Buscar

BASES ANALÍTICAS DO LABORATÓRIO CLÍNICO 2

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 3, do total de 71 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 6, do total de 71 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 9, do total de 71 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Prévia do material em texto

64
Unidade II
Unidade II
5 SOLUÇÕES: IMPORTÂNCIA NO LABORATÓRIO E PRINCIPAIS USOS
Entender o conceito de solução é muito importante para qualquer profissional, independentemente 
da sua área de formação. A grande maioria das diferentes substâncias que compõem os seres vivos e o 
meio que os cerca se encontram em solução. Lembrando que soluções são misturas homogêneas nas 
quais um soluto encontra-se dissolvido em um solvente.
No corpo humano, por exemplo, o suor, a lágrima, o sêmen, a linfa, o interior das células, o meio 
extracelular, todos esses fluidos apresentam milhares de diferentes moléculas e íons dissolvidos em 
água, constituindo soluções.
Conhecer essas propriedades, e como elas são preparadas, é essencial não só para que possamos 
entender o funcionamento dos sistemas biológicos, mas também para compreendermos por que, no 
laboratório, utilizamos soluções para simular os eventos que acontecem no corpo humano e para 
auxiliar no diagnóstico de doenças.
O objetivo agora é descrever o preparo de soluções no laboratório, tanto em relação aos procedimentos 
laboratoriais quanto em relação aos cálculos necessários para que a relação entre o soluto e solvente 
esteja adequada. Em seguida, as maneiras pelas quais a quantidade de soluto é capaz de alterar as 
propriedades da solução serão discutidas. Para que este conteúdo seja compreendido adequadamente, 
é necessário consolidar os conceitos a seguir.
• Soluto: espécie química que se encontra em menor quantidade em uma solução; é dissolvida pelo 
solvente e apresenta tamanho de até 1 nm.
• Solvente: espécie química que se encontra em maior quantidade em uma solução; dissolve o soluto.
• Dissolução: estabelecimento de interações intermoleculares entre as moléculas do soluto e do 
solvente, com a formação de uma mistura homogênea (isto é, uma solução).
• Massa: medida da quantidade de matéria. É determinada com o uso de balanças e expressa, 
normalmente, em gramas (g) ou em seus múltiplos e submúltiplos (g, mg, µg, ng).
• Volume: grandeza que expressa a extensão de um corpo em três dimensões: o comprimento, a 
largura e a altura. Nas amostras líquidas, o volume normalmente é aferido pelo uso da proveta ou 
do balão volumétrico e expresso em litros (L) e seus submúltiplos (mL e µL).
65
BASES ANALÍTICAS DO LABORATÓRIO CLÍNICO
5.1 Solubilidade de soluções
Para que haja a formação de uma solução, é necessário que as moléculas do soluto sejam dissolvidas 
pelas moléculas do solvente. No entanto, para que ocorra dissolução, é necessário que as características 
físico-químicas do soluto e do solvente sejam semelhantes (“semelhante dissolve semelhante”, ou seja, 
solventes apolares dissolvem solutos apolares, enquanto solventes polares dissolvem solutos polares).
Quando observamos a dissolução de um soluto sólido em um solvente líquido, podemos 
perceber que esse fenômeno acontece até determinado limite de soluto adicionado. Ao excedê-lo, 
o excesso de soluto precipita e passamos a ter um sistema bifásico, constituído de uma solução 
e do excesso não dissolvido.
Os principais fatores que determinam a quantidade de um soluto capaz de se dissolver totalmente 
em determinado solvente são: as características físico-químicas das moléculas do soluto e do solvente, 
o volume de solvente disponível e as condições de temperatura e pressão do sistema.
 Observação
Indica-se a quantidade de solvente líquido em unidade de massa pois 
esse parâmetro não varia em resposta ao aumento da temperatura, ao 
contrário do volume, que tende a expandir.
A quantidade máxima de soluto que se pode dissolver totalmente em determinada quantidade padrão de 
solvente (usualmente 100 g), em uma determinada temperatura, é denominada coeficiente de solubilidade (CS). 
Por exemplo, a notação CSNaCl (20 °C) = 36,5 g/100 g H2O significa que a quantidade máxima de cloreto de 
sódio (NaCl) capaz de ser dissolvido em 100 g de água (H2O), mantida a 20 °C, é de 36,5 g.
 Observação
Os rins são os órgãos responsáveis por filtrar o sangue e, assim, 
excretar as substâncias em excesso no nosso organismo e os excretas 
nitrogenados. Muitas das substâncias excretadas são pouco solúveis, 
como, por exemplo, o fosfato de cálcio e o oxalato de cálcio. A formação 
de cálculos renais ocorre quando a quantidade dessas substâncias na 
urina ultrapassa seus coeficientes de solubilidade. Nessas condições, o 
excesso da substância não consegue entrar em solução e, portanto, forma 
cristais. Evitar a formação de cálculos renais é um dos motivos pelo qual 
devemos beber cerca de 2 litros de água por dia.
