
	16
Questão 10/10 - Cálculo Diferencial e Integral a Várias Variáveis
Leia o texto:
As técnicas de integração podem ser utilizadas para uma ampla gama de aplicações. As aplicações mais conhecidas são aquelas referentes ao cálculo da área abaixo de uma determinada curva. Entretanto, a extensão dessa operação envolve também o cálculo de grandezas físicas, o cálculo do comprimento de arco e também o cálculo de volume de sólidos.
Fonte: Texto elaborado pelo autor da questão.
O gráfico abaixo representa a área da região RR limitada pela curva y=x2y=x2 e pela reta xx. 
Considerando o texto acima e os conteúdos explorados no livro-base Cálculo Diferencial e Integral a várias variáveis, indique a alternativa que determina a área delimitada pela curva e pela reta do gráfico acima.
Nota: 0.0
	
	A
	
	
	B
	
	
	C
	1
	
	D
	2
	
	E
	
Questão 1/10 - Cálculo Diferencial e Integral a Várias Variáveis
Considere a região RR delimitada pela reta y=x+2y=x+2 e pela parábola y=x2y=x2, conforme a figura abaixo:
O valor da área de RR é
Nota: 0.0
	
	A
	52u.a.52u.a.
	
	B
	132u.a.132u.a.
	
	C
	29u.a.29u.a.
	
	D
	92u.a.92u.a.
A área da região RR pode ser obtida a partir da integral dupla: ∬R1dA.∬R1dA. 
Inicialmente, observamos que R={(x,y)∈R2; −1≤x≤2 e x2≤y≤x+2}.R={(x,y)∈R2; −1≤x≤2 e x2≤y≤x+2}. Assim,
A=∫2−1∫x+2x21dydx=∫2−1(x+2−x2)dx=[x22+2x−x33]2−1=(2+4−83)−(12−2+13)=92u.a.A=∫−12∫x2x+21dydx=∫−12(x+2−x2)dx=[x22+2x−x33]−12=(2+4−83)−(12−2+13)=92u.a.E
	72u.a.72u.a.
Questão 2/10 - Cálculo Diferencial e Integral a Várias Variáveis
Considerando o livro-base Cálculo diferencial e integral de várias variáveis, considere a área AA da região do primeiro quadrante limitada pela parábola y=x2y=x2, pelo eixo yy e pela reta y=4y=4. É correto afirmar que
Nota: 0.0
	
	A
	A=∫40∫√y0dxdy=163u.a.A=∫04∫0ydxdy=163u.a.
Um esboço desta região é apresentado abaixo:
Note que esta região pode ser descrita como R={(x,y)∈R2; 0≤y≤4 e 0≤x≤√y}.R={(x,y)∈R2; 0≤y≤4 e 0≤x≤y}. Assim, 
A=∫40∫√y0dxdy=∫40(∫√y0dx)dy=∫40√ydy=[23√y3]∣∣∣40=163u.a.A=∫04∫0ydxdy=∫04(∫0ydx)dy=∫04ydy=[23y3]|04=163u.a.            (livro-base p. 54-59)
	
	B
	A=∫40∫√y0dydx=165u.a.A=∫04∫0ydydx=165u.a.
	
	C
	A=∫40∫√y0dxdy=165u.a.A=∫04∫0ydxdy=165u.a.
	
	D
	A=∫40∫√y0dydx=65u.a.A=∫04∫0ydydx=65u.a.
	
	E
	A=∫40∫√y0dxdy=67u.a.A=∫04∫0ydxdy=67u.a.
Questão 3/10 - Cálculo Diferencial e Integral a Várias Variáveis
Leia o trecho a seguir:
A função da derivada parcial em relação a um valor xixi é a derivada de f em relação a xixi uma vez que admitamos todas as outras variáveis como constantes.
Após esta avaliação, caso queira ler o texto integralmente, ele está disponível em:  RODRIGUES, A. C. D; SILVA, A. R. H. S. Cálculo diferencial e integral de várias variáveis. Curitiba: InterSaberes, 2016, p. 80.
Considere a função:  f(x,y,z) = 3x + 5y -6z. De acordo com os conteúdos da Aula 3 - Tema: Derivadas parciais, ao calcular as derivadas parciais da função acima, obtemos:
Nota: 0.0
	
	A
	fx = 3; fy = 5;   fz = -6
Calculamos a derivada separadamente em relação a cada variável.
De acordo com a vídeo aula:
Observar cada termo separadamente Aplicar as regras de derivação para a variável de análise As demais variáveis são consideradas constantes
(Vídeo aula 3).
	
	B
	fx = -3; fy = -5; fz = -6
	
	C
	fx = 5; fy = 3; fz = 6
	
	D
	fx = 6; fy = 5; fz = -3
	
	E
	fx = -6; fy = 5; fz = 3
Questão 4/10 - Cálculo Diferencial e Integral a Várias Variáveis
Leia o texto:
O processo de integração determinado para uma única variável pode ser generalizado para múltiplas variáveis, gerando as técnicas de integração para integral dupla, integral tripla, integral vetorial e tantas outras técnicas.
Fonte: Texto elaborado pelo autor.
Considerando o texto acima e os conteúdos do livro-base Cálculo Diferencial e Integral a várias variáveis, calcule o valor da integral de linha I=∫Cyzdx+xzdy+xydzI=∫Cyzdx+xzdy+xydz dadas as equações paramétricas ⎧⎨⎩x=2ty=t+1z=4t+2{x=2ty=t+1z=4t+2com 0≤t≤10≤t≤1 e assinale a alternativa que corresponde a esse valor.
Nota: 0.0
	
	A
	-12
	
	B
	24
Solução:
Fazendo as substituições x=2t,dx=2dt;y=t+1,dy=dt;z=4t+2,dz=4dtx=2t,dx=2dt;y=t+1,dy=dt;z=4t+2,dz=4dt na integral de linha, temos
I=∫C[(t+1)(4t+2)2dt+2t(4t+2)dt+2t(t+1)4dt]I=∫C[2(4t2+2t+4t+2)+(8t2+4t)+4(2t2+2t)]dtI=∫C(8t2+12t+4+8t2+4t+8t2+8t)dtI=∫C(24t2+24t+4)dt=(8t3+12t2+4t)∣∣∣10=8+12+4=24.I=∫C[(t+1)(4t+2)2dt+2t(4t+2)dt+2t(t+1)4dt]I=∫C[2(4t2+2t+4t+2)+(8t2+4t)+4(2t2+2t)]dtI=∫C(8t2+12t+4+8t2+4t+8t2+8t)dtI=∫C(24t2+24t+4)dt=(8t3+12t2+4t)|01=8+12+4=24.
Fonte: livro-base: RODRIGUES, A. C. D; SILVA, A. R. H. S. Cálculo diferencial e integral de várias variáveis. Curitiba: Intersaberes, 2016.  p.153 a p.155
	
	C
	15
	
	D
	-20
	
	E
	30
Questão 5/10 - Cálculo Diferencial e Integral a Várias Variáveis
Leia a seguinte passagem de texto:
O processo de integração determinado para uma única variável pode ser generalizado para múltiplas variáveis, gerando as técnicas de integração para integral dupla, integral tripla, integral vetorial e tantas outras técnicas.
Fonte: Texto elaborado pelo autor da questão.
Considerando a passagem de texto e o livro-base Cálculo Diferencial e Integral a várias variáveis, marque a alternativa que indica o valor correto para a integral dupla dada por:
   
Nota: 0.0
	
	A
	6
	
	B
	10
	
	C
	12
	
	D
	15
	
	E
	16
Questão 6/10 - Cálculo Diferencial e Integral a Várias Variáveis
Considerando o livro-base Cálculo diferencial e integral de várias variáveis, a alternativa que corresponde ao valor da área da região R limitada pelas curvas y=x2y=x2 e y=√xy=x, do gráfico a seguir, é
Nota: 0.0
	
	A
	13u.a.13u.a.
Solução:
A=∫10∫√xx2dydx=∫10y∣∣∣√xx2dx=∫10(√x−x2)dx=23x3/2−x33∣∣∣10=23−13=13u.a.A=∫01∫x2xdydx=∫01y|x2xdx=∫01(x−x2)dx=23x3/2−x33|01=23−13=13u.a.
Fonte: livro-base: RODRIGUES, A. C. D; SILVA, A. R. H. S. Cálculo diferencial e integral de várias variáveis. Curitiba: Intersaberes, 2016. p. 54-59
	
	B
	23u.a.23u.a.
	
