Buscar

Fenomenos de transporte-aula7

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 3, do total de 149 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 6, do total de 149 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 9, do total de 149 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Continue navegando


Prévia do material em texto

1
TRANSFERÊNCIA DE CALOR 
TRANSMISSÃO DE CALOR POR CONVECÇÃO 
 
Em 1701, Newton definiu ser a energia calorífica Q transmitida por convecção entre uma superfície A 
que possui uma temperatura na parede pT e um fluído a uma temperatura fT , proporcional a A e 
a ( )p fT T− , sendo o coeficiente de proporcionalidade o coeficiente de convecção, h . 
( )p fQ h A T T= ⋅ ⋅ − 
Neste capítulo analisaremos os elementos indispensáveis para o estudo técnico da transmissão de calor 
por convecção. Nos limitaremos a mostrar a origem das fórmulas que permitem o cálculo do 
coeficiente de convecção, dando em seguida um resumo das principais fórmulas para os casos de 
líquidos, gases e vapores, com os respectivos exemplos. 
Quanto a dimensão do coeficiente de convecção, daremos um resumo para os três sistemas, bem como 
os respectivos fatores de conversão: 
Sistema Internacional: 
[ ] [ ]22 ºº
kWQ kW h A m T C
m C
⎡ ⎤ ⎡ ⎤= ⋅ ⋅∆⎢ ⎥ ⎣ ⎦⋅⎣ ⎦ 
Sistema Técnico: 
[ ]22 ºº
kcal kcalQ h A m T C
h m h C
⎡ ⎤ ⎡ ⎤ ⎡ ⎤= ⋅ ⋅∆⎢ ⎥ ⎢ ⎥ ⎣ ⎦⋅ ⋅⎣ ⎦ ⎣ ⎦ 
Sistema Inglês: 
[ ]22 ºº
BTU BTUQ h A ft T F
h ft h F
⎡ ⎤⎡ ⎤ ⎡ ⎤= ⋅ ⋅∆⎢ ⎥⎢ ⎥ ⎣ ⎦⋅ ⋅⎣ ⎦ ⎣ ⎦ ° 
 
COEFICIENTE DE CONVECÇÃO - ANÁLISE TEÓRICA 
 
Usaremos a análise dimensional para determinar a dependência entre o coeficiente de convecção e as 
demais grandezas do fluído. A experiência permitiu concluir que o coeficiente de convecção depende, 
de um modo geral, das seguintes grandezas: 
ρ - massa específica 3kg m Cp - calor específico a pressão constante 
( )ºkJ kg C⋅ 
 2
µ - viscosidade dinâmica kg
m s⋅ 
V - velocidade média m
s
 
D - dimensão característica m 
k - coeficiente de condução 
º
kW
m C⋅ 
h - coeficiente de convecção 2 º
kW
m C⋅ 
Para a análise dimensional podemos escrever: 
a b d e g ih Z Cp V D kρ µ= ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 
Dimensionalmente, temos: 
2 1 1h Q L T t− − −⎡ ⎤= ⋅ ⋅ ⋅⎣ ⎦ 
3M Lρ −⎡ ⎤= ⋅⎣ ⎦ 
1 1Cp Q M T− −⎡ ⎤= ⋅ ⋅⎣ ⎦ 
1 1M L tµ − −⎡ ⎤= ⋅ ⋅⎣ ⎦ 
1V L t−⎡ ⎤= ⋅⎣ ⎦ 
[ ]D L= 
1 1 1k Q L T t− − −⎡ ⎤= ⋅ ⋅ ⋅⎣ ⎦ 
Levando os valores na equação anterior, têm-se: 
{2 1 1 3 1 1 1 1 1 1 1 1a a b b b d d d e e g i i i i
Dk Vh Cp k
Q L T t M L Q M T M L t L t L Q L T t
µ
− − − − ⋅ − ⋅ − ⋅ − ⋅ − ⋅ − ⋅ − ⋅ − ⋅ − ⋅
⎡ ⎤⎡ ⎤ ⎢ ⎥⋅ ⋅ ⋅ = ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦
14243 1442443 1231442443 1442443 144424443 
Agrupando os termos 
2 1 1 1 3 1 1 1 1 1 1 1b i a b d a d e i g b i d e iQ L T t Q M L T t− − − + − ⋅ + − ⋅ − ⋅ + − ⋅ + − ⋅ − ⋅ − ⋅ − ⋅ − ⋅⎡ ⎤ ⎡ ⎤⋅ ⋅ ⋅ = ⋅ ⋅ ⋅ ⋅⎣ ⎦ ⎣ ⎦ 
 Desta equação retiramos um sistema de quatro equações independentes: 
1
2 3
1
0
b i
a d e g i
d e i
a b d
= +⎧⎪− = − ⋅ − + + −⎪⎨− = − − −⎪⎪ = − +⎩
 
Como temos seis incógnitas, podemos fixar arbitrariamente duas delas. Que sejam a e b valores 
conhecidos, logo: 
1i b= − 
d b a= − 
e a= 
1g a= − g=a-1 
Estes valores, levados na primeira equação, fornecem: 
1 1a b b a a a bh Z Cp V D kρ µ − − −= ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 
Ou seja: 
 3
b a
a b a
a b
D kh Z Cp V
D k
µρ µ
⎛ ⎞ ⎛ ⎞ ⎛ ⎞= ⋅ ⋅ ⋅ ⋅ ⋅ ⋅⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠⎝ ⎠ ⎝ ⎠
 
a a a b b
a b
k D V Cph Z
D k
ρ µ
µ
⋅ ⋅ ⋅= ⋅ ⋅ ⋅ 
a bh D D V CpZ
k k
ρ µ
µ
⎛ ⎞⋅ ⋅ ⋅ ⋅⎛ ⎞= ⋅ ⋅⎜ ⎟ ⎜ ⎟⎝ ⎠⎝ ⎠ 
 
Que define os seguintes grupos admensionais: 
h DNu
k
⋅= Número de Nusselt 
Re V Dρ µ
⋅ ⋅= Número de Reynolds 
Pr Cp
k
µ⋅= Número de Prandtl 
O Número de Nusselt relaciona as quantidades de calor transmitidas por convecção e por condução. 
Assim, quanto maior for este número, maior é a convecção. 
O Número de Reynolds relaciona forças de inércia e as de viscosidade. Quando as forças de inércia 
ultrapassam as de viscosidade, o escoamento passa de laminar para turbulento. 
O Número de Prandtl estabelece a relação entre a quantidade de movimento e a transmissão de calor 
por condução. O comprimento de Prandtl é a distância percorrida, em média, pelas porções turbulentas 
de fluido numa direção normal à do escoamento médio. Ele somente depende das propriedades físicas 
do meio, assim podemos dizer que tal número relaciona propriedades físicas do meio, logo deve 
depender da temperatura. 
O Número de Peclet é o produto dos números de Reynolds e de Prandtl. 
A equação final da análise dimensional foi deduzida tanto para a convecção forçada como para a 
natural. Neste último caso é mais fácil eliminar a velocidade V da equação em benefício do coeficiente 
de dilatação cúbica, β , e da diferença entre a temperatura da parede e do fluído não perturbado, 
p fT T T∆ = − , características fáceis de serem determinadas na convecção natural. Para tanto, seja uma 
superfície quente (Figura 3.1), em contato com um fluído. 
Este modelo permite observar correntes ascendentes, denominadas correntes de convecção 
natural. A uma distância d da origem de um sistema de coordenadas fixo, temos uma lei de variação da 
 4
velocidade como é mostrado na figura acima. Para o ar seco em contato com a parede quente vertical, o 
máximo de velocidade encontra-se entre 1,4 e 1,6(mm) da parede. Além disto observou-se que esta 
velocidade cresce com a altura até 60(cm), mantendo-se depois praticamente constante. 
Para a temperatura existe um máximo junto a parede e um mínimo que é a temperatura do fluído 
não perturbado. Como o fluido aquecido sobe, diminui a diferença entre a temperatura do fluido e da 
parede, logo, a transmissão também fica diminuida com a altura. O efeito do aumento de velocidade 
entre 
as alturas de 30 a 45(cm) compensa a redução da diferença de temperatura, observando-se um ligeiro 
aumento no coeficiente de convecção. 
7 
Tomando-se, 
( ) 
t 
t t t 
t p f 
f = 
- 
= + 
2 2 
D 
sendo o coeficiente médio de dilatação cúbica do fluido 
dado pela expressão: 
b = 
- 
- 
1 
0 
0 
v 
v v 
t t f 
 5
. 
sendo v o volume específico, podemos escrever: 
v v v 
t - = 0 0 2 
.b. 
D 
ou ainda: D 
D 
g = g - g = g b 0 2 
. . 
t 
. 
Como é uma variação de força por unidade de volume, justamente tal variação é que faz com que 
as partículas quentes se elevem realizando um trabalho. Considerando o trabalho por unidade de 
volume, 
seu módulo é dado por Dg.D. Pelo Princípio da Conservação da Energia este trabalho é igual a variação 
da energia cinética por unidade de volume, 
c 
g 
2 
2 
æ 
è ç 
ö 
ø ÷ 
.g , logo: 
c 
g 
D 
2 t 
2 2 
 6
æ 
è ç 
ö 
ø ÷ 
= 
æ 
è ç 
ö 
ø ÷ 
b. . 
D 
. Desta expressão, 
podemos tirar a lei de variação procurada: 
c = (g.b.D.Dt) 
1 
2 
Levando esta última na equação admensional inicial, têm-se: 
a [ ] 
l 
r b 
m 
m 
l 
. 
. 
. . . . 
. 
D . 
Z 
D g. D t c 
a 
 7
p 
b 
= 
æ 
è 
çç 
ö 
ø 
÷÷ 
æ 
è ç 
ö 
ø ÷ 
D 
1 
2 
elevando tudo a 
2 
2 
dentro 
fora 
a 
l 
r b 
m 
m 
l 
. 
. 
. . . . 
. 
 8
D . 
Z 
D g. D t c 
a 
p 
b 
= 
æ 
è ç 
ö 
ø ÷ 
æ 
è ç 
ö 
ø ÷ 
2 2 
2 
D 2 
a 
l 
b r 
m 
m 
l 
. 
. 
. . . 
. 
D . 
Z 
g. t D c 
 9
a 
p 
b 
= 
æ 
è çö ø ÷ 
æ 
è ç 
ö 
ø ÷ 
D 2 3 
2 
2 
Denominamos de Número de Grashof ao grupo admensional: 
N 
g t D g t D 
Gr = = .b. .r . . . . 
m 
b 
n 
D 2 3 D 
2 
3 
2 
Com esta notação, a equação admensional pode ser rescrita como: 
Nu Z N N Gr 
= . a . bPr 
2 
8 
O Número de Grashof estabelece uma relação entre as forças de flutuação ou de empuxo e as de 
viscosidade, sendo a expressão acima básica para o estudo da convecção natural. 
 10
As expressões que deduzimos tem servido, pelo menos para orientação dos pesquisadores, os 
quais atravéz da análise estatística de grande número de ensaios têm procurado chegar a fórmulas que 
permitem um cálculo bastante próximo da realidade para o coeficiente de convecção. Deste grande 
número de fórmulas selecionamos as que seguem, as quais temos aplicado com relativo sucesso. 
3.2) Características Básicas para obtenção do Coeficiente de Convecção 
Nos cálculos de transmissão de calor é sempre comum tomarmos um coeficiente de convecção 
médio, calculado tendo por base (salvo indicação ao contrário)as seguintes características: 
1 - A temperatura de referência, que é dada por: 
t 
t = e ts 
+ 
2 
ou t 
t t 
m 
= p 
+ 
2 
onde te é a temperatura na entrada, ts é a temperatura na saída e tp é a temperatura na parede. 
Usamos t sempre que t t C p - £ 5° para líquidos e t t C p - £ 50° para gases. 
A dimensão característica D ou L para o escoamento no interior de condutos circulares é o 
diâmetro interno Di. Para escoamentos no interior de dutos não circulares ou exteriormente na sua 
direção longitudinal é usado na maioria das vezes o diâmetro hidráulico D 
s 
p h = 4 
, onde s é a seção 
transversal ao escoamento e p é o seu perímetro molhado. Outras vezes é usado o diâmetro externo De. 
Quando o escoamento é entorno de placas, paralelo a placas ou entre placas planas, a dimensão 
característica é um dos lados da placa ou a distância entre elas. 
2 - Os regimes de escoamento são caracterizados pelo Número de Reynolds, como segue: 
Tubos Cilíndricos escoamento interior ou exterior a qualquer tubo, porém, na direção 
 11
longitudinal: 
Regime Laminar 0 < N £ 2320 Re 
Regime Transitório 2320 < N £ 10 000 Re . 
Regime Turbulento 10.000 Re < N 
Tubos Retangulares escoamento em seu interior: 
Regime Laminar 0 < N £ 350 Re 
9 
Regime Turbulento 350 < NRe 
Placas Planas escoamento em torno das mesmas na parte superior: 
Regime Laminar 0 < N £ 400 000 Re . 
Regime Transitório 400.000 600.000 Re < N £ 
Regime Turbulento 600.000 Re < N 
3.3) Coeficientes de Convecção Forçada para Líquidos e Gases - Escoamento interno 
ou externo a condutos. 