É importante que a temperatura da solução sempre seja indicada no CS, pois esse parâmetro influi 
diretamente na solubilidade do soluto. A maioria tem o CS aumentado em resposta ao aumento de 
temperatura do sistema (dissolução endotérmica), enquanto outros apresentam diminuição do CS 
66
Unidade II
com o aumento da temperatura (dissolução exotérmica). Para entender melhor esse fenômeno, vamos 
observar as representações gráficas da variação do CS dos sais sulfato de cério III, Ce2(SO4)3, e brometo 
de potássio, KBr, em resposta à variação de temperatura do sistema.
A) 
0 10 20
Temperatura (ºC)
So
lu
bi
lid
ad
e 
do
 C
e 2
 (S
O 4
) 3
(g
 d
e 
sa
l/1
00
 g
 H
2O
)
30 40
20
15
10
5
 B) 
So
lu
bi
lid
ad
e 
do
 K
Br
(g
 d
e 
sa
l/1
00
 g
 H
2O
)
Temperatura (ºC)
20 40 60 80 1000
20
40
60
80
100
120
Figura 37 – Dissolução exotérmica do Ce2(SO4)3 e endotérmica do KBr
Nos gráficos, o eixo das abscissas (eixo x) apresenta os valores de temperatura do sistema, enquanto 
os CS correspondentes são indicados no eixo das ordenadas (eixo y). Cada temperatura se correlaciona 
com um CS, conforme indicado pelas curvas traçadas em ambos os gráficos.
Como podemos observar, o gráfico representa a solubilidade do KBr em água, quanto maior a 
temperatura, maior o CS, o que é característico das soluções endotérmicas. Nas soluções endotérmicas, 
a energia, em forma de calor, aplicada na solução, é utilizada para promover o aumento da capacidade 
do soluto de se dissolver.
O gráfico que representa a solubilidade do Ce2(SO4)3 em água, por outro lado, mostra uma dissolução 
exotérmica. Nesse caso, ao aumentarmos a temperatura do sistema, o CS decresce. Isso acontece porque 
a energia térmica aplicada ao sistema diminui a capacidade de o soluto se dissolver.
De acordo com a termoquímica, as dissoluções endotérmicas apresentam variação de entalpia maior 
que zero (ΔH > 0), enquanto as exotérmicas apresentam variação de entalpia menor que zero (ΔH < 0).
Entalpia (H) é a energia interna do sistema acrescida do produto entre a temperatura e o seu volume, 
ou seja, é a medida do conteúdo energético do sistema. Em outras palavras, a entalpia é definida como 
a energia máxima de um sistema termodinâmico que pode ser removida deste sob a forma de calor.
A variação de entalpia (ΔH), portanto, é a medida do calor trocado com o meio ambiente durante 
um processo:
• Na dissolução endotérmica (ΔH > 0), a solução absorveu calor durante a dissolução.
• Na dissolução exotérmica (ΔH < 0), a solução liberou calor durante a dissolução.
67
BASES ANALÍTICAS DO LABORATÓRIO CLÍNICO
Exemplo de aplicação
A dissolução dos gases em água é sempre um processo exotérmico. Isso significa que quanto maior 
a temperatura da água, menor a quantidade de gases dissolvidos. Esse evento é de extrema importância 
para a sobrevivência dos organismos aquáticos, uma vez que muitos deles necessitam do gás oxigênio 
(O2) que se encontra dissolvido na água para respirar.
A uma pressão de 1 atm, 100% de umidade relativa e 0 °C, o coeficiente de solubilidade do gás 
oxigênio é 1,46 mg/100 g H2O, enquanto, nas mesmas condições e à temperatura de 30 °C, solubilizam-se 
apenas 0,759 mg/100 g H2O.
Mesmo pequenas alterações na temperatura das águas são capazes de diminuir a quantidade de 
gases dissolvidos na água. É nesse contexto que entendemos de que maneira o aquecimento global 
afeta a sobrevivênciados organismos aquáticos.
Em alguns casos, as curvas de solubilidade apresentam inflexões, que marcam alterações na estrutura 
do soluto. Esse tipo de perfil de dissolução ocorre quando temos solutos sólidos hidratados. Esse tipo de 
soluto apresenta uma ou mais moléculas de água ligadas à sua estrutura, por interações intermoleculares. 