	C
	43u.a.43u.a.
	
	D
	53u.a.53u.a.
	
	E
	73u.a.73u.a.
Questão 7/10 - Cálculo Diferencial e Integral a Várias Variáveis
Leia a seguinte passagem do texto:
"A operação de derivada parcial permite encontrar a derivada de uma função de várias variáveis em relação a uma de suas outras funções. A estratégia para o cálculo é considerar todas as outras variáveis como constantes e aplicar as regras de derivação como habitualmente."
Texto elaborado pelo autor.
Após esta avaliação, caso queira ler o texto integralmente, ele está disponível em:  RODRIGUES, A. C. D; SILVA, A. R. H. S. Cálculo diferencial e integral de várias variáveis. Curitiba: InterSaberes, 2016, p. 80.
Assinale a alternativa correta que corresponde às derivadas parciais da função f(x,y,z)=3x2+4xy−3zy.f(x,y,z)=3x2+4xy−3zy..
Nota: 0.0
	
	A
	∂f∂x=6x+4y;∂f∂y=4x−3z;∂f∂z=−3y.∂f∂x=6x+4y;∂f∂y=4x−3z;∂f∂z=−3y.
Calculamos a derivada parcial separadamente em relação a cada variável. Assim,
∂∂x(3x2+4xy−3zy)=6x+4y;∂∂y(3x2+4xy−3zy)=4x−3z;∂∂z(3x2+4xy−3zy)=−3y.∂∂x(3x2+4xy−3zy)=6x+4y;∂∂y(3x2+4xy−3zy)=4x−3z;∂∂z(3x2+4xy−3zy)=−3y.
	
	B
	∂f∂x=2x+5z;∂f∂y=−3y−2z;∂f∂z=−2x∂f∂x=2x+5z;∂f∂y=−3y−2z;∂f∂z=−2x
	
	C
	∂f∂x=5x−2y;∂f∂y=2x+5y;∂f∂z=3x∂f∂x=5x−2y;∂f∂y=2x+5y;∂f∂z=3x
	
	D
	∂f∂x=2y+5z;∂f∂y=x−z;∂f∂z=−y∂f∂x=2y+5z;∂f∂y=x−z;∂f∂z=−y
	
	E
	∂f∂x=x+4;∂f∂y=x+y;∂f∂z=z∂f∂x=x+4;∂f∂y=x+y;∂f∂z=z
Questão 8/10 - Cálculo Diferencial e Integral a Várias Variáveis
Leia o texto:
As técnicas de integração podem ser utilizadas para uma ampla gama de aplicações. As aplicações mais conhecidas são aquelas referentes ao cálculo da área abaixo de uma determinada curva. Entretanto, a extensão dessa operação envolve também o cálculo de grandezas físicas, o cálculo do comprimento de arco e também o cálculo de volume de sólidos.
Fonte: Texto elaborado pelo autor da questão.
O gráfico abaixo representa a área da região RR limitada pela curva y=x2y=x2 e pela reta xx. 
Considerando o texto acima e os conteúdos explorados no livro-base Cálculo Diferencial e Integral a várias variáveis, indique a alternativa que determina a área delimitada pela curva e pela reta do gráfico acima.
Nota: 0.0
	
	A
	
	
	B
	
	
	C
	1
	
	D
	2
	
	E
	
Questão 9/10 - Cálculo Diferencial e Integral a Várias Variáveis
Considerando o livro-base Cálculo diferencial e integral de várias variáveis, qual a lei de formação da sequência dos números ímpares (n), sendo que n é um número natural diferente de zero?
Nota: 0.0
	
	A
	an = 2n
	
	B
	an = 2n + 1
	
	C
	an = n + 1
	
	D
	an = 2n – 1
A sequência dos números ímpares é 1, 3, 5, 7, 9, ....
Como n começa em 1, pelo enunciado, para a alternativa a) teremos 2.1 = 2 (o primeiro número ímpar é 1); para a alternativa b) teremos 2.1+ 1 = 3; para a alternativa c) teremos 1 + 1 = 2; na alternativa e) teremos 1-1 = 0.
Já para a alternativa d), a correta, temos: 2.1 – 1 = 1. Continuando a sequência, 2.2 – 1 = 3 e assim, sucessivamente. Desta forma, obtemos a sequência dos números ímpares.
livro-base p. 101-102
	
	E
	an = n - 1
Questão 10/10 - Cálculo Diferencial e Integral a Várias Variáveis
Leia o texto:
As técnicas de integração podem ser utilizadas para uma ampla gama de aplicações. As aplicações mais conhecidas são aquelas referentes ao cálculo da área abaixo de uma determinada curva. Entretanto, a extensão dessa operação envolve também o cálculo de grandezas físicas, o cálculo do comprimento de arco e também o cálculo de volume de sólidos.
Fonte: Texto elaborado pelo autor da questão.
De acordo com os conteúdos estudados no livro-base Cálculodiferencial e integral a várias variáveis, encontre o comprimento do arco da curva dada por y=3x+5y=3x+5 no intervalo fechado [0,2][0,2] e marque a alternativa correta:
 
Nota: 0.0
	
	A
	2√10u.c.210u.c.
A=∫ba√1+[f′(x)]2dx=∫20√1+32dx=∫20√10dx=2√10u.c.A=∫ab1+[f′(x)]2dx=∫021+32dx=∫0210dx=210u.c.
livro-base: p. 21-24
	
	B
	3√5u.c.35u.c.
	
	C
	4√5u.c.45u.c.
	
	D
	5√5u.c.55u.c.
	