Direção Longitudinal 
A) Fórmula de SIEDER e TATE, REGIME LAMINAR: 
Nu N N 
D 
L p 
= 
æ 
è ç 
ö 
ø ÷ 
æ 
è çç 
ö 
ø ÷÷ 
186 
1 
3 
 12
0 14 
, . . Re Pr 
, 
m 
m 
L é o comprimento do conduto, 
m é a viscosidade dinâmica na temperatura t 
mp é a viscosidade dinâmica do fluído na temperatura da parede. 
B) Fórmula de HAUSEN, REGIME LAMINAR: 
Nu 
N N 
D 
L 
N N 
D 
L 
p 
= + 
æ 
è ç 
ö 
ø ÷ 
+ 
æ 
è ç 
ö 
ø ÷ 
é 
ë 
êêêêê 
ù 
 13
û 
úúúúú 
æ 
è çç 
ö 
ø ÷÷ 
3 65 
0 0668 
1 0 045 
2 
3 
0 14 
, 
, 
, 
Re Pr 
Re Pr 
, m 
m 
Esta fórmula somente pode ser usada se for satisfeita a seguinte condição: 
10 4 10 
1 
- 
- 
< 
æ 
è ç 
ö 
ø ÷ 
N N £ 
D 
 14
Re Pr L 
C) Fórmula de MC ADAMS, REGIME TURBULENTO: 
10 
Nu N NPR 
= 0,023 0 8 n Re 
, 
Nesta fórmula n=0,4 para aquecimento e n=0,3 para refrigeração e a temperatura de referência t. 
D) Fórmula de HAUSEN, REGIME TRANSITÓRIO e TURBULENTO 
Nu (N )N 
D 
L P 
= - + 
æ 
è ç 
ö 
ø ÷ 
é 
ë 
êê 
ù 
û 
úú 
æ 
è ç 
ö 
ø ÷ 
0 116 125 1 
2 
3 
1 
3 
 15
2 
3 
0 14 
, Re Pr 
, m 
m 
Esta fórmula somente pode ser aplicada se forem verificadas as seguintes condições: 
2320 < N £ 106 Re 
0,6 500 Pr < N £ 
1 < < ¥ L 
D 
EXEMPLO 3.1) Para aquecer 7(t/h) de óleo SAE-50 entre as temperaturas de 20(°C) e 60 (°C), o 
fazemos circular no interior de um transmissor de calor composto de 100 tubos circulares de aço de 
diâmetro interno 13 (mm) e de 17 (mm) de diâmetro externo. O aquecimento é feito com vapor 
saturado, 
Ps= 2,7 (bar). Admitindo-se que a temperatura média da parede do lado do óleo é 50 (°C) menor que a 
temperatura de condensação da água, determinar: 
a) O calor total recebido pelo óleo; 
b) A massa de vapor saturado necessária; 
c) O comprimento útil do transmissor e o coeficiente de convecção. 
a) Cálculo do calor total recebido pelo óleo: 
( ) 21 s e Q2 = m2cp t2 - t2 
Do Livro 1, na tabela (4), retiramos ÷ ÷ 
ø 
ö 
ç çè 
æ 
° 
= 
kg C 
kcal 
 16
c 0,469 
2 p com: 
t = ( C) 
+ 
= ° 
20 60 
2 
40 logo, temos: 
( ) 152,8(kW) 
h 
kcal 
Q 7.103.0,469 60 20 131400 
2 = ÷ 
ø 
ö 
çè 
= - @ æ 
11 
b) Cálculo da massa de vapor saturado: 
Do Livro 1, na tabela (5), com Ps=2,7 (bar), retiramos o calor de vaporização r 
kJ 
kg 
= 
æ 
è ç 
ö 
ø ÷ 
2174 e a 
temperatura do vapor ts=130 (°C). 
Se desprezarmos as perdas, temos: 
Q1= Q2= m1r 
 17
÷ø 
ö 
çè 
æ = = ÷ 
ø 
ö 
çè 
= = = æ 
h 
t 
0,253 
1000 
3600 
0,0703. 
s 
kg 
0,0703 
2174,1 
152,8 
r 
Q 
m 1 
1 
c) Cálculo do comprimento útil do transmissor e do coeficiente de convecção: 
Para tanto usaremos a equação: Q S (t t) 1 1 1 pm = a - 
Do enunciado, concluímos ser t ( C) pm = 130 - 50 = 80 ° 
onde tpvapor=130ºC e tpóleo=50ºC. 
Para calcularmos a1, tomamos como referência: t ( ) 
t t 
C m 
pm 
 18
1 2 
80 40 
2 
= 60 
+ 
= 
+ 
= ° 
Do Livro 1, na tabela (4), com tm1 retiramos para o óleo SAE-50: 
÷ ÷ø 
ö 
ç çè 
æ 
r = 
2 3 
m 
kg 
864 ÷ 
ø 
ö 
çè 
æ 
° 
l = 
h.m. C 
kcal 
2 0,121 
÷ ÷ ø 
ö 
ç ç 
è 
 19
æ 
n = - 
s 
m 
3020.10 
2 
4 
2 NPr 2 =1050 
Calculamos o Número de Reynolds 
2 
2 2 
Re 
c .D 
N 
n 
= , 
Kw = kJ/s 
kJ/kg 
12 
2 2 
2 
2 s . 
m 
c 
r 
= como: ( ) 2 ( 2 ) 
2 3 22 
2 100 1,329.10 m 
4 
.13.10 
z 
 20
4 
D 
s - 
- 
= 
p 
= 
p 
= 
assim, ÷ 
ø 
ö 
çè 
= = æ - h 
m 
609,62 
864.1,329.10 
7.10 
c 
2 
3 
2 
logo: 26,25 
3020.10 
609,62.0,013 
N 
Re = 4 = 
- 
(regime laminar) 
Aplicando a fórmula: 
Nu N N 
 21
D 
L p 
= 
æ 
è ç 
ö 
ø ÷ 
æ 
è çç 
ö 
ø ÷÷ 
186 
1 
3 
0 14 
, . . Re Pr 
, 
m 
m 
Do Livro 1, na tabela (4): 
m60 = 261 
æ 
è ç 
ö 
ø ÷ 
kg 
h m . 
m80 = 115 
æ 
è ç 
ö 
 22
ø ÷ 
kg 
h m . 
tóleo=60oC tpm= 80 oC 
Usando a equação de Sieder e Tate: 
( ) ( ) ( ) 
3 
1 
3 
1 
2 
0,14 
3 
1 
3 
1 
3 
1 
3 
1 
2 
Nu 1,86.2,98.10,2.0,235.1,122.L 14,9.L 
115 
261 
L 
0,013 
Nu 1,86 26,35 1050 
- - 
= = 
÷øö 
çè 
 23
= æ 
÷ ÷ø 
ö 
ç çè 
æ 
° 
= = 
l 
a = 
- - 
m .h. C 
kcal 
14,9.L 139L 
0,013 
0,121 
Nu 
D 2 
3 
1 
3 
1 
2 
2 
2 
2 
como S2= p.D2.z.L (área de todos os tubos abertos), temos: 
( ) ( ) 
L 14(m) 
5,80 
139. .0,013.40 
131400 
 24
139. .D .z. t t 
Q 
L 2 
2 3 
2 3 
3 
2 pm 
1 
@ 
= ú 
û 
ù 
êë 
é 
p 
= 
ú úû 
ù 
ê êë 
é 
p - 
= 
com este valor, temos: 
( ) ÷ ÷ 
ø 
ö 
ç çè 
æ 
° 
= ÷ ÷ 
ø 
 25
ö 
ç çè 
æ 
° 
a = = = 
- 
m .h. C 
kW 
0,0667 
m .h. C 
kcal 
57,6 
2,41 
139 
139. 14 
2 2 
3 
1 
2 
13 
3.4) Coeficientes de Convecção Forçada para Líquidos e Gases - Esc. externo a 
condutos em sua direção normal 
FÓRMULA DE HILPERT 
válida para gases, normal a tubo. 
Nu = C.NmRe 
Na tabela (3.1) abaixo, damos os valores de C e m em função do NRe 
Tabela 3.1 
NRe C m 
1 - 4 0,891 0,330 
4 - 40 0,821 0,385 
40 - 4.000 0,615 0,466 
 26
4.000 - 40.000 0,174 0,618 
40.000 - 250.000 0,0239 0,805 
A velocidade a ser considerada é aquela do escoamento antes de alcançar o tubo. 
FÓRMULA DE ULSEMER, 
válida para LÍQUIDOS, normal a um tubo 
Nu = b.Nn .N Re Pr 
0,31 
Os valores de b e n são fornecidos em função do NRe, como segue: 
n=0,385; b=0,91 para 0,1 50 Re < N £ 
n=0,5; b=0,60 para 50 < N £ 104 Re 
14 
FÓRMULA DE GRIMISON, 
válida para o AR, normal a um feixe de tubos 
Nu = A.NmRe 
Os valores de A e m são fornecidos na tabela (3.3). 
FÓRMULA DE GRIMISON, 
válida para fluídos diferentes do ar, normal a um feixe de tubos 
Nu A 
N 
N 
N FLUIDO 
AR 
= m 
æ 
è çç 
ö 
ø ÷÷ 
. . Pr 
Pr 
, 
Re 
 27
0 31 
Os valores de A e m são fornecidos pela tabela (3.3). 
AS FÓRMULAS DE GRIMISON SÓ PODEM SER UTILIZADAS PARA FEIXES DE TUBOS 
COM MAIS DE 10 LINHAS EM PROFUNDIDADE. 
Para menos de 10 linhas, devemos multiplicar o coeficiente de convecção por um fator de 
redução dado pela tabela (3.2) a seguir: 
Tabela (3.2) Fatores de redução para menos de 10 linhas de tubos em 
profundidade 
N 1 2 3 4 5 6 7 8 9 10 
alter - 0,74 0,82 0,88 0,91 0,94 0,96 0,98 0,99 1,0 
linha 0,64 0,80 0,87 0,90 0,92 0,94 0,96 0,98 0,99 1,0 
15 
Tab. (3.3) Valores de A e m da fórmula de Grimison 
LL 
LT 
XT=LT/D 
XL=LL/D 
LL 
LT 
XT 1,25 1,502,00 2,50 
XL A m A m A m A m 
Tubos Alternados 
0,600 - - - - - - 0,213 0,636 
0,900 - - - - 0,446 0,571 0,401 0,581 
1,000 - - 0,497 0,558 - - - - 
1,125 - - - - 0,478 0,565 0,518 0,560 
1,250 0,518 0,556 0,505 0,554 0,519 0,556 0,522 0,562 
1,500 0,451 0,568 0,460 0,562 0,452 0,568 0,488 0,568 
2,000 0,404 0,572 0,416 0,568 0,482 0,556 0,449 0,570 
3,000 0,310 0,592 0,356 0,580 0,440 0,562 0,421 0,574 
Tubos em Linha 
 28
1,250 0,348 0,592 0,275 0,608 0,100 0,704 0,0633 0,752 
1,500 0,367 0,586 0,250 0,620 0,101 0,702 0,0678 0,744 
2,000 0,418 0,570 0,299 0,602 0,229 0,632 0,198 0,648 
3,000 0,290 0,601 0,357 0,584 0,374 0,581 0,286 0,608 
A fórmula de Grimison é aplicada considerando-se a velocidade máxima do escoamento normal 
aos tubos. A dimensão característica é o diâmetro externo dos tubos. 
t 
t t 
R 
= f 
+ 
2 
Quando a direção do escoamento forma com o eixo longitudinal dos tubos um ângulo diferente de 
90°, VERNEHN determinou um fator de correção dado pela tabela (3.4) abaixo. 
Tabela (3.4) Fatores de redução oriundos da inclinação de 
eixo longitudinal do tubos 
Graus 90 80 70 60 50 40 30 20 
a a q 90 1,00 1,00 0,99 0,95 0,86 0,75 0,63 0,50 
16 
EXEMPLO 3.2) Deve-se construir um refrigerador para baixar de 140(°C) para 50(°C) a temperatura 
de 
600 (kg/h) de ar seco, cuja pressão é de 1,05 (bar). 
O refrigerador será de tubos de 30 (mm) de diâmetro externo sendo a temperatura média na 
parede externa de 25(°C). 
Determinar os comprimentos, do refrigerador, para escoamentos nas direções longitudinal e 
normal ao eixo dos tubos, admitindo existência de desviadores distanciados de 0,35 (m). 
As características fixadas podem ser vistas na figura (3.2). 
SOLUÇÃO 
Para determinar o comprimento usaremos a fórmula 
Q S (t t ) p = a. . - . 
Para o cálculo de Q, usaremos a fórmula 
 29
Q m c (t t ) pm e s 
= . . - 
Com t = ( C) 
+ 
= ° 
140 50 
2 
95 
retiramos do Livro 1, na tabela (3): 
c 
kcal 
pm kg C = 
° 
æ 
è ç 
ö 
ø ÷ 
0,2415 Q ( ) ( ) 
kcal 
h 
= - = kW 
æ 
è ç 
ö 
ø ÷600.0,2415. 140 50 13041 = 
15,16 
Para o cálculo de a e de L temos três possibilidades. 
1) Escoamento externo na direção longitudinal; 
2) Escoamento externo na direção normal, distribuição em linha; 
3) Escoamento externo na direção normal, distribuição alternada. 