	E
	6√10u.c.610u.c.
Questão 1/10 - Cálculo Diferencial e Integral a Várias Variáveis
Leia a seguinte passagem de texto:
O uso de funções de várias variáveis permite modelar situações problema nos quais uma variável é afetada pelo comportamento de uma infinidade de outras variáveis. Entretanto, para o uso adequado dessa ferramenta é necessário aprender a calcular o valor de uma função de várias variáveis em um determinado ponto.
Fonte: Texto elaborado pelo autor.
Seja AA um conjunto definido no espaço quadridimensional R4R4 e, a função f(x,y,z,t)=x2+y2+z2+t2f(x,y,z,t)=x2+y2+z2+t2, que associa a quádrupla ordenada de números reais à soma de seus quadrados. 
Considerando o texto e os conteúdos discutidos no livro-base Cálculo Diferencial e Integral a várias variáveis, a alternativa que indica o valor correto de f(1,2,3,4)f(1,2,3,4) é:
Nota: 0.0
	
	A
	16
	
	B
	25
	
	C
	30
f(1,2,3,4) = 1² + 2² + 3² + 4² = 1+ 4 + 9 + 16 = 30 
 livro-base:  p. 75-76
	
	D
	36
	
	E
	40
Questão 2/10 - Cálculo Diferencial e Integral a Várias Variáveis
Leia a seguinte passagem do texto:
"A operação de derivada parcial permite encontrar a derivada de uma função de várias variáveis em relação a uma de suas outras funções. A estratégia para o cálculo é considerar todas as outras variáveis como constantes e aplicar as regras de derivação como habitualmente."
Texto elaborado pelo autor.
Após esta avaliação, caso queira ler o texto integralmente, ele está disponível em:  RODRIGUES, A. C. D; SILVA, A. R. H. S. Cálculo diferencial e integral de várias variáveis. Curitiba: InterSaberes, 2016, p. 80.
Assinale a alternativa correta que corresponde às derivadas parciais da função f(x,y,z)=3x2+4xy−3zy.f(x,y,z)=3x2+4xy−3zy..
Nota: 10.0
	
	A
	∂f∂x=6x+4y;∂f∂y=4x−3z;∂f∂z=−3y.∂f∂x=6x+4y;∂f∂y=4x−3z;∂f∂z=−3y.
Você acertou!
Calculamos a derivada parcial separadamente em relação a cada variável. Assim,
∂∂x(3x2+4xy−3zy)=6x+4y;∂∂y(3x2+4xy−3zy)=4x−3z;∂∂z(3x2+4xy−3zy)=−3y.∂∂x(3x2+4xy−3zy)=6x+4y;∂∂y(3x2+4xy−3zy)=4x−3z;∂∂z(3x2+4xy−3zy)=−3y.
	
	B
	∂f∂x=2x+5z;∂f∂y=−3y−2z;∂f∂z=−2x∂f∂x=2x+5z;∂f∂y=−3y−2z;∂f∂z=−2x
	
	C
	∂f∂x=5x−2y;∂f∂y=2x+5y;∂f∂z=3x∂f∂x=5x−2y;∂f∂y=2x+5y;∂f∂z=3x
	
	D
	∂f∂x=2y+5z;∂f∂y=x−z;∂f∂z=−y∂f∂x=2y+5z;∂f∂y=x−z;∂f∂z=−y
	
	E
	∂f∂x=x+4;∂f∂y=x+y;∂f∂z=z∂f∂x=x+4;∂f∂y=x+y;∂f∂z=z
Questão 3/10 - Cálculo Diferencial e Integral a Várias Variáveis
Leia o texto:
Dadas as equações paramétricas das elipses: Elipse 1:{x=2costy=4sent e Elipse 2:{x=2costy=sent,Elipse 1:{x=2costy=4sent e Elipse 2:{x=2costy=sent, seguem os gráficos no plano xy:
Após esta avaliação, caso queira ler o texto integralmente, ele está disponível em:  RODRIGUES, A. C. D; SILVA, A. R. H. S. Cálculo diferencial e integral de várias variáveis. Curitiba: InterSaberes, 2016, p. 25-30.
De acordo com  o livro-base Cálculo diferencial e integral de várias variáveis e a figura, a área em cinza limitada pelas elipses 1 e 2 e pelo eixo y vale:
Nota: 0.0
	
	A
	3 u.a.
	
	B
	2 u.a.
	
	C
	ππ u.a.
	
	D
	2π2π u.a.
	
	E
	3π3π u.a.
A=2∫0π2y(t)x′(t)dtA=2∫0π2{[4sent⋅(−2sent)]−[sent⋅(−2sent)]}dtA=2∫0π2(−8sen2t+2sen2t)dt=2∫0π2(−6sen2t)dtA=−12∫0π2(12−12cos2t)dt=12(θ2−14sen2θ)∣∣∣0π2=−12(−π4−0)A=3πu.a.A=2∫π20y(t)x′(t)dtA=2∫π20{[4sent⋅(−2sent)]−[sent⋅(−2sent)]}dtA=2∫π20(−8sen2t+2sen2t)dt=2∫π20(−6sen2t)dtA=−12∫π20(12−12cos2t)dt=12(θ2−14sen2θ)|π20=−12(−π4−0)A=3πu.a.
Fonte: livro-base: RODRIGUES, A. C. D.; SILVA, A. R. H. S. Cálculo diferencial e integral de várias variáveis. Curitiba: Intersaberes, 2016.
Questão 4/10 - Cálculo Diferencial e Integral a Várias Variáveis
Leia o texto:
As técnicas de integração podem ser utilizadas para uma ampla gama de aplicações. As aplicações mais conhecidas são aquelas referentes ao cálculo da área abaixo de uma determinada curva. Entretanto, a extensão dessa operação envolve também o cálculo de grandezas físicas, o cálculo do comprimento de arco e também o cálculo de volume de sólidos.
Fonte: Texto elaborado pelo autor.
Observe o limaçon abaixo:
Fonte: Cálculo diferencial e integral de várias variáveis. Curitiba: Intersaberes, 2016. 
Considerando o limaçon e os conteúdos estudados no livro-base Cálculo diferencial e integral a várias variáveis, assinale a alternativa que apresenta corretamente a área da região cinza do limaçon r=1+2senθr=1+2senθ.
Nota: 0.0
	
	A
	4+32πu.a.4+32πu.a.
Solução:
A=12∫π0[f(θ)]2dθ=12∫π0[1+2senθ]2dθA=12∫π0(1+4senθ+4sen2θ)dθA=12∫π0[1+4senθ+4(12−12cos2θ)]dθA=12∫π0(3+4senθ−2cos2θ)dθ=12(3θ−4cosθ−sen2θ)∣∣∣π0A=12[3π−4(cosπ−cos0)−0]=12(3π+8)=32π+4u.a.A=12∫0π[f(θ)]2dθ=12∫0π[1+2senθ]2dθA=12∫0π(1+4senθ+4sen2θ)dθA=12∫0π[1+4senθ+4(12−12cos2θ)]dθA=12∫0π(3+4senθ−2cos2θ)dθ=12(3θ−4cosθ−sen2θ)|0πA=12[3π−4(cosπ−cos0)−0]=12(3π+8)=32π+4u.a.
livro-base: p. 33-36
	
	B
	3+12πu.a.3+12πu.a.
	
	C
	2+52πu.a.2+52πu.a.
	
	D
	1+72πu.a.1+72πu.a.
	
	E
	3+52πu.a.3+52πu.a.
Questão 5/10 - Cálculo Diferencial e Integral a Várias Variáveis
Leia o trecho a seguir:
A função da derivada parcial em relação a um valor xixi é a derivada de f em relação a xixi uma vez que admitamos todas as outras variáveis como constantes.
Após esta avaliação, caso queira ler o texto integralmente, ele está disponível em:  RODRIGUES, A. C. D; SILVA, A. R. H. S. Cálculo diferencial e integral de várias variáveis. Curitiba: InterSaberes, 2016, p. 80.
Considere a função:  f(x,y,z) = 3x + 5y -6z. De acordo com os conteúdos da Aula 3 - Tema: Derivadas parciais, ao calcular as derivadas parciais da função acima, obtemos:
Nota: 0.0
	
	A
	fx = 3; fy = 5;   fz = -6
Calculamos a derivada separadamente em relação a cada variável.
De acordo com a vídeo aula:
Observar cada termo separadamente Aplicar as regras de derivação para a variável de análise As demais variáveis são consideradas constantes
(Vídeo aula 3).
	
	B
	fx = -3; fy = -5; fz = -6
	
	C
	fx = 5; fy = 3; fz = 6
	
	D
	fx = 6; fy = 5; fz = -3
	
	E
	fx = -6; fy = 5; fz = 3
Questão 6/10 - Cálculo Diferencial e Integral a Várias Variáveis
Leia o texto:
O processo de integração determinado para uma única variável pode ser generalizado para múltiplas variáveis, gerando as técnicas de integração para integral dupla, integral tripla, integral vetorial e tantas outras técnicas.
Fonte: Texto elaborado pelo autor.
Considerando o texto acima e utilizando as técnicas de integração aprendidas ao longo da Videoaula "Exercícios" - Tema 01: Integrais Duplas - da Aula 05 e do livro-base Cálculo Diferencial e Integral a várias variáveis, indique a alternativa que apresenta o valor correto de 
I.I.
I=∫20∫10(x3+xy)dxdy.I=∫02∫01(x3+xy)dxdy.
Nota: 0.0
	
	A
	1212
	
	B
	3232
Solução:
I=∫20∫10(x3+xy)dxdy=∫20(x44+yx22)∣∣∣x=1x=0dy=∫20(14+y2)dyI=(y4+y24)∣∣∣20=(24+224)=64=32.I=∫02∫01(x3+xy)dxdy=∫02(x44+yx22)|x=0x=1dy=∫02(14+y2)dyI=(y4+y24)|02=(24+224)=64=32.
Fonte: Videoaula Exercícios - videoaula 2 - Tema 01: Integrais Duplas - da Aula 05, 03'10 até 04'27 | e Livro-Base, p. 54-59.
	
	C
	5252
	
	D
	7272
	
	E
	9292
Questão 7/10 - Cálculo Diferencial e Integral a Várias Variáveis
Considerando o livro-base Cálculo diferencial e integral de várias variáveis, considere a área AA da região do primeiro quadrante limitada pela parábola y=x2y=x2, pelo eixo yy e pela reta y=4y=4. É correto afirmar que
Nota: 0.0
	
	A
	A=∫40∫√y0dxdy=163u.a.A=∫04∫0ydxdy=163u.a.
Um esboço desta região é apresentado abaixo:
Note que esta região pode ser descrita como R={(x,y)∈R2; 0≤y≤4 e 0≤x≤√y}.R={(x,y)∈R2; 0≤y≤4 e 0≤x≤y}. Assim, 
A=∫40∫√y0dxdy=∫40(∫√y0dx)dy=∫40√ydy=[23√y3]∣∣∣40=163u.a.A=∫04∫0ydxdy=∫04(∫0ydx)dy=∫04ydy=[23y3]|04=163u.a.            (livro-base p. 54-59)
	
	B
	A=∫40∫√y0dydx=165u.a.A=∫04∫0ydydx=165u.a.
	
	C
	A=∫40∫√y0dxdy=165u.a.A=∫04∫0ydxdy=165u.a.D
	A=∫40∫√y0dydx=65u.a.A=∫04∫0ydydx=65u.a.
	
	E
	A=∫40∫√y0dxdy=67u.a.A=∫04∫0ydxdy=67u.a.
Questão 8/10 - Cálculo Diferencial e Integral a Várias Variáveis
Leia o texto:
As técnicas de integração podem ser utilizadas para uma ampla gama de aplicações. As aplicações mais conhecidas são aquelas referentes ao cálculo da área abaixo de uma determinada curva. Entretanto, a extensão dessa operação envolve também o cálculo de grandezas físicas, o cálculo do comprimento de arco e também o cálculo de volume de sólidos.
Fonte: Texto elaborado pelo autor da questão.
Com base no texto acima e nos conteúdos discutidos no livro-base Cálculo diferencial e integral a várias variáveis, calcule o valor da área de uma superfície cônica gerada pela revolução do segmento de reta dado pela equação y=3x+2y=3x+2 no intervalo fechado [0,2][0,2] em torno do eixo das abscissas e assinale a alternativa que corresponde a esse valor.
Nota: 0.0
	
	A
	25π√20u.a.25π20u.a.
	
	B
	20π√10u.a.20π10u.a.
Solução:
A=2π∫20y(x)√1+[y′(x)]2dx=2π∫20(3x+2)√1+32dx=2π√10∫20(3x+2)dxA=2π√103(3x+22)2∣∣∣20=π√103[(3⋅2+2)2−4]=60π√103=20π√10u.a.A=2π∫02y(x)1+[y′(x)]2dx=2π∫02(3x+2)1+32dx=2π10∫02(3x+2)dxA=2π103(3x+22)2|02=π103[(3⋅2+2)2−4]=60π103=20π10u.a.
livro-base p. 15-20
	
	C
	22π√12u.a.22π12u.a.
	
	D
	23π√13u.a.23π13u.a.
	
	E
	21π√15u.a.21π15u.a.
Questão 9/10 - Cálculo Diferencial e Integral a Várias Variáveis
Leia a seguinte passagem de texto:
O processo de integração determinado para uma única variável pode ser generalizado para múltiplas variáveis, gerando as técnicas de integração para integral dupla, integral tripla, integral vetorial e tantas outras técnicas.
Fonte: Texto elaborado pelo autor da questão.
Considerando a passagem de texto e o livro-base Cálculo Diferencial e Integral a várias variáveis, marque a alternativa que indica o valor correto para a integral dupla dada por:
   
Nota: 0.0
	
	A
	6
	
	B
	10
	
	C
	12
	
	D
	15
	
	E
	16
Questão 10/10 - Cálculo Diferencial e Integral a Várias Variáveis
Leia o texto:
As técnicas de integração podem ser utilizadas para uma ampla gama de aplicações. As aplicações mais conhecidas são aquelas referentes ao cálculo da área abaixo de uma determinada curva. Entretanto, a extensão dessa operação envolve também o cálculo de grandezas físicas, o cálculo do comprimento de arco e também o cálculo de volume de sólidos.
Fonte: Texto elaborado pelo autor da questão.
O gráfico abaixo representa a área da região RR limitada pela curva y=x2y=x2 e pela reta xx. 
Considerando o texto acima e os conteúdos explorados no livro-base Cálculo Diferencial e Integral a várias variáveis, indique a alternativa que determina a área delimitada pela curva e pela reta do gráfico acima.
Nota: 0.0
	
	A
	
	
	B
	
	
	C
	1
	
	D
	2
	
	E
	
Questão 1/10 - Cálculo Diferencial e Integral a Várias Variáveis
Considere a região RR delimitada pela reta y=x+2y=x+2 e pela parábola y=x2y=x2, conforme a figura abaixo:
O valor da área de RR é
Nota: 0.0
	
	A
	52u.a.52u.a.
	
	B
	132u.a.132u.a.
	
	C
	29u.a.29u.a.
	
	D
	92u.a.92u.a.
A área da região RR pode ser obtida a partir da integral dupla: ∬R1dA.∬R1dA. 
Inicialmente, observamos que R={(x,y)∈R2; −1≤x≤2 e x2≤y≤x+2}.R={(x,y)∈R2; −1≤x≤2 e x2≤y≤x+2}. Assim,
A=∫2−1∫x+2x21dydx=∫2−1(x+2−x2)dx=[x22+2x−x33]2−1=(2+4−83)−(12−2+13)=92u.a.A=∫−12∫x2x+21dydx=∫−12(x+2−x2)dx=[x22+2x−x33]−12=(2+4−83)−(12−2+13)=92u.a.
	