1) Cálculo de L para escoamento externo Longitudinal 
 30
Como as seções transversais são as mesmas, teremos um só comprimento tanto para disposição 
em linha como alternada. 
30 
180 
180 
30 40 
40 180 
180 
40 
40 
17 
Calculamos inicialmente o Número de Reynolds N 
c Dh 
Re 
. = 
n 
, sendo: 
verifica-se: t t p C - £ 50º 
95- 25 = 70, assim: 
t ( ) 
t t 
C m 
p = 
+ 
= 
+ 
= ° 
2 
95 25 
2 
60 
 31
c 
m 
S 
= 
r60 
mas ( ) ÷ ÷ 
ø 
ö 
ç çè 
æ 
= 
+ 
r = = 
3 
5 
m 
kg 
1,098 
287. 273 60 
1,05.10 
R.T 
P 
( ) 
( ) 
S a b 
D 
z cm 
S m 
= - = - = - = 
= - 
. . 
 32
. 
. 
. 
p 2 p 2 
2 
4 2 
4 
1818 
3 
4 
16 324 113 211 
21110 
ÁreaAR = ÁreaTOTAL - ÁreaTUBOS 
logo: c 
m 
s 
= = 
æ 
è ç 
ö 
ø ÷ 
600 
3600 
1 098 0 0211 
7 17 
, . , 
, 
D ( ) 
S 
P 
S 
 33
Z D 
cm H = = = = 
4 4 4 211 
16 3 
5 6 
. 
. . 
. 
. . 
, 
p p 
Do Livro 1, na tabela (3) para o ar, temos: n60 
6 
2 
= 18 910 
æ 
è ç 
ö 
ø ÷ 
, . - 
m 
s 
logo: NRe 
, . , . 
, 
= = 7 17 0 056 10 
18 9 
21230 
6 
Sendo o escoamento turbulento e como o ar está sendo refrigerado, usamos a fórmula de Mc 
Adams com n=0,3 obtendo: 
 34
Nu = 0,023N0 8N0 3 Re 
, 
Pr 
, 
retiramos do Livro 1, na Tabela (3), para o ar: 
NPr = 0,709 l60 = 0 0245 
° 
æ 
è ç 
ö 
ø ÷ 
, 
. . 
kcal 
m h C 
temos, então: 
Nu = 0 023 (21230) (0 709) = 60 3 0 8 0 3 , . , , , , 
logo: 
Em Pascal 
18 
÷ø 
ö 
çè 
æ 
° 
= 
÷ø 
ö 
çè 
æ 
° 
 35
= = = 
- 
m C 
kW 
m h C 
kcal 
Nu 
DH 
. 
30,7.10 
. . 
60,3 26,4 
0,056 
0,0245 
2 
3 
2 
a 
l 
a 
Para este caso o comprimento será: 
( ) ( ) (m) 
Z D t t 
Q 
L 
p 
4,67 
16. .0,03.26,4. 95 25 
13041 
. . . . 
= 
 36
- 
= 
- 
= 
p a p 
um valor razoável. 
2) Cálculo de L para escoamento externo na direção normal, distribuição em linha 
Vamos aplicar a fórmula de Grimison para ar: 
Nu = A.NmRe 
onde A e m retiramos da Tabela (3.3), entrando com: 
X X 
L 
D T L 
= = T = = 40 
30 
1,33 
A=0,326 e m=0,597. 
O Número de Reynolds é calculado com o diâmetro externo, logo: N 
c D 
Re 
. = 1 
60 n 
onde c1 é a velocidade máxima. 
m& = r .c .S = r .c .( . , + . , ). , 60 1 60 1 30 01 2 0 015 0 35 
logo: c ( ) 
m 
1 s 
600 
11 0 06 0 35 3600 
= = 7 22 
æè ç 
 37
öø ÷ 
, . , . , . 
, 
NRe 
, . , 
, . 
= = - 
7 22 0 03 
18 910 
11450 6 
Nu = 0 326(11450) = 0 326 265 = 86 3 0 597 , , . , , 
Como temos 4 linhas em profundidade, pela tabela (3.2), temos um fator de redução de 0,90, 
logo: 
19 
a 
l 
a 
= = = 
° 
æè ç 
öø ÷ 
= 
° 
æ 
è ç 
ö 
ø ÷ 
- 
0 90 0 90 
0 0245 
0 03 
 38
86 3 63 4 
73 710 
2 
3 
2 
, . , 
, 
, 
, , 
. . 
, . 
. 
D 
Nu 
kcal 
m h C 
kW 
m C 
Podemos agora calcular o comprimento médio: 
( L ) ( ) 
Q 
Z D t t 
m 
p 
= 
- 
= = 
. . . . . . , . , . 
, 
p a p 
13020 
 39
16 0 0363 4 70 
1 946 
Como temos os desviadores de 35 (cm) em 35 (cm), colocaremos 5 (cinco). Vemos que o 
comprimento útil do transmissor resultou menor, porque houve um aumento substancial de a. 
3) Cálculo de L para escoamento externo na direção normal, distribuição alternada 
1 6 3 . 5 
1 9 8 
4 0 
4 0 
Usamos a mesma fórmula, Nu = A.NmRe . Da tabela (3.3) retiramos, com XT@XL=1,33 A=0,499 
e m=0,558. 
Para o NRe necessitamos da velocidade na seção mínima: 
[ ] c 
m 
2 s 
600 
360011 3 0 01 0 014 0 034 0 35 
= 5 55 
+ + 
= 
æè ç 
öø ÷ 
. , . . , , , . , 
, 
NRe 
, . , . 
, 
= = 
5 550 0310 
18 9 
8809 
 40
6 
Nu = 0 499(8809) = 79 3 0 558 , , , 
Com 4 linhas, tabela (3.2), temos um fator de redução de 0,88: 
a = = 
° 
æ 
è ç 
ö 
ø ÷ 
= 
° 
æ 
è ç 
ö 
ø ÷ 
0 88 - 
0 0245 
0 03 
79 3 57 1 66 310 2 
3 
2 , . 
, 
, 
, , 
. . 
, . 
. 
kcal 
m h C 
kW 
m C 
 41
O comprimento neste caso será: 
20 
L = = (m) 
13041 
16 0 0357 570 
2 16 
. . , . , . 
, 
p 
Como temos desviadores de 35(cm) em 35(cm) colocaremos 5 (cinco). 
Uma análise rápida nos mostra a vantagem da distribuição alternada relativamente a em linha para 
a mesma velocidade na seção mínima. Neste exemplo o comprimento para a alternada resultou maior 
porque a velocidade na seção mínima na mesma foi menor, devido a igualdade de áreas da seção 
transversal. 
A vantagem do escoamento na direção normal, relativamente ao eixo na direção do eixo do 
conduto, tornou-se bastante evidente para a igual velocidade. Evidentemente se analizarmos as perdas 
de 
carga podemos chegar a conclusão de maior vantagem do escoamento na direção do eixo dos condutos. 
3.5) Coeficientes de Convecção Forçada para líquidos e gases - Escoamento ao longo 
de superfícies planas 
Fórmula para regime laminar, gases: 
Nu = 0,66.N0 5 Re 
, 
Fórmula para regime laminar, líquidos: 
Nu N 
N 
N 
P 
= 
æ 
è çç 
 42
ö 
ø ÷÷ 
0 76 0 43 
0 25 
, . . Re 
, Pr 
Pr 
, 
onde: NPr achado na temperatura de referência 
NPRp achado na temperatura da parede 
Fórmula para regime turbulento, gases: 
Nu = 0,032.N0 8 Re 
, 
Fórmula para regime turbulento, líquidos: 
Nu N N 
N 
N 
P 
= 
æ 
è çç 
ö 
ø ÷÷ 
0 037 0 8 0 43 
0 25 
, . . . Re 
, 
Pr 
, Pr 
Pr 
, 
 43
Nas equações acima, a dimensão característica é o comprimento da placa, ou superfície plana na 
direção do escoamento. A velocidade é aquela reinante no fluído não perturbado. 
Nu, NRe, NPr são calculados com a temperatura tm. enquanto que NPrp com a temperatura tp. 
21 
EXEMPLO 3.3) Ar a pressão atmosférica e a 20(°C), com velocidade de 50(km/h),escoa sobre uma 
cobertura plana de 12x12(m) estando a cobertura a 60(°C). Determinar o calor trocado entre a cobertura 
e o ar. 
Tomamos como temperatura de referência 40( C) 
2 
20 60 
tm = ° 
+ 
= 
Do Livro 1, na tabela (3), retiramos: 
l40 = 0 0233 
° 
æ 
è ç 
ö 
ø ÷ 
, 
. . 
kcal 
m h C 
n40 
6 
2 
= 16 97 10 
æ 
è ç 
ö 
 44
ø ÷ 
, . - 
m 
s 
NPr=0,711 
Calculamos o NRe para toda a profundidade da cobertura: 
6 
Re 6 9,82.10 
3,6.16,97.10 
c.L 50.12 
N 
40 
= = ÷ 
ø 
ö 
çè 
æ 
n 
= - 
Como NRe > 6.105 temos regime turbulento sendo que o Nu, que fornecerá o coeficiente médio 
de convecção, dado pela equação Nu = 0,032.N0 8 Re 
, , logo: 
Nu = 0 032 (9 82106 )0 8 = 12600 , . , . , 
com isso temos: 
a40 2 
3 
2 
0 0233 
12 
= 12600 = 24 5 28 510 
° 
 45
æ 
è ç 
ö 
ø ÷ 
= 
° 
æ 
è ç 
ö 
ø ÷ 
- , 
, 
. . 
, . 
. 
kcal 
h m C 
kW 
m C 
O calor total que é entregue pela cobertura será: 
Q S (t t ) ( ) 
kcal 
h 
kW c ar = - = = 
æ 
è ç 
ö 
ø ÷ 
a. . 24,5.(12.12).40 141200 = 164,4 
3.6) Coeficientes de Convecção Forçada para líquidos e gases - Escoamento interno e 
externo a serpentinas 
 46
Fórmula de Jeschke, regime turbulento, escoamento no interior de serpentina helicoidal. 
a a S R 
i 
he 
D 
D 
= + 
æ 
è ç 
ö 
ø ÷ 
1 3,54 
22 
Nesta fórmula aS é o coeficiente de convecção para a serpentina e aR para o tubo reto, Di é o 
diâmetro interno do tubo e Dhe o diâmetro da serpentina helicoidal. 
Para a convecção natural ou forçada, líquidos e gases escoando externamente a serpentina, 
podemos tomar o coeficiente de convecção igual ao fornecido pela fórmula para escoamento normal ao 
eixo longitudinal de um tubo. 
EXEMPLO 3.4) Para aquecer 800 (kg/h) de água entre 15(°C) e 65(°C) a 1,0 (kgf/cm2) de pressão, 
usamos uma serpentina helicoidal com 150(mm) de diâmetro, sendo o diâmetro interno do tubo 
12,5(mm). Admitindo que a temperatura média na parede do tubo é de 80(°C). determinar o 
comprimento da serpentina. 
SOLUÇÃO: 
Inicialmente devemos calcular o coeficiente de convecção considerando o tubo reto e tendo como 
referência: 
60( C) 
2 
40 80 
t 
40 t t 5ºC ? assim : 
2 
 47
15 65 
t 
m 
p 
= ° 
+ 
= 
= - £ 
+ 
= 
O NRe será dado por : 
N 
c d 
Re 
. 
60 
60 
= 
æ 
è ç 
ö 
ø ÷ 
n 
Sendo que: 
c(m s) 
m 
S 
= 
& 
3600.r. 
( ) 
 48
( ) 
1,84 
4 
. 0,0125 
983,2. 
800 / 3600 
c m s 
2 
= 
p 
= 
Do Livro 1, na tabela (2), retiramos para 60(°C): 
l60 = 0 560 
° 
æ 
è ç 
ö 
ø ÷ 
, 
. . 
kcal 
m h C 
n60 
6 
2 
= 0 47510 
æ 
è ç 
ö 
ø ÷ 
, . - 
 49
m 
s 
NPr 60 = 3 
Como isto, temos: 
Água 
23 
NRe 
, . , . 
60 , 
1 84 0 0125 10 
0 475 
48300 
6 
= = Regime Turbulento 
usaremos a fórmula de Mc Adams (aquecimento): 
Nu = 0,023. N 0 8 . N 0 4 = 0,023.(48300)0 8 .30 4 = 199 Re 
, 
Pr 
, , , 
logo: 
a 
l 
a 
60 
60 
2 
60 2 
0 560 
0 0125 
199 8920 
11 36 
 50
= 
æ 
è ç 
ö 
ø ÷ 
= = 
° 
æ 
è ç 
ö 
ø ÷ 
= 
° 
æ 
è ç 
ö 
ø ÷ 
d 
Nu 
kcal 
m h C 
kW 
m C 
, 
, . . 
, 
. 
Com a equação da serpentina: 
÷ ÷ø ö 
ç çè 
æ 
 51
° 
= ÷ ÷ 
ø 
ö 
ç çè 
æ 
= ÷ 
ø 
ö 
çè 
æ + = ÷ ÷ 
ø 
ö 
ç çè 
æ 
a = a + 
m . C 
kW 
13,44 
h.m .ºC 
kcal 
11551,4 
150 
12,5 
8920. 1 3,54 
D 
d 
. 1 3,54. 