	E
	72u.a.72u.a.
Questão 2/10 - Cálculo Diferencial e Integral a Várias Variáveis
Considerando o livro-base Cálculo diferencial e integral de várias variáveis, considere a área AA da região do primeiro quadrante limitada pela parábola y=x2y=x2, pelo eixo yy e pela reta y=4y=4. É correto afirmar que
Nota: 0.0
	
	A
	A=∫40∫√y0dxdy=163u.a.A=∫04∫0ydxdy=163u.a.
Um esboço desta região é apresentado abaixo:
Note que esta região pode ser descrita como R={(x,y)∈R2; 0≤y≤4 e 0≤x≤√y}.R={(x,y)∈R2; 0≤y≤4 e 0≤x≤y}. Assim, 
A=∫40∫√y0dxdy=∫40(∫√y0dx)dy=∫40√ydy=[23√y3]∣∣∣40=163u.a.A=∫04∫0ydxdy=∫04(∫0ydx)dy=∫04ydy=[23y3]|04=163u.a.            (livro-base p. 54-59)
	
	B
	A=∫40∫√y0dydx=165u.a.A=∫04∫0ydydx=165u.a.
	
	C
	A=∫40∫√y0dxdy=165u.a.A=∫04∫0ydxdy=165u.a.
	
	D
	A=∫40∫√y0dydx=65u.a.A=∫04∫0ydydx=65u.a.
	
	E
	A=∫40∫√y0dxdy=67u.a.A=∫04∫0ydxdy=67u.a.
Questão 3/10 - Cálculo Diferencial e Integral a Várias Variáveis
Leia o trecho a seguir:
A função da derivada parcial em relação a um valor xixi é a derivada de f em relação a xixi uma vez que admitamos todas as outras variáveis como constantes.
Após esta avaliação, caso queira ler o texto integralmente, ele está disponível em:  RODRIGUES, A. C. D; SILVA, A. R. H. S. Cálculo diferencial e integral de várias variáveis. Curitiba: InterSaberes, 2016, p. 80.
Considere a função:  f(x,y,z) = 3x + 5y -6z. De acordo com os conteúdos da Aula 3 - Tema: Derivadas parciais, ao calcular as derivadas parciais da função acima, obtemos:
Nota: 0.0
	
	A
	fx = 3; fy = 5;   fz = -6
Calculamos a derivada separadamente em relação a cada variável.
De acordo com a vídeo aula:
Observar cada termo separadamente Aplicar as regras de derivação para a variável de análise As demais variáveis são consideradas constantes
(Vídeo aula 3).
	
	B
	fx = -3; fy = -5; fz = -6
	
	C
	fx = 5; fy = 3; fz = 6
	
	D
	fx = 6; fy = 5; fz = -3
	
	E
	fx = -6; fy = 5; fz = 3
Questão 4/10 - Cálculo Diferencial e Integral a Várias Variáveis
Leia o texto:
O processo de integração determinado para uma única variável pode ser generalizado para múltiplas variáveis, gerando as técnicas de integração para integral dupla, integral tripla, integral vetorial e tantas outras técnicas.
Fonte: Texto elaborado pelo autor.
Considerando o texto acima e os conteúdos do livro-base Cálculo Diferencial e Integral a várias variáveis, calcule o valor da integral de linha I=∫Cyzdx+xzdy+xydzI=∫Cyzdx+xzdy+xydz dadas as equações paramétricas ⎧⎨⎩x=2ty=t+1z=4t+2{x=2ty=t+1z=4t+2com 0≤t≤10≤t≤1 e assinale a alternativa que corresponde a esse valor.
Nota: 0.0
	
	A
	-12
	
	B
	24
Solução:
Fazendo as substituições x=2t,dx=2dt;y=t+1,dy=dt;z=4t+2,dz=4dtx=2t,dx=2dt;y=t+1,dy=dt;z=4t+2,dz=4dt na integral de linha, temos
I=∫C[(t+1)(4t+2)2dt+2t(4t+2)dt+2t(t+1)4dt]I=∫C[2(4t2+2t+4t+2)+(8t2+4t)+4(2t2+2t)]dtI=∫C(8t2+12t+4+8t2+4t+8t2+8t)dtI=∫C(24t2+24t+4)dt=(8t3+12t2+4t)∣∣∣10=8+12+4=24.I=∫C[(t+1)(4t+2)2dt+2t(4t+2)dt+2t(t+1)4dt]I=∫C[2(4t2+2t+4t+2)+(8t2+4t)+4(2t2+2t)]dtI=∫C(8t2+12t+4+8t2+4t+8t2+8t)dtI=∫C(24t2+24t+4)dt=(8t3+12t2+4t)|01=8+12+4=24.
Fonte: livro-base: RODRIGUES, A. C. D; SILVA, A. R. H. S. Cálculo diferencial e integral de várias variáveis. Curitiba: Intersaberes, 2016.  p.153 a p.155
	
	C
	15
	
	D
	-20
	
	E
	30
Questão 5/10 - Cálculo Diferencial e Integral a Várias Variáveis
Leia a seguinte passagem de texto:
O processo de integração determinado para uma única variável pode ser generalizado para múltiplas variáveis, gerando as técnicas de integração para integral dupla, integral tripla, integral vetorial e tantas outras técnicas.
Fonte: Texto elaborado pelo autor da questão.
Considerando a passagem de texto e o livro-base Cálculo Diferencial e Integral a várias variáveis, marque a alternativa que indica o valor correto para a integral dupla dada por:
   
Nota: 0.0
	
	A
	6
	
	B
	10
	
	C
	12
	
	D
	15
	
	E
	16
Questão 6/10 - Cálculo Diferencial e Integral a Várias Variáveis
Considerando o livro-base Cálculo diferencial e integral de várias variáveis, a alternativa que corresponde ao valor da área da região R limitada pelas curvas y=x2y=x2 e y=√xy=x, do gráfico a seguir, é
Nota: 0.0
	
	A
	13u.a.13u.a.
Solução:
A=∫10∫√xx2dydx=∫10y∣∣∣√xx2dx=∫10(√x−x2)dx=23x3/2−x33∣∣∣10=23−13=13u.a.A=∫01∫x2xdydx=∫01y|x2xdx=∫01(x−x2)dx=23x3/2−x33|01=23−13=13u.a.
Fonte: livro-base: RODRIGUES, A. C. D; SILVA, A. R. H. S. Cálculo diferencial e integral de várias variáveis. Curitiba: Intersaberes, 2016. p. 54-59
	
	B
	23u.a.23u.a.
	
	C
	43u.a.43u.a.
	
	D
	53u.a.53u.a.
	
	E
	73u.a.73u.a.
Questão 7/10 - Cálculo Diferencial e Integral a Várias Variáveis
Leia a seguintepassagem do texto:
"A operação de derivada parcial permite encontrar a derivada de uma função de várias variáveis em relação a uma de suas outras funções. A estratégia para o cálculo é considerar todas as outras variáveis como constantes e aplicar as regras de derivação como habitualmente."
Texto elaborado pelo autor.
Após esta avaliação, caso queira ler o texto integralmente, ele está disponível em:  RODRIGUES, A. C. D; SILVA, A. R. H. S. Cálculo diferencial e integral de várias variáveis. Curitiba: InterSaberes, 2016, p. 80.
Assinale a alternativa correta que corresponde às derivadas parciais da função f(x,y,z)=3x2+4xy−3zy.f(x,y,z)=3x2+4xy−3zy..
Nota: 0.0
	
	A
	∂f∂x=6x+4y;∂f∂y=4x−3z;∂f∂z=−3y.∂f∂x=6x+4y;∂f∂y=4x−3z;∂f∂z=−3y.
Calculamos a derivada parcial separadamente em relação a cada variável. Assim,
∂∂x(3x2+4xy−3zy)=6x+4y;∂∂y(3x2+4xy−3zy)=4x−3z;∂∂z(3x2+4xy−3zy)=−3y.∂∂x(3x2+4xy−3zy)=6x+4y;∂∂y(3x2+4xy−3zy)=4x−3z;∂∂z(3x2+4xy−3zy)=−3y.
	
	B
	∂f∂x=2x+5z;∂f∂y=−3y−2z;∂f∂z=−2x∂f∂x=2x+5z;∂f∂y=−3y−2z;∂f∂z=−2x
	
	C
	∂f∂x=5x−2y;∂f∂y=2x+5y;∂f∂z=3x∂f∂x=5x−2y;∂f∂y=2x+5y;∂f∂z=3x
	
	D
	∂f∂x=2y+5z;∂f∂y=x−z;∂f∂z=−y∂f∂x=2y+5z;∂f∂y=x−z;∂f∂z=−y
	
	E
	∂f∂x=x+4;∂f∂y=x+y;∂f∂z=z∂f∂x=x+4;∂f∂y=x+y;∂f∂z=z
Questão 8/10 - Cálculo Diferencial e Integral a Várias Variáveis
Leia o texto:
As técnicas de integração podem ser utilizadas para uma ampla gama de aplicações. As aplicações mais conhecidas são aquelas referentes ao cálculo da área abaixo de uma determinada curva. Entretanto, a extensão dessa operação envolve também o cálculo de grandezas físicas, o cálculo do comprimento de arco e também o cálculo de volume de sólidos.
Fonte: Texto elaborado pelo autor da questão.
O gráfico abaixo representa a área da região RR limitada pela curva y=x2y=x2 e pela reta xx. 
Considerando o texto acima e os conteúdos explorados no livro-base Cálculo Diferencial e Integral a várias variáveis, indique a alternativa que determina a área delimitada pela curva e pela reta do gráfico acima.
Nota: 0.0
	
	A
	
	
	B
	
	
	C
	1
	
	D
	2
	
	E
	
Questão 9/10 - Cálculo Diferencial e Integral a Várias Variáveis
Considerando o livro-base Cálculo diferencial e integral de várias variáveis, qual a lei de formação da sequência dos números ímpares (n), sendo que n é um número natural diferente de zero?
Nota: 0.0
	
	A
	an = 2n
	
	B
	an = 2n + 1
	
	C
	an = n + 1
	
	D
	an = 2n – 1
A sequência dos números ímpares é 1, 3, 5, 7, 9, ....
Como n começa em 1, pelo enunciado, para a alternativa a) teremos 2.1 = 2 (o primeiro número ímpar é 1); para a alternativa b) teremos 2.1+ 1 = 3; para a alternativa c) teremos 1 + 1 = 2; na alternativa e) teremos 1-1 = 0.
Já para a alternativa d), a correta, temos: 2.1 – 1 = 1. Continuando a sequência, 2.2 – 1 = 3 e assim, sucessivamente. Desta forma, obtemos a sequência dos números ímpares.
livro-base p. 101-102
	
	E
	an = n - 1
Questão 10/10 - Cálculo Diferencial e Integral a Várias Variáveis
Leia o texto:
As técnicas de integração podem ser utilizadas para uma ampla gama de aplicações. As aplicações mais conhecidas são aquelas referentes ao cálculo da área abaixo de uma determinada curva. Entretanto, a extensão dessa operação envolve também o cálculo de grandezas físicas, o cálculo do comprimento de arco e também o cálculo de volume de sólidos.
Fonte: Texto elaborado pelo autor da questão.
De acordo com os conteúdos estudados no livro-base Cálculo diferencial e integral a várias variáveis, encontre o comprimento do arco da curva dada por y=3x+5y=3x+5 no intervalo fechado [0,2][0,2] e marque a alternativa correta:
 
Nota: 0.0
	
	A
	2√10u.c.210u.c.
A=∫ba√1+[f′(x)]2dx=∫20√1+32dx=∫20√10dx=2√10u.c.A=∫ab1+[f′(x)]2dx=∫021+32dx=∫0210dx=210u.c.
livro-base: p. 21-24
	
	B
	3√5u.c.35u.c.
	
	C
	4√5u.c.45u.c.
	
	D
	5√5u.c.55u.c.
	
	E
	6√10u.c.610u.c.
Questão 1/10 - Cálculo Diferencial e Integral a Várias Variáveis
Considerando o livro-base Cálculo diferencial e integral de várias variáveis, a alternativa que corresponde ao valor da área da região R limitada pelas curvas y=x2y=x2 e y=√xy=x, do gráfico a seguir, é
Nota: 0.0
	
	A
	13u.a.13u.a.
Solução:
A=∫10∫√xx2dydx=∫10y∣∣∣√xx2dx=∫10(√x−x2)dx=23x3/2−x33∣∣∣10=23−13=13u.a.A=∫01∫x2xdydx=∫01y|x2xdx=∫01(x−x2)dx=23x3/2−x33|01=23−13=13u.a.
Fonte: livro-base: RODRIGUES, A. C. D; SILVA, A. R. H. S. Cálculo diferencial e integral de várias variáveis. Curitiba: Intersaberes, 2016. p. 54-59
	
	B
	23u.a.23u.a.
	
	C
	43u.a.43u.a.
	
	D
	53u.a.53u.a.
	
	E
	73u.a.73u.a.
Questão 2/10 - Cálculo Diferencial e Integral a Várias Variáveis
Considere a região RR delimitada pela reta y=x+2y=x+2 e pela parábola y=x2y=x2, conforme a figura abaixo:
O valor da área de RR é
Nota: 0.0
	
	A
	52u.a.52u.a.
	
	B
	132u.a.132u.a.
	
	C
	29u.a.29u.a.
	
	D
	92u.a.92u.a.
A área da região RR pode ser obtida a partir da integral dupla: ∬R1dA.∬R1dA. 
Inicialmente, observamos que R={(x,y)∈R2; −1≤x≤2 e x2≤y≤x+2}.R={(x,y)∈R2; −1≤x≤2 e x2≤y≤x+2}. Assim,
A=∫2−1∫x+2x21dydx=∫2−1(x+2−x2)dx=[x22+2x−x33]2−1=(2+4−83)−(12−2+13)=92u.a.A=∫−12∫x2x+21dydx=∫−12(x+2−x2)dx=[x22+2x−x33]−12=(2+4−83)−(12−2+13)=92u.a.
	