2 2 
he 
S R 
 52
O calor que a água deve receber tomando 
c c 
kcal 
pm p kg C = = 
° 
æ 
è ç 
ö 
ø ÷ 
40 
0,998 
. 
, 
é dado por: 
Q m c (t t ) ( ) 
kcal 
h 
kW pm s e = - = = 
æ 
è çö ø ÷ 
. . 800.0,998.50 39920 = 46,4 
Como: Q S (t t) p = a. . - 
vem S ( ) ( ) 
Q 
t t 
m 
p 
= 
- 
= = 
a. . 
 53
, 
39920 
11550 40 
0 0864 2 
S = p.d.L L ( ) 
S 
d 
= = = m 
p. p 
, 
. , 
, 
0 0864 
0 0125 
2 21 
Como o diâmetro da serpentina é de 150 (mm), gastamos: 
L D (m) 1 @ p. = p.0,15 = 0,471 
sendo, portanto, o número total de voltas: 
24 
4,69 voltas 
0,471 
2,21 
L 
L 
z 
1 
@ = @ . 
Tomando uma distância entre eixos de volta de 45(mm), teremos para comprimento médio útil do 
aquecedor, L2@0,045.4,7=0,21(m). 
3.7) Coeficientes de Convecção Forçada para líquidos e gases - Superfícies com aletas 
O calor transmitido por convecção entre uma superfície com aletas e um fluído é fornecido por: 
 54
Q = a'.S.q 
Na figura abaixo, usamos uma aleta retangular para mostrar as características básicas, assim 
temos: 
- a' - coeficiente de convecção da superfície com aletas (referido à superfície entre aletas); 
- S - área da superfície entre aletas. Na figura, temos S = b L 0 0 . 
- q = (t - t ) p f - diferença entre a temperatura na parede e a do fluído. 
O coeficiente de convecção a', pode ser posto em função do coeficiente de convecção da aleta, 
aA (da superfície sem aletas), do rendimento da aleta, ha, e da relação entre a área da superfície lateral 
da 
aleta, Sa, e a da superfície entre as aletas, S. 
a'= a + h . 
æ 
è ç 
ö 
ø ÷ 
é 
ë ê 
ù 
û ú 
a a 
a S 
S 
1 
Para a figura , temos: S L L a = 2 0 . . . 
A tabela (3.5) fornece os valores de 
a 
a 
a f 
L 
b 
= 
 55
æ 
è ç 
ö 
ø ÷ 
0 
onde a é o coeficiente da superfície sem aletas. 
b 
L0 
L 
b0 
25 
Tab. 3.5 - Valores de Relação a a a em função de L 
b0 
L 
b0 
Tubos 
Aletados 
Placa Aletada 
Laminar 
Placa Aletada 
Turbulento 
0,5 0,875 0,905 0,93 
1 0,815 0,885 0,91 
2 0,71 0,85 0,87 
3 0,63 0,825 0,835 
4 0,565 0,81 0,815 
5 0,50 0,795 0,795 
6 0,44 0,78 0,775 
7 0,385 0,77 0,765 
Os rendimentos das aletas podem ser obtidos do gráfico (3.1), em função de 
L 
 56
b 
A . 
. 
. 
, 2 a 0 5 
l 
æ 
è ç 
ö 
ø ÷ 
onde l é o coeficiente de condução do material das aletas e aA em 
kW 
m2 .ºC 
æ 
è ç 
ö 
ø ÷ 
EXEMPLO 3.5) A figura a seguir representa o esquema do cilindro de um compressor a pistão de um 
estágio, material com l = 
° 
æ 
è ç 
ö 
ø ÷ 
50.10-3 
. 
kW 
m C 
. Sendo a velocidade média do ar não perturbado, na direção 
normal da figura, de 2 (m/s). Determinar o calor retirado pelo ar de refrigeração. 
Pela equação dada anteriormente, temos, Q = a'.S.q, onde a'= a + h . 
 57
æ 
è ç 
ö 
ø ÷ 
é 
ë ê 
ù 
û ú 
a a 
a S 
S 
1 . 
Para determinarmos aa, inicialmente vamos determinar o coeficiente de convecção para o caso de 
não existirem aletas. Temos que considerar a parte cilíndrica e a plana. 
126 
10 
4 
30 
40 
180 
L0= 80 (mm) 
f 100 
26 
Para a parte cilíndrica, calculamos o Número de Reynolds tomando como referência, 
t ( ) 
t t 
C m 
p f = 
+ 
= ° 
2 
 58
50 . 
Do Livro 1, na tabela (3), retiramos os valores: 
n50 
6 
2 
= 17 9310 
æ 
è ç 
ö 
ø ÷ 
, . - 
m 
s 
l50 = 0 0239 
° 
æ 
è ç 
ö 
ø ÷ 
, 
. . 
kcal 
m h C 
logo, temos: 
N 
c D 
T Re 
. . , 
, . 
= = = u - 50 
6 
 59
2 0 1 
17 9310 
11150 
Pela fórmula de Hilpert (escoamento externo, direção normal), Nu C N T 
= . mRe . Da tabela (3.1), 
com Nre= 11150, retiramos C= 0,174 e m= 0,618, logo: 
Nu ( ) T = 0 174 11150 = 55 2 0 618 , , , 
com isto: a 
l 
T D T 
Nu 
kcal 
m h C 
= = = 
° 
æ 
è ç 
ö 
ø ÷ 
0 0239 
0 10 
55 2 13 2 2 
, 
, 
, , 
. . 
=> Coef. Superfície sem Aletas (a) 
Como 
L 
b 
0 T 
 60
40 
10 
4 
æ 
è ç 
ö 
ø ÷ 
= = temos, da tabela (3.5) 
a 
a 
a 
T 
æ 
è ç 
ö 
ø ÷ 
= 0,565 logo: 
÷ ÷ø 
ö 
ç çè 
æ 
° 
a = a = = 
m .h. C 
kcal 
0,565. 0,565.13,2 7,45 
aT 2 
Como S ( ) (cm ) aT = 2 9 - = 
4 
. . . 182 102 3166,7 2 
p 
 61
=> Área superf. laterais = 2 lados . 9 aletas . área anel 
ST d b (cm ) = 9 0 = 9 101 = 283 
. . int . . . . 2 p p 
L 
b 
a 
T 
. 
. 
. 
, . 
. , 
. . , . 
, 
2 
0 04 
2 7 46 
5010 0 004 860 
0 37 3 
a 
l 
æ 
è ç 
ö 
ø ÷ 
= = - 
2 lados 
9 aletas 
27 
Do gráfico (3.1), Livro 01, para a aleta Hiperbólica com 
x 
 62
X 
e 
b 
= = 90 
50 
1,8 temos: haT = 0,95. 
Com isto temos:aT 
kcal 
m h C 
' , , 
, 
, 
. . 
= + 
æ 
è ç 
ö 
ø ÷ 
= 
° 
æ 
è ç 
ö 
ø ÷ 
7 46 1 0 95 
3166 7 
283 
86 8 2 
Q 
kcal 
T h = = 
 63
æ 
è ç 
ö 
ø ÷ 
86,8.283.10-4 .60 147,4 
Para termos o calor dissipado pelas aletas superiores, tomaremos L0 médio, 
L (m) 
X 
X 
e 
b 
0 = 0,08 = 1 
Para o coeficiente da superfície sem aletas: 
N 
c L 
S Re 
. . , 
, . 
= = = , - 
0 
6 
2 0 08 
17 9310 
8923 6 
n 
logo usaremos a fórmula para regime laminar para gases do ítem (3.5). 
Nu = 0 66 N 0 5 = 0 66(8923 6)0 5 = 62 34 , . Re , , , 
, , 
aS 
kcal 
m h C 
 64
= = 
° 
æè ç 
öø ÷ 
0 0239 
0 08 
6234 18 6 2 
, 
, 
, 
. . 
Como 
L 
b 
0 S 
30 
10 
3 
æ 
è ç 
ö 
ø ÷ 
= = 
e o regime é laminar, temos: 
a 
a 
a 
S 
æ 
è ç 
ö 
 65
ø ÷ 
= 0,825 Tabela (3.5) 
logo: 
aaS 
kcal 
m h C 
= = 
° 
æè ç 
öø ÷ 
18 60 825 15 35 2 , . , , 
. . 
L 
b 
a 
T 
. 
. 
. 
, . 
. , 
. . , . 
2 
0 03 
215 35 
5010 3 0 004 860 
a 
l 
æ 
è ç 
ö 
 66
ø ÷ 
= - 
L 
b 
a 
S 
2 
0 4 
. 
. 
, 
a 
l 
æ 
è ç 
ö 
ø ÷ 
= , logo, do gráfico (3.1), Livro 01: haS = 0,90 
e como: Ss = 5 espaços.b0.L0 = 5.1.8 = 40(cm 
2 
) => área superf. entre aletas 
e SaS = 6 aletas. 2 lados. L.L0 = 6.2.3.8= 288 (cm²) => área superf. lateral aletas 
vem, 
aS 
kcal 
m h C 
' , . , , 
. . 
= + 
æ 
è ç 
 67
ö 
ø ÷ 
= 
° 
æ 
è ç 
ö 
ø ÷ 
15 35 1 0 90 
288 
40 
118 20 2 
28 
Q 
kcal 
S h = = 
æ 
è ç 
ö 
ø ÷ 
118,20.40.10-4 .60 28,37 
O calor total entregue ao ar será: 
0,2042(kW) 
h 
kcal 
8 , 175 37 , 28 4 , 147 Q Q Q S T = ÷ 
ø 
ö 
çè 
= + = + = æ 
Caso não houvesse aletas teríamos: 
 68
Q' 46,1.10 (kW) 
h 
kcal 
Q' 13,7.( .0,1.0,126).60 18,6.(0,08.0,08).60 39,64 
Q' .S. t .S. t 
= -3 
÷ø 
ö 
çè 
= p + = æ 
= a D + a D 
A colocação de aletas aumentou o fluxo em ±4,5 vezes. 
3.8) Coeficientes de Convecção Natural para líquidos e gases -Escoamento externo a 
cilindros horizontais 
Para: 0 < N N £ 10-5 Gr . Pr , tomamos Nu=0,4 
Para: 10-5 < N N £ 104 Gr . Pr , usamos os valores retirados do gráfico da figura (3.5) 
Para: 104 < N N £ 109 Gr . Pr , temos 
Nu (N N ) Gr = 0 525 
1 
4 , . . Pr 
Para: 109 < N N £ 1012 Gr . Pr , temos 
Nu (N N ) Gr = 0 129 
1 
3 , . . Pr 
Todas estas fórmulas e gráficos usam como dimensão característica o diâmetro externo dos 
cilindros. 
Todas as grandezas devem ser tomadas a temperatura média, tm, exceto b que deve ser tomado 
na temperatura do fluído não perturbado, tf. 
Quando temos formas tridimensionais, tais como cilindros curtos e blocos, as fórmulas e gráficos 
acima fornecem resultados aproximados desde que a dimensão característica L seja tomada: 
1 1 1 
 69
L L L h V 
= + 
Fig. 3.5 - Nu função de NGr.NPr 
para convecção natural externa e 
cilindros horizontais, intervalo de 
10-5<NGr.NPr£104 
29 
Nesta fórmula Lh é a dimensão média horizontal e Lv é a altura. 
Uma expressão um pouco mais refinada, para uma faixa maior de (NGr.NPr) é apresentada por 
Churchill e Chu: 
6 
1 
9 
16 
16 
9 
Pr 
2 Gr Pr 
1 
N 
0,559 
1 
N .N 
Nu 0,60 0,387 
ï ï ï ï 
þ 
ï ï ï ï 
ý 
ü 
ï ï ï ï 
î 
 70
ï ï ï ï 
í 
ì 
ú ú ú 
û 
ù 
ê ê ê 
ë 
é 
÷ ÷ø 
ö 
ç çè 
æ 
+ 
= + para 12 
Gr Pr 
10-5 < N .N £ 10 
Para um fluxo restrito à região laminar, 9 
Gr Pr 
10-6 < N .N £ 10 , pode-se utilizar a expressão: 
( ) 
9 
4 
16 
9 
Pr 
6 
1 
Gr Pr 
N 
0,559 
 71
1 
0,518 N .N 
Nu 0,36 
ú ú ú 
û 
ù 
ê ê ê 
ë 
é 
÷ ÷ø 
ö 
ç çè 
æ 
+ 
= + 
Para cilindros horizontais transferindo calor para metais líquidos, utiliza-se: 
( ) 4 
1 
2 
Nu = 0,53. NGr.NPr 
EXEMPLO 3.6) Para o ar de uma sala a 25(°C) é usado um aquecedor a vapor composto de três tubos 
de 30(mm) de diâmetro externo e 3 metros de comprimento, com eixos horizontais, dispostos 
verticalmente em forma de triângulo equilátero de lado 100(mm). Sendo a temperatura média nas 
paredes externas dos tubos de 135(°C), determinar: 
a) O calor entregue pelo aquecedor à sala; 
b) A velocidade média do ar em torno do aquecedor. 
SOLUÇÃO: 
a) Cálculo do calor entregue pelo aquecedor a sala. 