	E
	72u.a.72u.a.
Questão 3/10 - Cálculo Diferencial e Integral a Várias Variáveis
Leia a seguinte passagem de texto:
O uso de funções de várias variáveis permite modelar situações problema nos quais uma variável é afetada pelo comportamento de uma infinidade de outras variáveis. Entretanto, para o uso adequado dessa ferramenta é necessário aprender a calcular o valor de uma função de várias variáveis em um determinado ponto.
Fonte: Texto elaborado pelo autor.
Seja AA um conjunto definido no espaço quadridimensional R4R4 e, a função f(x,y,z,t)=x2+y2+z2+t2f(x,y,z,t)=x2+y2+z2+t2, que associa a quádrupla ordenada de números reais à soma de seus quadrados. 
Considerando o texto e os conteúdos discutidos no livro-base Cálculo Diferencial e Integral a várias variáveis, a alternativa que indica o valor correto de f(1,2,3,4)f(1,2,3,4) é:
Nota: 0.0
	
	A
	16
	
	B
	25
	
	C
	30
f(1,2,3,4) = 1² + 2² + 3² + 4² = 1+ 4 + 9 + 16 = 30 
 livro-base:  p. 75-76
	
	D
	36
	
	E
	40
Questão 4/10 - Cálculo Diferencial e Integral a Várias Variáveis
Leia o texto:
As técnicas de integração podem ser utilizadas para uma ampla gama de aplicações. As aplicações mais conhecidas são aquelas referentes ao cálculo da área abaixo de uma determinada curva. Entretanto, a extensão dessa operação envolve também o cálculo de grandezas físicas, o cálculo do comprimento de arco e também o cálculo de volume de sólidos.
Fonte: Texto elaborado pelo autor.
Observe o limaçon abaixo:
Fonte: Cálculo diferencial e integral de várias variáveis. Curitiba: Intersaberes, 2016. 
Considerando o limaçon e os conteúdos estudados no livro-base Cálculo diferencial e integral a várias variáveis, assinale a alternativa que apresenta corretamente a área da região cinza do limaçon r=1+2senθr=1+2senθ.
Nota: 0.0
	
	A
	4+32πu.a.4+32πu.a.
Solução:
A=12∫π0[f(θ)]2dθ=12∫π0[1+2senθ]2dθA=12∫π0(1+4senθ+4sen2θ)dθA=12∫π0[1+4senθ+4(12−12cos2θ)]dθA=12∫π0(3+4senθ−2cos2θ)dθ=12(3θ−4cosθ−sen2θ)∣∣∣π0A=12[3π−4(cosπ−cos0)−0]=12(3π+8)=32π+4u.a.A=12∫0π[f(θ)]2dθ=12∫0π[1+2senθ]2dθA=12∫0π(1+4senθ+4sen2θ)dθA=12∫0π[1+4senθ+4(12−12cos2θ)]dθA=12∫0π(3+4senθ−2cos2θ)dθ=12(3θ−4cosθ−sen2θ)|0πA=12[3π−4(cosπ−cos0)−0]=12(3π+8)=32π+4u.a.
livro-base: p. 33-36
	
	B
	3+12πu.a.3+12πu.a.
	
	C
	2+52πu.a.2+52πu.a.
	
	D
	1+72πu.a.1+72πu.a.
	
	E
	3+52πu.a.3+52πu.a.
Questão 5/10 - Cálculo Diferencial e Integral a Várias Variáveis
Considerando o livro-base Cálculo diferencial e integral de várias variáveis, considere a área AA da região do primeiro quadrante limitada pela parábola y=x2y=x2, pelo eixo yy e pela reta y=4y=4. É correto afirmar que
Nota: 0.0
	
	A
	A=∫40∫√y0dxdy=163u.a.A=∫04∫0ydxdy=163u.a.
Um esboço desta região é apresentado abaixo:
Note que esta região pode ser descrita como R={(x,y)∈R2; 0≤y≤4 e 0≤x≤√y}.R={(x,y)∈R2; 0≤y≤4 e 0≤x≤y}. Assim, 
A=∫40∫√y0dxdy=∫40(∫√y0dx)dy=∫40√ydy=[23√y3]∣∣∣40=163u.a.A=∫04∫0ydxdy=∫04(∫0ydx)dy=∫04ydy=[23y3]|04=163u.a.(livro-base p. 54-59)
	
	B
	A=∫40∫√y0dydx=165u.a.A=∫04∫0ydydx=165u.a.
	
	C
	A=∫40∫√y0dxdy=165u.a.A=∫04∫0ydxdy=165u.a.
	
	D
	A=∫40∫√y0dydx=65u.a.A=∫04∫0ydydx=65u.a.
	
	E
	A=∫40∫√y0dxdy=67u.a.A=∫04∫0ydxdy=67u.a.
Questão 6/10 - Cálculo Diferencial e Integral a Várias Variáveis
Leia o texto:
O processo de integração determinado para uma única variável pode ser generalizado para múltiplas variáveis, gerando as técnicas de integração para integral dupla, integral tripla, integral vetorial e tantas outras técnicas.
Fonte: Texto elaborado pelo autor.
Considerando o texto acima e utilizando as técnicas de integração aprendidas ao longo da Videoaula "Exercícios" - Tema 01: Integrais Duplas - da Aula 05 e do livro-base Cálculo Diferencial e Integral a várias variáveis, indique a alternativa que apresenta o valor correto de 
I.I.
I=∫20∫10(x3+xy)dxdy.I=∫02∫01(x3+xy)dxdy.
Nota: 0.0
	
	A
	1212
	
	B
	3232
Solução:
I=∫20∫10(x3+xy)dxdy=∫20(x44+yx22)∣∣∣x=1x=0dy=∫20(14+y2)dyI=(y4+y24)∣∣∣20=(24+224)=64=32.I=∫02∫01(x3+xy)dxdy=∫02(x44+yx22)|x=0x=1dy=∫02(14+y2)dyI=(y4+y24)|02=(24+224)=64=32.
Fonte: Videoaula Exercícios - videoaula 2 - Tema 01: Integrais Duplas - da Aula 05, 03'10 até 04'27 | e Livro-Base, p. 54-59.
	
	C
	5252
	
	D
	7272
	
	E
	9292
Questão 7/10 - Cálculo Diferencial e Integral a Várias Variáveis
Leia o texto:
As técnicas de integração podem ser utilizadas para uma ampla gama de aplicações. As aplicações mais conhecidas são aquelas referentes ao cálculo da área abaixo de uma determinada curva. Entretanto, a extensão dessa operação envolve também o cálculo de grandezas físicas, o cálculo do comprimento de arco e também o cálculo de volume de sólidos.
Fonte: Texto elaborado pelo autor da questão.
Com base no texto acima e nos conteúdos discutidos no livro-base Cálculo diferencial e integral a várias variáveis, calcule o valor da área de uma superfície cônica gerada pela revolução do segmento de reta dado pela equação y=3x+2y=3x+2 no intervalo fechado [0,2][0,2] em torno do eixo das abscissas e assinale a alternativa que corresponde a esse valor.
Nota: 0.0
	
	A
	25π√20u.a.25π20u.a.
	
	B
	20π√10u.a.20π10u.a.
Solução:
A=2π∫20y(x)√1+[y′(x)]2dx=2π∫20(3x+2)√1+32dx=2π√10∫20(3x+2)dxA=2π√103(3x+22)2∣∣∣20=π√103[(3⋅2+2)2−4]=60π√103=20π√10u.a.A=2π∫02y(x)1+[y′(x)]2dx=2π∫02(3x+2)1+32dx=2π10∫02(3x+2)dxA=2π103(3x+22)2|02=π103[(3⋅2+2)2−4]=60π103=20π10u.a.
livro-base p. 15-20
	
	C
	22π√12u.a.22π12u.a.
	
	D
	23π√13u.a.23π13u.a.
	