Com t ( C) m = 
+ 
= ° 
 72
25 135 
2 
80 
30 
retiramos do Livro 1, na tabela (3): 
l80 = 0 0257 
° 
æ 
è ç 
ö 
ø ÷ 
, 
. . 
kcal 
m h C 
n80 
6 
2 
= 20 94 10 
æ 
è ç 
ö 
ø ÷ 
, . - 
m 
s 
NPr , 
80 
= 0 708 b ( ) 25 
= 3 3710 3 1° 
, . - C 
 73
5 
2 12 
3 2 3 
2 
80 
3 
25 
Gr 2,25.10 
20,94 .10 
g. . t.D 9,81.3,37.10 .110.(3.10 ) 
N = = 
n 
b D 
= - 
- - 
N N Gr . , . . , , . Pr = 2 25 105 0 708 = 1 595 105 
Assim: 
Nu (N N ) ( ) Gr = 0 525 = 0 525 15 9510 = 10 5 
1 
4 4 
1 
, . . , , . 4 , Pr 
a 
l 
= = = 
° 
æ 
è ç 
ö 
ø ÷ 
D 
 74
Nu 
kcal 
m h C 
0 0257 
0 03 
10 5 9 0 2 
, 
, 
, , 
. . 
Q S t ( ) ( ) 
kcal 
h 
= = = kW 
æ 
è ç 
ö 
ø ÷ 
a. .D 9.3. p.0,03.3 .110 839,5 = 975.10-3 
b) Cálculo da velocidade média do ar 
Temos que c = g.b.L.Dt . Para o cálculo da velocidade média tomaremos como dimensão 
característica a altura do triângulo L=86,5 (mm), logo: 
( ) s 
c = 9,81.0,00337.0,0865.110 = 0,314 = 0,56 m 
31 
3.9) Coeficientes de Convecção Natural para líquidos e gases - Escoamento em torno 
de placas e cilindros verticais 
Para 10-1 < N N £ 104 Gr . Pr 
usa-se os valores do gráfico da figura (3.6). 
Para 104 < N N £ 109 Gr . Pr temos: 
Nu (N N ) Gr = 0 59 
 75
1 
4 , . Pr 
Para 109 < N N £ 1012 Gr . Pr temos: 
Nu (N N ) Gr = 0 129 
1 
3 , . Pr 
Todas estas fórmulas e gráficos usam como dimensão característica a altura. Quanto a 
temperatura observar o mesmo que no ítem (3.8) - adotar temperatura média (tm) exceto para b. 
EXEMPLO 3.7) Uma placa de aço cromo-níquel de 3(mm) de 
espessura e 50X10(cm) que está a 20(°C) é mergulhada 
verticalmente no sentido da maior dimensão em um reservatório 
com água a 80 (°C). Determinar o calor recebido e o tempo 
necessário para que a placa alcance 70(°C). 
SOLUÇÃO 
Sendo t1= 20(°C) a temperatura inicial da placa, tf= 80(°C) 
a temperatura do banho e t2=70(°C) a temperatura final da placa. 
Sendo m a massa da placa, S a sua superfície lateral, cp o calor 
específico médio do material da placa, a o coeficiente de convecção 
médio, podemos escrever tendo em vista a pequena espessura da 
placa: 
dQ S (t f t) dT m cp dt = a. . - . = . . ou 
dT 
m c 
S 
dt 
t t 
p 
f 
= 
- 
. 
 76
. 
. 
a 
logo (integrando): 
Fig. 3.6 - Nu função de NGr.NPr 
para convecção natural 
escoamento em torno de placas e 
convecção de cilindros verticais. 
termodinâmica 
32 
T 
m c 
S 
t t 
t t 
p f 
f 
= 
- 
- 
æ 
è çç 
ö 
ø ÷÷ 
. 
. 
ln 
a 
1 
2 
h 
 77
h 
1 
1 
.m² 
m².h.ºC 
kcal 
kg.ºC 
kcal 
kg 
= = 
O calor necessário para o aquecimento será: Q m cp (t t ) = . . 2 - 1 (kcal). 
Tomaremos, a 
a a 
= 
+ 1 2 
2 
. Do Livro 1, na tabela (1) temos para o aço cromo-níquel: 
r = 
æ 
è ç 
ö 
ø ÷ 
7900 3 
kg 
m 
c 
kJ 
kg C 
kcal 
p kg C = 
° 
 78
æ 
è ç 
ö 
ø ÷ 
= 
° 
æ 
è ç 
ö 
ø ÷ 
0,477 0 114 
. 
, 
. 
logo: 
m = r.V = 7900.(3.500.100.10-9 ) = 1,185(kg) 
O calor recebido pela placa será: 
Q m cp T (kJ) (kcal) = &. .D = 1,185.0,477.50 = 28,3 = 6,75 {1 kJ = 0,239 kcal} 
Vamos agora calcular os coeficientes de convecção inicial e final. 
As temperaturas de referência são: 
Placa Fria Placa Quente 
t ( C) 1m 
20 80 
2 
= 50 
+ 
= ° t ( C) 2m 
70 80 
2 
= 75 
+ 
 79
= ° 
Do Livro 1, na tabela (2) retiramos: 
l50 = 0 551 
° 
æ 
è ç 
ö 
ø ÷ 
, 
. . 
kcal 
h m C 
l75 = 0 571 
° 
æ 
è ç 
ö 
ø ÷ 
, 
. . 
kcal 
m h C 
n ( ) 50 
6 
2 
= 0,554.10- m 
s n ( ) 75 
6 
2 
= 0,389.10- m 
s 
 80
NPr , 50 = 3 57 NPr , 75 = 2 39 
b80 
0 64310 3 
1 
= 
æ 
è ç 
ö 
ø ÷ 
, . - 
ºC 
Calculamos os Números de Grashof: 
33 
( ) 
N 
g L t 
Gr503 
2 
50 
3 3 
2 12 
11 9 81 0 64310 0 5 60 
0 554 10 
= 154 10 
æ 
è ç 
ö 
ø ÷ 
= = 
- 
 81
- 
. . . , . , . . , . 
, . 
, . 
b 
n 
D 
( ) 
NGr75 
3 3 
2 12 
10 9 81 0 64310 0 5 10 
0 389 10 
= = 5 2110 
- 
- 
, . , . . , . 
, . 
, . 
( ) 11 11 
NGr .NPr 50 =1,54.10 .3,57 = 5,5.10 
(N N ) Gr . , . . , , . Pr 75 
= 5 211011 2 39 = 1 2451011 
Nu 0,129(N .N ) 0,129(0,55.10 ) 3 1057 
1 
3 11 
1 
50 = Gr Pr = = 
Nu 0,129.(0,1245.10 ) 3 644,2 
12 1 
75 = = 
 82
÷ ÷ø 
ö 
ç çè 
æ 
° 
a = = 
m .h. C 
kcal 
1057 1165 
0,5 
0,551 
1 2 a2 2 
0 571 
0 5 
= 645 = 736 
° 
æ 
è çöø ÷ 
, 
, . . 
kcal 
m h C 
a 
a a 
= 
+ 
= 
+ 
= 
æ 
è ç 
 83
ö 
ø ÷ 
1 2 
2 2 
1165 736 
2 
950 5 , 
. . 
kcal 
m h C 
Com estes dados podemos calcular o tempo: 
T = s 
- 
- 
æ 
è ç 
ö 
ø ÷ 
= 
11850 114 3600 
950 5 2 0 50 1 
80 20 
80 70 
9 16 
, . , . 
, .( . , . , ) 
ln , ( ) 
3.10) Coeficientes de Convecção Natural para líquidos e gases - Esc. em torno de 
superfícies planas horizontais 
As fórmulas que damos a seguir valem para placas horizontais quadradas, onde o lado é a 
dimensão característica. 
 84
m 
cp 
a 2*Slat 
34 
I. No intervalo 10 5 < N N £ 2 107 Gr . . Pr , podemos tomar: 
a) Superfície superior da placa aquecida ou a inferior esfriada: 
Nu (N N ) Gr = 0 54 
1 
4 , . Pr 
b) Superfície superior esfriada ou inferior aquecida: 
Nu (N N ) Gr = 0 27 
1 
4 , . Pr 
c) Somente existem dados para a superfície superior aquecida ou a inferior esfriada: 
Nu (N N ) Gr = 0 14 
1 
3 , . Pr 
II. Para 9 
Gr Pr 
104 < N .N < 10 , tem-se: ( ) 4 
1 
Nu = 0,59 NGr.NPr 
Para 9 
NGr.NPr > 10 , tem-se: ( ) 4 
1 
Nu = 0,13 NGr.NPr 
III Para superfícies retangulares usa-se a média das duas dimensões 
IV. Para um disco circular, usa-se L = 0,9.d 
35 
3.11) Coeficientes de Convecção Natural para líquidos e gases - Escoamento interno a 
Condutos Verticais 
 85
Na figura (3.7) apresentamos um gráfico, resultado das experiências de Elenbaas para várias 
formas de seção transversal. A dimensão característica é o raio hidráulico, 
P 
4S 
rh = . Todas as 
características devem ser tomadas à temperatura da parede, exceto b, que deve ser tomado a 
temperatura do fluído não perturbado. 
3.12) Coeficientes de Convecção Natural para líquidos e gases - Escoamento entre 
Placas Paralelas Verticais 
Na figura (3.8) apresentamos um gráfico elaborado por Elenbaas onde a dimensão característica é 
a distância b entre as placas. Todas as características devem ser tomadas na temperatura da parede (tp) 
exceto b que deve ser tomado na do fluído não perturbado. 
Elenbaas recomenda para o espaço ótimo entre as placas, quando estamos interessados em 
dissipar um máximo de calor por unidade de área de transmissão: 
b 
L 
N N t 
Gr 
0 . . 50 Pr @ 
Figura 3. 7 
36 
EXEMPLO 3.8) Um transformador com caixa de 
1(m) de altura, possui um lado praticamente plano com 
0,60(m) de largura na qual serão colocadas aletas 
retangulares verticais de 30 (mm) de espessura. 
Sabendo-se que a temperatura máxima permissível na 
superfície externa das aletas é de 40(°C) e sendo a 
temperatura média do ar externo 20(°C), determinar: 
a) O espaçamento ótimo das aletas e o número 
de aletas; 
b) Sendo a profundidade da aleta 8,0(cm), 
 86
determinar o calor entregue ao ar. 
SOLUÇÃO 
a)Na equação de Elenbaas, temos: 
b0t - espaçamento entre as aletas; 
L - 1,0 (m) a altura. 
Como N 
g b t 
Gr = .b. . 
n 
3 
2 
D 
e N 
cp 
Pr 
. . 
= 
r n 
l 
temos que: 
N N 
b t 
g c Gr . p 
. 
. . . 
. 
Pr 
3 D 
= 
b r 
l n 
 87
logo: 
50 
4 
. 
. 
. . . 
. 
L 
b t 
g cp 
D 
= 
b r 
l n 
e b 
L 
t g cp 
= 
æ 
è çç 
ö 
ø ÷÷ 
50 
1 
4 . . . 
. . . . 
n l 
D b r 
Do Livro 1, na tabela (3) retiramos: n40 
6 
2 
 88
= 16 9710 
æ 
è çç 
ö 
ø ÷÷ 
, . - 
m 
s 
l40 = 0 0233 
° 
æ 
è ç 
ö 
ø ÷ 
, 
. . 
kcal 
m h C 
Fig. 3.8 - Nu em função de (NGr.NPr.b)/L, para 
convecção natural, escoamento entre placas verticais. 
O Ponto P corresponde ao fluxo máximo de calor por 
unidade de área 
37 
b20 
3 4310 3 
1 
= 
° 
æ 
è ç 
ö 
 89
ø ÷ 
, . - 
C 
r40 3 = 11267 
æ 
è ç 
ö 
ø ÷ 
, 
kg 
m 
c 
kcal 
p40 kg C = 0 24 
° 
æ 
è ç 
ö 
ø ÷ 
, 
. 
Substituindo, vem que b=0,0132 (m) = 13,2 (mm). 
Tomamos 14 (mm). Em 0,60 (m) colocamos 13 aletas, sendo 12 os espaços entre elas. A 
primeira e a última distam seus eixos das bordas de 36 (mm). 
b) Cálculo do calor entregue ao ar: 
Calculamos inicialmente o coeficiente médio de convecção. 
Com: 
N N 
b t 
g c Gr . p 
. 
 90
. . . 
. 
Pr 
3 D 
= 
b r 
l n 
temos: 
(N N ) 
b 
L 
g c b t 
Gr L 
p . . 
. . . . . 
Pr . . = 
b r 
l n 
4 D 
Substituindo, resulta: (N N ) 
b 
Gr L . . Pr = 64 
Assim, na figura (3.8), retiramos Nu=1,05, logo: 
a = 
° 
æ 
è ç 
ö 
ø ÷ 
= 
° 
 91
æ 
è ç 
ö 
ø ÷1 
75 2 
0310- 
2 
3 
2 , 
. . 
, . 
. 
kcal 
m h C 
kW 
m C 
O calor transmitido será: 
Q S t ( ) 
kcal 
h 
= = kW 
æ 
è ç 
ö 
ø ÷ 
12.a. .D 67,2 @ 78,2.10-3 
3.13) Coeficientes de Convecção Natural para espaços cheios de ar 
Na figura (3.9), representamos o resultado obtido por vários pesquisadores. 
O coeficiente k1 é definido através da relação: 
38 
1 1 1 1 
 92
1 1 2 k 
= + + 
a l a 
onde a1 e a2 são os coeficientes de convecção natural nas superfícies internas 1 e 2, sendo l o 
coeficiente de condução para o ar contido no espaço. A dimensão característica é b, sendo que todas as 
características devem ser tomadas a temperatura média da parede e do fluído. 
EXEMPLO 3.9) Um balcão frigorífico possui na frente um espaço cheio de ar limitado por vidros 
planos de 2,50 (m) horizontal por 1,00(m) na vertical, estando os vidros com suas superfícies distantes 
de 
7 (cm). Sabendo-se que as temperaturas nas superfícies internas dos vidros são respectivamente 15(°C) 
e 
-15(°C), determinar o calor absorvido pela câmara através dos vidros. 
SOLUÇÃO 
Calculamos inicialmente o Número de Grashof tomando como base 
t = ( C) 
- 
= ° 
15 15 
2 
0 . 
Do Livro 1, na tabela (3) retiramos: l0 = 0 0209 
° 
æ 
è ç 
ö 
ø ÷ 
, 
. . 
kcal 
m h C 
b0 
 93
3 67 10 3 
1 
= 
° 
æ 
è ç 
ö 
ø ÷ 
, . - 
C 
n0 
6 
2 
= 13 3010 
æ 
è ç 
ö 
ø ÷ 
, . - 
m 
s 
[ ( )] 
N 
g t b 
Gr = = 
- - 
= 
- 
- 
. . . , . , . . . , 
, . 
 94
, . 
b 
n 
D 3 
2 
3 3 
2 12 
6 9 813 6710 15 15 0 07 
13 3 10 
2 110 
Da figura (3.9) retiramos: k 
b 
1 . 5,3 
l 
= logo: 
k 
kcal 
1 m2 h C 5 3 
0 0209 
0 07 
= = 158 
° 
æ 
è ç 
ö 
ø ÷ 
, 
, 
, 
, 
. . 
 95
O calor absorvido pela câmara através dos vidros será: 
Q k S t ( ) 
kcal 
h 
= = @ kW 
æ 
è ç 
ö 
ø ÷ 
@ - 
1 
. .D 1,58.1.2,5.30 119 138.10 3 
39 
3.14) Coeficientes de Convecção Natural quando existem forças centrífugas 
Quando temos componentes rotativos de turbinas, compressores, etc., podem ocorrer campos de 
forças centrífugas superiores ao da gravidade, havendo necessidade de considerarmos este agente no 
estudo da convecção. 
A refrigeração em convecção natural foi inicialmente proposta por E. Schmidt para turbinas a gás. 
Na figura (3.10) representamos uma pá com abertura na base e furos radiais. Quando as pás são 
aquecidas externamente pelos gases de combustão, aparece nos furos um escoamento do centro para a 
periferia. Isto ocorre pelo fato de estar o fluído refrigerante sujeito a forças centrífugas por unidade de 
volume r.r.w2 , sendo estas maiores no centro que junto às paredes, justamente locais de maior 
temperatura. 
Nestas condições o coeficiente médio de convecção pode aproximadamente ser calculado pela 
fórmula que segue, válida para: 
N N Gr . Pr ³ 1010 
Nu 
N 
N 
NGr = 
+ 
 96
æ 
è 
çç 
ö 
ø 
÷÷ 
0 0246 
1 0 49 
1 17 
2 
3 
2 
5 
, 
, 
. Pr 
, 
Pr 
Aaplicação desta fórmula, onde: 
N 
r w t L 
Gr = 
. 2 . . . 3 
2 
b 
n 
D 
implica em dimensões razoáveis para a seção transversal dos furos, 
relativamente ao comprimento, a fim de que não haja domínio da camada limite, dificultando o 
escoamento. Na figura (3.11), representamos disposições que melhoram o escoamento. A temperatura 
de referência adotada é a mesma do ítem (3.13). A dimensão característica é a altura. 
 97
EXEMPLO 3.10) Para refrigerar as palhetas de uma turbina o 
refrigerante usado é a água em convecção natural. O refrigerante passa 
através de um furo radial de diâmetro 6(mm) e 60(mm) de altura. A 
velocidade tangencial no raio médio de 20 (cm) é de 180 (m/s), sendo a 
temperatura média da água 60 (°C), e nas paredes internas do furo 140 
(°C), determinar: 
a) O calor retirado por coroa de 40 pás; 
b) A massa total, por coroa, de água em escoamento, admitindo-se uma elevação de temperatura 
de 10(°C). 
40 
SOLUÇÃO 
a) Cálculo do calor retirado por coroa. 
Para o cálculo do Número de Grashof, calculamos inicialmente a aceleração centrífuga no raio 
médio: 
r w 
u 
r 
m 
m s 
m 
. 
, 
2 
2 2 
2 
180 
0 2 
= = = 162000 
æ 
è ç 
ö 
 98
ø ÷ 
tomando t = ( C) 
+ 
= ° 
140 60 
2 
100 temos da tabela: b = 
° 
æ 
è ç 
ö 
ø ÷ 
0 75210- 
1 , . 3 
C 
n = 
æ 
è ç 
ö 
ø ÷ 
0 29510-6 
2 
, . 
m 
s 
NPr = 1,75 
l = 
° 
æ 
è ç 
ö 
 99
ø ÷ 
0,586 
. . 
kcal 
m h C 
N 
r w t L 
Gr 
= m = = 
- 
- 
. . . . . , . . . , 
, . 
, . 
2 3 
2 
3 3 
2 12 
13 162000 0 752 10 80 0 06 
0 295 10 
2 42 10 
b 
n 
D 
logo: N N Gr . , . . , , . Pr = 2 42 1013 1 75 = 4 24 1013 > 1010 
podemos aplicar a equação 
Nu 
N 
N 
NGr = 
+ 
 100
æ 
è çç 
ö 
ø ÷÷ 
0 0246 
1 0 49 
1 17 
2 
3 
2 
5 
, 
, 
. Pr 
, 
Pr 
Nu = 
+ 
æ 
è ç 
ö 
ø ÷ 
0 0246 @ 
1 75 
1 0 491 75 
2 4210 5050 
1 17 
2 
3 
13 
2 
 101
5 
, 
, 
, , 
. , . 
, 
Assim: 
a 
l 
= = = 
° 
æ 
è ç 
ö 
ø ÷ 
D 
Nu 
kcal 
m h C 
0 586 
0 06 
5050 49750 2 
, 
, . . 
O calor retirado por coroa: 
41 
( ) 
( ) 
Q S t 
Q 
kcal 
 102
h 
kW 
= = 
= 
æ 
è ç 
ö 
ø ÷ 
= 
a. .D 49750. 40.p.6.10- .0,06 .80 
180000 209 
3 
b) Cálculo da massa total de água em escoamento por coroa. 
Q m c t pm = . .D 
m 
kg 
h 
kg 
s 
= = 
æ 
è ç 
ö 
ø ÷ 
= 
æ 
è ç 
ö 
ø ÷ 
180000 
101 0 
 103
18000 5 
. , 
3.15) Coeficientes de Convecção para Corpos Rotativos 
Para cilindros rotativos de eixo horizontal, girando no ar com N 
w D 
Re 
. . = > 
p 
n 
2 
8000 podemos 
usar a fórmula: 
Nu [( N N ) N ] RE Gr = 0 11 0 5 2 + 
0 35 
, , . . Pr 
, 
Nesta fórmula a dimensão característica é o diâmetro D do cilindro e a temperatura de referência é 
a média. 
Para discos rotativos de eixo vertical com :N 
w r 
Re 
. = 0 £ 
2 
250000 
n 
, podemos usar a fórmula: 
Nu C 
w r 
= 
æ 
è ç 
 104
ö 
ø ÷ 
. 
. 0 
2 
1 
2 
n 
Na tabela (3.6) temos os valores do coeficiente C para vários NPr. 
Tabela (3.6) - Valores do coeficiente C para vários NPr 
Pr 0,7 1,0 2,0 5,0 10,0 
C 0,35 0,38 0,5 0,8 1,1 
Para NRe>250000 e disco girando no ar o Nu local no raio crítico, rc, é dado de modo 
aproximado por: 
42 
Nu 
= w rc 
æ 
è ç 
ö 
ø ÷ 
0 0195 
2 0 8 
, 
. , 
n 
O valor médio do Nu para o escoamento laminar entre R=0 e R=rc e escoamento turbulento no 
anel externo entre R=rc e R= r0, é aproximadamente, sendo a dimensão característica r0: 
Nu 
w r r 
r 
 105
= c 
æ 
è ç 
ö 
ø ÷ 
- 
æ 
è ç 
ö 
ø ÷ 
0 015 100 0 
2 0 8 
0 
2 
, 
. , 
n 
Para um disco girando em um fluído que possua NPr maior que a unidade, o Nu local pode ser 
obtido por: 
( ) 
Nu 
N N 
C 
N N 
C 
Dr 
Dr 
= 
æ 
è ç 
ö 
 106
ø ÷ 
+ + + 
æ 
è ç 
ö 
ø ÷ 
- 
Re Pr 
Pr Pr 
. . 
. .ln . 
2 
5 5 5 1 
2 
14 
1 
2 
1 
2 
Nesta expressão CDr é o coeficiente local de resistência no raio r crítico, dado por: 
(C ) [N (C ) ] Dr Dr 
- @ - + 1 2 1 2 
2,05 4,07.log . Re 
Para um cone com ângulo 2q girando em uma grande massa de fluído, regime laminar, podemos 
usar a fórmula para discos rotativos de eixo vertical se 
w.r0 
2 
n 
for substituído por 
w.x .sen 0 
2 q 
 107
n 
æ 
è ç 
ö 
ø ÷ 
, onde x0 é 
a distância do vértice do cone a sua base, medida ao longo da superfície do cone. 
Para uma esfera de diâmetro D, girando em um meio infinito com NPr>0,7, para 
N 
w D 
Re 
. 
= < . 
2 
5 104 
n 
, temos: 
Nu = 0,43.N0 5.N0 4 Re 
, 
Pr 
, 
No intervalo 5.104 7.105 Re < N < , usamos: 
Nu = 0,066. N 0 67 . N 0 4 Re 
, 
Pr 
, 
43 
EXEMPLO 3.11) Um volante de ferro fundido de 0,40(m) de diâmetro externo de 10 (cm) de 
espessura, está instalado no eixo de uma máquina que gira a 1800(rpm). Sabendo-se que a temperatura 
na periferia do volante para estado de regime é de 20(°C), estando o ar envolvente a 15(°C), determinar 
a 
 108
perda de energia do volante. 
SOLUÇÃO 
Podemos considerar como um cilindro girando no ar. 
Inicialmente calculamos o Número de Reynolds: 
N 
w D 
Re 
. . = 
p 
n 
2 
. Com t = ( C) 
+ 
= ° 
20 15 
2 
17 5 , retiramos do Livro 
1, na tabela (3) n = 
æ 
è ç 
ö 
ø ÷ 
15110-6 
2 
, . 
m 
s 
. 
Com isto temos: 
N 
r D 
 109
Re 
. . 
. 
. . , 
( , ). , . 
= 
æè ç 
öø ÷ 
= @ - 
p 
p 
u 
2 p 2 
60 6 
2 
1800 0 4 
9 55 15110 
6280000 
Podemos usar a fórmula para corpos rotativos 
Nu [( N N ) N ] RE Gr = 0 11 0 5 2 + 
0 35 
, , . . Pr 
, 
Do Livro 1, na tabela (3), com t=17,5(°C), 
l = 
° 
æ 
è ç 
ö 
ø ÷ 
0,022 
 110
. . 
kcal 
m h C 
b = 
° 
æ 
è ç 
ö 
ø ÷ 
3 4510- 
1 , . 3 
C 
NPr = 0,713 
Nu = 0 11[(0 56 282 1012 + 4 75107 ) 0 713]0 35 = 4400 
, , . , . , . . , 
, 
a = = 
° 
æ 
è ç 
ö 
ø ÷ 
= 
° 
æ 
è ç 
ö 
ø ÷ 
0 022 
0 4 
4400 242 0 281 2 2 
 111
, 
, . . 
, 
. 
kcal 
m h C 
kW 
m C 
Q ( ) 
kcal 
h 
= = kW 
æ 
è ç 
ö 
ø ÷p 
.0,4.0,10.242.5 152,0 = 0,1765 
3.16) Coeficientes de Convecção para a Condensação 
Quando um vapor entra em contacto com uma superfície que está a temperatura inferior a sua de 
saturação, aparece a condensação. 
A condensação pode ocorrer de duas maneiras distintas: 
- Condensação em forma de película líquida; 
- Condensação em forma de gotas. 
Figura (3.12) Fenômeno da 
Condensação 
44 
A condição para que ocorra uma 
destas formas pode ser facilmente 
analizada com auxílio da figura (3.12). 
Para haver equilíbrio devemos ter: 
s s s q 2 1 - = cos . 
 112
Para a condição de máximo, 
temos: s s s 2 1 - > para condensação 
em forma de película. 
Para condensação em forma de 
gotas s s s 2 1 - < . 