	E
	21π√15u.a.21π15u.a.
Questão 8/10 - Cálculo Diferencial e Integral a Várias Variáveis
Analise o seguinte problema:
Uma fábrica produz três produtos em quantidades diferentes. Cada produto é representado por x1,x2x1,x2 e x3x3, respectivamente, e a função do custo de fabricação desses três produtos é representada por C(x1,x2,x3)=100+2x1+2x2+3x3C(x1,x2,x3)=100+2x1+2x2+3x3. Supondo que a empresa fabrica 3 unidades do primeiro produto, x1x1, uma unidade do segundo produto, x2x2, e quatro unidades do terceiro produto, x3.x3..
Após esta avaliação, caso queira ler o texto integralmente, ele está disponível em:  RODRIGUES, A. C. D; SILVA, A. R. H. S. Cálculo diferencial e integral de várias variáveis. Curitiba: InterSaberes, 2016, p. 75-76.
Com base nos conteúdos estudados no RODRIGUES, A. C. D; SILVA, A. R. H. S. Cálculo diferencial e integral de várias variáveis. Curitiba: InterSaberes, 2016, a alternativa que indica o valor correto para o custo de fabricação destes três produtos é dado por:
Nota: 0.0
	
	A
	120
C (3, 1, 4) = 100 + 2.3 + 2.1 + 3.4 = 100+6+2+12 = 120
(Conteúdo livro-base: RODRIGUES, A. C. D; SILVA, A. R. H. S. Cálculo diferencial e integral de várias variáveis. Curitiba: InterSaberes, 2016.)
	
	B
	150
	
	C
	180
	
	D
	200
	
	E
	220
Questão 9/10 - Cálculo Diferencial e Integral a Várias Variáveis
Leia o texto a seguir:
A integração definida permite, além de calcular o valor total de grandezas físicas, calcular a área de uma região específica definida por um determinado conjunto de curvas.
Fonte: Texto elaborado pelo autor da questão.
Considerando o texto e os conteúdos do livro-base Cálculo diferencial e integral a várias variáveis, o valor da área de uma superfície cônica gerada pela revolução do segmento de reta dado pela equação y=4xy=4x, no intervalo fechado [0,2][0,2], em torno do eixo das abscissas é dada por:
Nota: 0.0
	
	A
	16ππ
	
	B
	16ππ√1717 u.a.
(Conteúdo livro-base: RODRIGUES, A. C. D; SILVA, A. R. H. S. Cálculo diferencial e integral de várias variáveis. Curitiba: InterSaberes, 2016.)
	
	C
	√1717 u.a.
	
	D
	√17π17π u.a.
	
	E
	2√17217 u.a.
Questão 10/10 - Cálculo Diferencial e Integral a Várias Variáveis
Considerando o livro-base Cálculo diferencial e integral de várias variáveis, a respeito da sequência an=3+7n2n+n2an=3+7n2n+n2, pode-se afirmar que:
Nota: 0.0
	
	A
	é convergente com limite 3.
	
	B
	é convergente com limite 7.
Observamos que limn→+∞an=limn→+∞3+7n2n2n+n2n2=limn→+∞3n2+71n+1=71=7.limn→+∞an=limn→+∞3+7n2n2n+n2n2=limn→+∞3n2+71n+1=71=7.
Logo, podemos afirmar que a sequência é convergente com limite igual a 7. (livro-base, p. 104-105)
	
	C
	é convergente com limite 10.
	
	D
	é divergente.
	
	E
	é convergente com limite infinito.
Questão 1/10 - Cálculo Diferencial e Integral a Várias Variáveis
Analise o seguinte problema:
Uma fábrica produz três produtos em quantidades diferentes. Cada produto é representado por x1,x2x1,x2 e x3x3, respectivamente, e a função do custo de fabricação desses três produtos é representada por C(x1,x2,x3)=100+2x1+2x2+3x3C(x1,x2,x3)=100+2x1+2x2+3x3. Supondo que a empresa fabrica 3 unidades do primeiro produto, x1x1, uma unidade do segundo produto, x2x2, e quatro unidades do terceiro produto, x3.x3..
Após esta avaliação, caso queira ler o texto integralmente, ele está disponível em:  RODRIGUES, A. C. D; SILVA, A. R. H. S. Cálculo diferencial e integral de várias variáveis. Curitiba: InterSaberes, 2016, p. 75-76.
Com base nos conteúdos estudados no RODRIGUES, A. C. D; SILVA, A. R. H. S. Cálculo diferencial e integral de várias variáveis. Curitiba: InterSaberes, 2016, a alternativa que indica o valor correto para o custo de fabricação destes três produtos é dado por:
Nota: 0.0
	
	A
	120
C (3, 1, 4) = 100 + 2.3 + 2.1 + 3.4 = 100+6+2+12 = 120
(Conteúdo livro-base: RODRIGUES, A. C. D; SILVA, A. R. H. S. Cálculo diferencial e integral de várias variáveis. Curitiba: InterSaberes, 2016.)
	
	B
	150
	
	C
	180
	
	D
	200
	
	E
	220
Questão 2/10 - Cálculo Diferencial e Integral a Várias Variáveis
Considerando o livro-base Cálculo diferencial e integral de várias variáveis, calcule a integral , dadas as equações paramétricas:
Nota: 0.0
	
	A
	-1
	
	B
	0
	
	C
	1
	
	D
	2
	
	E
	3
Questão 3/10 - Cálculo Diferencial e Integral a Várias Variáveis
Leia o texto:
O processo de integração determinado para uma única variável pode ser generalizado para múltiplas variáveis, gerando as técnicas de integração para integral dupla, integral tripla, integral vetorial e tantas outras técnicas.
Fonte: Texto elaborado pelo autor.
Considerando o texto acima e os conteúdos do livro-base Cálculo Diferencial e Integral a várias variáveis, calcule o valor da integral de linha I=∫Cyzdx+xzdy+xydzI=∫Cyzdx+xzdy+xydz dadas as equações paramétricas ⎧⎨⎩x=2ty=t+1z=4t+2{x=2ty=t+1z=4t+2com 0≤t≤10≤t≤1 e assinale a alternativa que corresponde a esse valor.
Nota: 0.0
	
	A
	-12
	
	B
	24
Solução:
Fazendo as substituições x=2t,dx=2dt;y=t+1,dy=dt;z=4t+2,dz=4dtx=2t,dx=2dt;y=t+1,dy=dt;z=4t+2,dz=4dt na integral de linha, temos
I=∫C[(t+1)(4t+2)2dt+2t(4t+2)dt+2t(t+1)4dt]I=∫C[2(4t2+2t+4t+2)+(8t2+4t)+4(2t2+2t)]dtI=∫C(8t2+12t+4+8t2+4t+8t2+8t)dtI=∫C(24t2+24t+4)dt=(8t3+12t2+4t)∣∣∣10=8+12+4=24.I=∫C[(t+1)(4t+2)2dt+2t(4t+2)dt+2t(t+1)4dt]I=∫C[2(4t2+2t+4t+2)+(8t2+4t)+4(2t2+2t)]dtI=∫C(8t2+12t+4+8t2+4t+8t2+8t)dtI=∫C(24t2+24t+4)dt=(8t3+12t2+4t)|01=8+12+4=24.
Fonte: livro-base: RODRIGUES, A. C. D; SILVA, A. R. H. S. Cálculo diferencial e integral de várias variáveis. Curitiba: Intersaberes, 2016.  p.153 a p.155
	
	C
	15

Continue navegando