Onde: 
s é a tensão superficial entre 
vapor e líquido; 
s1 é a tensão superficial entre 
líquido e parede; 
s2 é a tensão superficial entre vapor e parede. 
Além das propriedades do fluido a condensação depende também da rugosidade da superfície. Se 
esta é bastante rugosa há maior tendência a formação de película. A condensação em forma de gotas 
apresenta coeficientes de convecção maiores que a em forma de película. 
Uma teoria aproximada para a condensação em forma de película foi desenvolvida por Nusselt em 
1916. Esta teoria admite as seguintes hipóteses: 
- O calor cedido pelo vapor é somente o da condensação; 
- A película do condensado está animada de movimento laminar, sendo portanto a transmissão de 
calor atravéz da mesma unicamente por condução; 
- O movimento na camada limite é devido unicamente a ação da gravidade, sendo despresível o 
arrasto provocado pela velocidade do fluído em escoamento; 
- As forças a considerar em um elemento do condensado são unicamente as oriundas da gravidade 
e da viscosidade; 
- A massa do condensado é função do calor transmitido, dependendo da espessura da película e da 
diferença de temperatura entre o vapor e a superfície da parede. 
Dentro destas hipóteses, sejaa parede vertical de temperatura uniforme tp e um vapor na 
temperatura de condensação tv, figura (3.13). Para um elemento de volume dV=1.dx.dy, onde a 
unidade 
foi tomada na direção normal ao plano xy, dentro das hipóteses feitas temos: 
d dx t. + r.g.dx.dy = 0 
Nesta equação dt é a tensão de cisalhamento. Como: 
 113
Figura (3.13) Condensação em uma parede vertical 
45 
t = m dc 
dy 
temos: 
d 
dy 
d c 
dy 
t 
= m 
2 
2 
substituindo na primeira equação, vem: 
d c 
dy 
2 g 
2 = - 
r 
m 
Integrando esta equação obtemos: 
c 
g 
= - y + C y + C 
r 
2m 
2 
1 2 onde C1 e C2 são constantes que podem ser facilmente 
determinadas, já que: 
para y=0, c=0 logo: C2=0. 
para y=y0, 
 114
dc 
dy 
= 0 logo: C 
g 
y 1 0 = 
r 
m 
Assim a lei de variação da velocidade no condensado é: 
c 
g 
y y 
g 
= - y 
r 
m 
r 
m 0 
2 
2 
Como necessitamos da massa que passa atravéz de uma seção qualquer, transversal ao 
escoamento do condensado, necessitamos da velocidade média na seção x. Esta pode ser facilmente 
obtida com auxílio do teorema do valor médio: 
c y c dy m 
y 
0 
0 
0 
= ò . logo: c 
g 
y m = 
r 
 115
3m 0 
2 
A massa do condensado que atravessa a seção 1. y0 resulta: 
M y c 
g 
y x m = r = 
r 
m 0 0 
3 
3 
Entre x e x+dx a massa de vapor que se condensa será: 
dM 
dM 
dy 
dy 
g 
y dy x 
= x = 
0 
0 
2 
0 
2 
0 
r 
m 
Podemos agora igualar o calor de condensação ao calor transmitido por condução: 
46 
r dM ( ) 
y 
dx t t x v p . = 
 116
æ 
è ç 
ö 
ø ÷ 
- 
l 
0 
ou 
r 
m 
2 l 
0 
2 
0 
0 
g 
ry dy 
y 
= dx t 
æ 
è ç 
ö 
ø ÷ 
D 
logo: dx 
g r y 
t 
= dy 
r 
m l 
2 
 117
0 
3 
0 
. . . 
. .D 
integrando, vem: x 
g r 
t 
= y + C 
r 
m l 
2 
0 
4 
4 
. . 
. . .D 
onde C=0, já que para x=0 y0=0. 
Deste modo temos para espessura do condensado a uma distância x da origem: 
y 
t x 
0 r 2 g 
1 
4 4 
= 
æ 
è ç 
ö 
ø ÷ 
. . . . 
. . 
 118
m l 
r 
D 
O coeficiente de convecção médio para uma distância da origem H pode ser obtido através da 
igualdade entre o calor transmitido por condução na película do condensado e o transmitido por 
convecção. 
a 
l 
xdx t 
y 
D = dxDt 
æ 
è ç 
ö 
ø ÷ 
0 
logo: a 
l 
x y 
= 
0 
Substituindo y0 pelo calculado na equação acima, resulta: 
a 
r l 
x m 
r g 
x t 
= 
æ 
è ç 
ö 
 119
ø ÷ 
. . . 
. . . 
2 3 
1 
4 
4 D 
O coeficiente de convecção médio para uma altura H, será: 
a = 1 òa 
0 H 
dx x 
H 
logo: 
a 
l r 
m 
= 
æ 
è ç 
ö 
ø ÷ 
0 943 
3 2 
1 
4 
, 
. . . 
. . 
g r 
H Dt 
Nesta expressão todas as grandezas estão no Sistema Internacional: 
 120
47 
( ) ( ) ÷ ÷ 
ø 
ö 
ç çè 
æ 
° D ÷ 
ø 
ö 
çè 
mæ 
÷ ÷ø 
ö 
ç çè 
æ 
÷ø 
ö 
çè 
æ 
° 
l ÷ 
ø 
ö 
çè 
æ 
r ÷ ÷ 
ø 
ö 
ç çè 
æ 
° 
 121
a 
2 
2 3 
s 
m 
H m t C g 
m.s 
kg 
kg 
kJ 
r 
m. C 
kW 
m 
kg 
m . C 
kW 
A última equação, deduzida para paredes verticais planas, pode ser aplicada também para tubos 
verticais, desde que o diâmetro seja grande relativamente a espessura da película do condensado. 
As características l, r e m devem ser tomadas na temperatura média t 
t t 
m 
= v p 
+ 
2 
. 
Quanto à altura da parede, depois de um determinado H a corrente líquida torna-se turbulenta, 
havendo uma melhoria do coeficiente de convecção. 
A altura onde o regime passa de laminar para turbulento pode ser obtido segundo Grigull através 
da fórmula: 
(H t) 
 122
r 
g ite . . 
. 
. . lim D = 2680 
5 
3 
2 
3 
1 
3 
m 
l r 
Até o H (m) fornecido pela equação acima temos o regime laminar, podendo se aplicar a fórmula 
dada acima para se calcular o coeficiente de convecção. Para um H maior que o limite, Grigull 
recomenda para um valor médio de coeficiente de convecção laminar-turbulento a fórmula dada 
abaixo: 
a 
l r 
m 
= 
æ 
è ç 
ö 
ø ÷ 
0 310-2 
3 2 
3 
1 
2 
, . 
. . . . 
 123
. 
g t H 
r 
D 
Para tubo horizontal, Nusselt indica para condensação no interior ou exterior: 
a a H 
H 
D 
= 
æ 
è ç 
ö 
ø ÷ 
0 77 
1 
4 
, 
Substituindo-se a pelo coeficiente de convecção para regime laminar, vem: 
Calor de Vaporização 
r = hvapor - hlíq 
48 
a 
l r 
H m 
g r 
D t 
= 
æ 
è ç 
ö 
ø ÷ 
 124
0 725 
3 2 
1 
4 
, 
. . . 
. .D 
Para tubos horizontais, dispostos verticalmente e escoamento externo: 
a 
l r 
H m 
g r 
D z t 
= 
æ 
è ç 
ö 
ø ÷ 
0 725 
3 2 
1 
4 
, 
. . . 
. . .D 
Nesta expressão Z é o número de tubos dispostos verticalmente. Caso tenhamos i tubos em cada 
fila horizontal e sendo z1, z2, z3,..., zi o número de tubos em cada fila vertical, na fórmula acima 
devemos 
entrar com: 
z 
z z z 
 125
z z z 
i 
i 
1 
4 1 2 
1 
3 
4 
2 
3 
4 
3 
4 
= 
+ + + 
+ + + 
... 
... 
Se os tubos apresentarem uma inclinação 
relativamente a horizontal, tomamos: 
a a( q) q = sen 
1 
4 
As fórmulas dadas podem ser aplicadas para 
condensação de vapor superaquecido desde que seja o calor 
de vaporização substituído pela diferença entre a entalpia do 
vapor superaquecido e a do líquido. 
O coeficiente obtido é maior que o real do valor de: 
1 ( ) 
1 
4 
 126
+ - 
é 
ë ê 
ù 
û ú 
c 
r 
t t p 
sa v 
Nesta expressão cp é o calor específico médio do vapor superaquecido tsa e tv repectivamente e 
de saturação na pressão em pauta. 
EXEMPLO 3.12) Uma massa de 4420(kg/h) de vapor saturado a 6,18 (bar) absoluto, condensa 
externamente a tubos verticais de 30 (mm) de diâmetro externo. Sabendo-se que o número de tubos é 
17 
e que a temperatura média na parede dos tubos é de 108(°C), determinar o comprimento dos tubos do 
condensador. 
Com 6,18(bar) temos: tv=160(°C), logo a temperatura de referência será: 
t = ( C) 
+ 
= ° 
160 108 
2 
134 . Como não sabemos o regime, faremos uma primeira tentativa considerando-o 
turbulento, usaremos a seguinte equação: 
a 
l r 
m 
= 
æ 
è ç 
ö 
 127
ø ÷ 
0 310-2 
3 2 
3 
1 
2 
, . 
. . . . 
. 
g t H 
r 
D 
49 
Do Livro 1, na tabela (2) retiramos l134 = 0 588 
° 
æ 
è ç 
ö 
ø ÷ 
, 
. . 
kcal 
h m C 
r134 3 = 930 
æ 
è ç 
ö 
ø ÷ 
kg 
m 
m134 = 0 774 
 128
æ 
è ç 
ö 
ø ÷ 
, 
. 
kg 
m h 
r 
kcal 
160 kg = 497 4 
æ 
è ç 
ö 
ø ÷ 
, 
No Sistema Internacional, temos: l134 
= 0 684 10 3 
° 
æ 
è ç 
ö 
ø ÷ 
, . - 
. 
kW 
m C 
r134 3 = 930 
æ 
è ç 
ö 
 129
ø ÷ 
kg 
m 
m134 
= 0 21510 3 
æ 
è ç 
ö 
ø ÷ 
, . - 
. 
kg 
m s 
r 
kJ 
160 kg = 2080 
æ 
è ç 
ö 
ø ÷ 
Com isso vem: 
a = 
æ 
è ç 
ö 
ø ÷ 
= 
° 
æ 
è ç 
ö 
 130
ø ÷ 
- 
- 
- 0 310 
0 684 10 930 9 8152 
2080 0 215 10 
2 7 8 
3 9 2 
3 9 
1 
2 
1 
2 
2 , . 
, . . . , . . 
. , . 
, . 
. 
H 
H 
kW 
m C 
Como o calor é dado por: 
Q = = (kW) 
4420 2080 
3600 
2555 
. 
e, também: 
Q = a.S.Dt = a.z.p.D.H.Dt = 7,8.H .z.p.D.Dt 
3 
 131
2 vem: 
H 
Q 
z D t 
= m 
æ 
è ç 
ö 
ø ÷ 
= 
æ 
è ç 
ö 
ø ÷ 
@ 
7 8 
2555 
7 817 0 0352 
2 5 
2 
3 
2 
3 
, . . . . , . . . , . 
, ( ) 
p D p 
Devemos verificar agora o regime: 
(H t) (m C) ite . 
. , . 
, . . . , 
, . lim D = = ° 
 132
- 
- 
2680 
2080 0 215 10 
0 68410 930 9 81 
30 9 
5 
3 5 
3 2 
3 
1 
3 
ou 
H m lim 
, 
= = , < , ( ) 30 9 
52 
0 595 2 5 
sendo portanto o regime turbulento, conforme foi suposto. 
3.17) Coeficientes de Convecção para a Vaporização 
O fenômeno da vaporização, de grande importância técnica, tem sido exaustivamente estudado 
nos seus vários aspectos. No que tange ao coeficiente total de transmissão de calor ainda não chegou-se 
a uma síntese satisfatória justamente devido ao grande número de parâmetros que o fenômeno envolve. 
Procuraremos, inicialmente, dar uma explicação do fenômeno, para depois orientar sobre a 
determinação 
do coeficiente de convecção. 
50 
Uma superfície banhadapor um líquido quando é suficientemente aquecida pode provocar 
mudança de fase, líquido-vapor. Se o fluxo de calor é constante, a vaporização também é mantida 
sendo 
que a formação das bolhas ocorrem com maior intensidade em determinadas regiões da superfície 
 133
aquecida. 
Seja uma bolha de vapor no interior de um líquido, figura (3.14). Para haver equilíbrio devem as 
forças de superfície equilibrarem as de pressão. Se no fluído reina a pressão p, no interior da bolha 
reinará p+Dp, formando uma calota de raio r, teremos devido a tensão superficial a força 2.p.r.s. 
Estabelecendo o equilíbrio na direção vertical devemos ter: p .r2 .Dp = 2.p.r.s.cosq. Com cosq = r 
R 
, 
resulta: 
Dp 
R D 
= = 2s 4s 
Esta fórmula permite concluir que sendo Dp finito, a bolha nascente deve ter um diâmetro finito. 
Este diâmetro pode ser calculado tendo em vista que: 
D ( D ) ( ) D 
D 
p p t t p t p t p D 
t 
= + - = '. + ". +...@ p'. t 
2 
2 
Pela equação de Clapeyron - Clausius, temos 
p ( ) ( ) 
r 
T v v 
r 
T 
' 
" ' 
. '. " 
' " 
= 
 134
- 
= 
- 
1 1 r r 
r r 
logo: índice (') líquido 
( ) 
D 
p t t 
T 
r 
= = 
4 4 - 
1 
s s r r 
' r r 
. 
' " 
D D . '. " 
(") vapor 
Tomando a água a 1 (atm) para Dt=5(°C) o diâmetro será: D mm 5 
= 13,4.10-3 ( ) , já para Dt=25(° 
C), temos: D mm 25 
= 2,58.10-3 ( ) . Vemos assim que o diâmetro mínimo da bolha diminui com a elevação 
da diferença de temperaturas entre vapor e parede, fato importante nas explicações que seguem. 
Admitamos agora, um líquido sobre uma 
superfície com rugosidade controlada. Quando 
elevamos a temperatura da superfície sabemos que nas 
extremidades das rugosidades a temperatura é menor 
que no engaste, segundo a teoria das aletas. Assim 
sendo, teremos maior temperatura no fundo das 
 135
cavidades. Quando é alcançada a temperatura de 
vaporização no líquidoem contacto com a superfície 
esta estará a uma temperatura maior que a de 
vaporização. A parede entrega calor ao líquido, este se 
expande e vaporiza no interior da cavidade. Sendo 
mantido o fluxo de calor a bolha formada vai se 
expandindo como em um conta-gota. Existirá um 
determinado instante em que ela se descola da parede. 
Este instante é aquele em que as forças de superfície são 
superadas pelas dinâmicas e de flutuação. Descolada a bolha da superfície ela vai procovar grande 
agitação no meio fluído e devido a sua menor massa específica sobe verticalmente. 
Desta explicação elementar e de observação em ensaios podemos concluir: 
51 
- Não só a rugosidade é fundamental na vaporização, mas também a forma desta rugosidade. Os 
pontos preferidos da superfície devem ser aqueles em que as cavidades mais se aproximam da forma 
esférica. 
- Os líquidos mais aderentes a superfície são os que mais facilmente se vaporizam. Isto é evidente 
se levarmos em conta que quanto mais aderente é o líquido a superfície mais rapidamente ele ocupa o 
lugar deixado pela bolha. 
- Devido a subida da bolha, se tivermos por exemplo a vaporização em um tubo vertical, o número 
de bolhas que atravessa uma seção horizontal aumenta de baixo para cima. Podemos dizer que o 
conteúdo específico de bolhas aumenta com a altura, sendo este conteúdo definido pela relação: m3 de 
bolhas sobre m3 de mistura de líquido e bolhas. 
- Se a circulação é forçada, devido a queda do volume específico a velocidade média aumenta com 
a altura, devendo haver um aumento no coeficiente de convecção. 
Em 1934, Nukiyana, demonstrou a existência de vários regimes de vaporização, se bem que 
Leidenfrost em 1736 e Lang em 1888 já tinham determinado a existência de um fluxo máximo e 
mínimo 
de calor no fenômeno da vaporização. 
Na figura (3.15) mostra-se graficamente o resultado da variação do coeficiente de convecção e do 
 136
fluxo de calor em função da diferença entre a temperatura de vaporização e da parede, para água a 
1(atm) 
sobre uma superfície horizontal. 
Na região AB, o H2O líquido é aquecido por convecção natural e a vaporização se produz 
somente na superfície. Neste trecho Q/S é proporcional a Dt 
5 
4 . Na região BD há um ativamento na 
formação das bolhas, estas se elevam atravéz do líquido, produzindo correntes de circulação natural. 
Neste trecho a vaporização é nucleada sendo que o fluxo varia com Dtn com n compreendido entre 3 e 
4. Podemos subdividir esta região em duas - BC onde a ebulição é nucleada em forma de bolhas 
individuais e CD onde o regime de formação de bolhas é intenso de modo a formar colunas contínuas 
de 
vapor. No ponto D o fluxo passa por um máximo havendo para tanto uma diferença de temperatura 
denominada crítica. Na região DE temos uma transição, com tendência a formação sobre a superfície 
de 
uma película, a qual ganha estabilidade na região EF. 
O ponto E onde inicia a estabilização da película é o ponto de mínimo fluxo de calor. Este ponto 
é conhecido como Ponto de Leidenfrost. A partir deste ponto os efeitos da radiação se fazem sentir, 
aumentando o fluxo de calor apesar da existência de uma película isolante. O ponto F, nos fornece o Dt 
correspondente ao ponto de fusão do material que constitue a superfície. Caso a ordenada de F seja 
menor que a do ponto D, qualquer aumento do fluxo de calor além do correspondente ao máximo 
fundirá 
o material que forma a superfície quente. 
Desta experiência nasceram os regimes de vaporização: 
AB - Vaporização por convecção natural; 
BC - Vaporização nucleada em bolhas individuais; 
CD - Vaporização nucleada em colunas; 
DE - Vaporização de transição, instável ou pulsante; 
EF - Vaporização pelicular. 
52 
Tendo como base estas regiões, a posição das superfícies e o escoamento, indica-se algumas 
 137
fórmulas que podem ser usadas em pré-dimensionamento. 
# Água saturada a pressão atmosférica, vaporizando externamente a superfícies horizontais, 
escoamento em convecção natural 
Para Q S 
kW 
m 
£ 
æ 
è ç 
ö 
ø ÷ 
23 2 tomar: a = 
° 
æ 
è ç 
ö 
ø ÷ 
1 04 
1 
3 
2 , . 
. 
Dt 
kW 
m C 
Para 23 500 2 < £ 
æ 
è ç 
ö 
ø ÷ 
Q S 
 138
kW 
m 
a = 
° 
æ 
è ç 
ö 
ø ÷ 
5 5710-3 3 
2 , . . 
. 
Dt 
kW 
m C 
# Água saturada a pressão atmosférica, vaporizando externamente a superfícies verticais, 
escoamento em convecção natural 
Para Q S 
kW 
m 
£ 
æ 
è ç 
ö 
ø ÷ 
6 2 tomar: a = 
° 
æ 
è ç 
ö 
ø ÷ 
0 537 
 139
1 
7 
2 , . 
. 
Dt 
kW 
m C 
Para 6 1200 2 < £ 
æ 
è ç 
ö 
ø ÷ 
Q S 
kW 
m 
a = 
° 
æ 
è ç 
ö 
ø ÷ 
8 0510-3 3 
2 , . . 
. 
Dt 
kW 
m C 
# Água saturada a uma pressão p>pa, vaporizando externamente a superfícies horizontais ou 
verticais, escoamento em convecção natural 
a a p 
a 
 140
p 
p 
= 
æ 
è ç 
ö 
ø ÷ 
0,4 
53 
Nesta fórmula a é o coeficiente de convecção a pressão atmosférica. 
# Água saturada, vaporizando no interior de tubos verticais, escoamento em convecção natural 
a = ( ) 
° 
æ 
è ç 
ö 
ø ÷ 
2 5310-3 3 15 3 
2 , . . . 
. 
Dt e , 
kW 
m C 
p 
onde 
Dt Q 
S e 
p 
= æ 
è 
öø 
 141
- 4 44 
1 
4 
, . . 61,2 sendo que Q/S em (kW/m2) e p em (atm) 
Para 50<ts£100 (°C), fórmula de Kirschbaum válida para tubos cheios de água até 75% da altura: 
a = ( + ) ( ) 
° 
æ 
è ç 
ö 
ø ÷ 
- + 0 84 157 5 10 3 0 01331 0131 
2 , . , . . 
. 
, . t t 
kW 
m C s 
D t s 
# Amônia saturada vaporizando no interior de tubos verticais. escoamento em convecção natural, 
fórmula de Cleiss 
a = ( + ) 
° 
æ 
è ç 
ö 
ø ÷ 
C q a 
kW 
m C 
. 
. 
 142
0,42 
2 
Na tabela (3.7) damos os valores de C e de a para vários ts, a unidade de q é 
kW 
m2 
æ 
è ç 
ö 
ø ÷ 
Tabela (3.7) Valores de "C" e "a" para fórmula de Cleiss 
ts (°C) -10 -20 -30 
Altura 
do 
45 C 1,45 - 1,25 
líquido 
em 
45 a 1,48 - 1,40 
% da 
altura 
65 C 1,33 1,20 - 
do tubo 65 a 0,436 0,465 - 
# Água saturada, vaporizando no interior de tubos, em escoamento forçado 
54 
Entendemos porescoamento forçado na vaporização quando a massa de líquido em escoamento é 
várias vezes a de vapor. Experiências realizadas com velocidade da água entre 0,75 e 4,5 (m/s) 
resultaram na fórmula: 
Nu = k.N .N Re 
, 
Pr 
0 8 0,4 
Os valores da constante k estão na tabela (3.8) segundo indicação de McAdams e de Oliver. 
 143
# Ebulição em forma de película externamente a cilindros horizontais 
( ) 
Nu 
D g r D 
t 
e 
v 
v L v e 
v v 
= = 
é - 
ë ê 
ù 
û ú 
a 
l 
r r r 
m l 
. 
, 
. . . . 
. . 
0 62 
3 
D 
Esta expressão fornece somente o coeficiente de convecção sendo que para considerar o efeito da 
radiação devemos aplicar: 
( ) 
( ) 
a a 
a 
 144
a 
a c r c 
c 
c r 
+ r 
+ 
= 
æ 
è çç 
ö 
ø ÷÷ 
. + 
1 
3 
onde c é relativo a convecção e r em relação a radiação. 
Tabela (3.8) Constante k 
NRe>65000 
Dt(°C) 3 4 6 8 10 15 20 25 28 
k 0,016 0,016 0,016 0,017 0,018 0,020 0,025 0,030 0,040 
NRe<65000 
Dt(°C) 18 20 21 22 24 25 27 29 30 
k 0,026 0,040 0,050 0,060 0,070 0,080 0,090 0,100 0,110 
EXEMPLO 3.13) Determinar o comprimento de um vaporizador horizontal para água saturada a 2,7 
(bar), sabendo-se que a massa em escoamento externo aso 30 tubos de 50(mm) de diâmetro é de 4,0 
(t/h), 
sendo a temperatura média na parede externa dos tubos de 147(°C). 
SOLUÇÃO 
Precisamos inicialmente determinar o coeficiente de convecção para a vaporização considerando a 
pressão atmosférica. Como não temos Q/S, aplicaremos as fórmulas dadas para água saturada a pressão 
atmosférica, escoamento em convecção natural: 
Para 2,7(bar), ts=130(°C), logo: Dt=147-130=17(°C) 
 145
55 
a ( ) 1 
1 
3 
1 
3 
2 = 1 04 = 1 04 17 = 2 675 
° 
æ 
è ç 
ö 
ø ÷ 
, . , . , 
. 
Dt 
kW 
m C 
a = = ( ) = 
° 
æ 
è ç 
ö 
ø ÷ 
5 5710-3 3 5 5710-3 17 3 27 4 
2 , . . , . . , 
. 
Dt 
kW 
m C 
Tendo em vista que r 
kJ 
 146
2 7 kg 2174 1 , = , 
æ 
è ç 
ö 
ø ÷ 
, Q = m.r = = (kW) 
4000.2174,1 
3600 
2418 
resulta: Q/S=a.Dt logo: 
(Q S) 
kW 
1 m2 = 2 67517 = 45 5 
æ 
è ç 
ö 
ø ÷ 
, . , 
(Q S) 
kW 
2 m2 = 27 417 = 465 < 500 
æ 
è ç 
ö 
ø ÷ 
, . 
Assim, pela fórmula 
a a p 
a 
p 
p 
 147
kW 
m C 
= 
æ 
è ç 
ö 
ø ÷ 
= 
æ 
è ç 
ö 
ø ÷ 
@ 
° 
æ 
è ç 
ö 
ø ÷ 
0 4 0 4 
2 27 4 
2 7 
1 0 
0 41 
, , 
, 
, 
, 
, 
. 
S ( ) 
Q 
 148
t 
= = = m 
a2 
2 2418 
4117 
3 46 
. . 
, 
D 
Como L ( ) 
S 
Z D 
= = = m 
. . 
, 
. . , 
, 
p p 
3 46 
30 0 05 
0 735 
56 
Referências Bibliográficas 
Para Curso de Fenômenos de Transporte II 
Básica 
1. MARTINELLI Jr., Luiz Carlos; SOUZA, Z. e MACEDO, M. F. Fenômenos de Transporte II. 
Apostila. 
2. HOLMAN, J.P. Transferência de Calor; McGraw-Hill; São Paulo; 1983 
3. KREITH, F. Princípios de Transmissão de Calor. Edgard Blücher; São Paulo; 1977 
4. BENNETT, C. O., MYERS, J. E. Fenômenos de Transporte - Quantidade de Movimento, Calor e 
Massa. McGraw-Hill; 
 149
São Paulo; 1978 
Complementar 
1. GHIZZE, Antonio. Manual de Trocadores de Calor, Vasos e Tanques. IBRASA; 1989 
2. ÖZISIK, M. N. Transferência de Calor, um Texto Básico. Guanabara; Rio de Janeiro; 1990.