Um exemplo é o cloreto de cálcio hexa hidratado, ou CaCl2.6H2O, no qual seis moléculas de água estão 
ligadas a uma de CaCl2. Com o aumento da temperatura, as moléculas de água vão, paulatinamente, se 
“desprendendo” do CaCl2, o que altera seu comportamento de dissolução.
Na 2S
o 4 .
 10
 H 2
O
 Na
2SO4
 CaC
l 2 . 
6H 2
O 
 
 
CaCl . 
4H 2
O 
 CaC
l 2 . 
2 H 2
O
Neste ponto ocorre: CaCl2 . 6 H2O → CaCl . 4 H2O + 2 H2O
Neste ponto ocorre: CaCl2 . 4 H2O → CaCl2 . 2 H2O + 2 H2O
Neste ponto ocorre: Na2SO4 . 10 H2O → Na2SO4 + 10 H2O
Temperatura (ºC)
Co
efi
ci
en
te
 d
e 
so
lu
bi
lid
ad
e 
(g
ra
m
as
 d
e 
so
lu
to
/1
00
 g
 d
e 
ág
ua
)
20
20
40
60
80
100
120
140
40 60 80
Figura 38 – Curva de dissolução do CaCl2
5.1.1 Soluções insaturadas, saturadas e supersaturadas
De acordo com a quantidade de soluto presente em uma solução, podemos classificá-la em 
insaturada, saturada, saturada com corpo de fundo ou supersaturada.
• Nas soluções insaturadas, a quantidade de soluto em solução é inferior ao CS, a uma dada 
temperatura. Portanto é possível dissolver mais soluto, até atingi-lo. No gráfico, as soluções 
insaturadas são aquelas representadas por valores de temperatura e CS, que, quando se 
68
Unidade II
interseccionam, ocupam a região abaixo da curva de solubilidade. No gráfico a seguir, uma solução 
insaturada é representada pela letra X.
• Nas soluções saturadas, atingiu-se o ponto de saturação, ou seja, a quantidade de soluto em 
solução é igual ao CS, a uma dada temperatura. Portanto não é possível dissolver mais soluto 
na solução, caso a temperatura do sistema seja mantida. No gráfico, as soluções saturadas são 
representadas pelos valores de temperatura e CS, que, quando se interseccionam, encontram-se 
em cima da curva de solubilidade. No gráfico a seguir, uma solução saturada é representada 
pela letra Y.
• Nas soluções saturadas com corpo de fundo, têm-se uma solução saturada à qual acrescentou-se 
mais soluto, que não dissolveu. Essa solução apresenta duas fases: a primeira é constituída da 
solução saturada e a segunda do soluto em excesso que não se dissolveu.
• Nas soluções supersaturadas, a quantidade de soluto em solução ultrapassou o CS. Esse fenômeno 
é alcançado quando uma solução saturada, cujo soluto sofreu dissolução endotérmica, é 
preparada em determinada temperatura e, logo depois, é lentamente resfriada, cuidando-se 
para que o sistema não sofra nenhum tipo de agitação. As soluções supersaturadas apresentam 
uma única fase, porém são instáveis, e qualquer perturbação do sistema leva à precipitação 
do soluto em excesso, originando um sistema com duas fases. No gráfico, as soluções 
supersaturadas são aquelas representadas por valores de temperatura e CS, que, quando se 
interseccionam, ocupam a região acima da curva de solubilidade. No gráfico a seguir, uma 
solução supersaturada é representada pela letra Z.
20
X
Y
Z
Região das Região das 
soluções não soluções não 
saturadas saturadas 
(estáveis)(estáveis)
Região das Região das 
soluções soluções 
supersaturadas supersaturadas 
(instáveis)(instáveis)
Coeficiente de solubilidade Coeficiente de solubilidade 
(gramas de KNO(gramas de KNO33/100 g de água)/100 g de água)
20
40
60
80
100
120
140
160
180
200
220
240
260
40 60 80 100
Figura 39 – Curva de solubilidade do nitrato de potássio, KNO3, 
mostrando a região das soluções supersaturadas, saturadas (curva) e insaturadas
69
BASES ANALÍTICAS DO LABORATÓRIO CLÍNICO
Exemplo de aplicação
Uma vez que o CSNaCl (20 °C) = 36,5 g/100 g H2O, temos que, a 20 °C:
Uma solução preparada dissolvendo-se 20 g de NaCl em 100 g de água é insaturada, e ainda é 
possível dissolver 16,5 g de NaCl para se chegar aos 36,5 g que marcam o limite de dissolução.
Uma solução preparada dissolvendo-se 36,5 g de NaCl é saturada, e qualquer quantidade adicional 
de NaCl que for incluída na solução formará um precipitado.
Um sistema com uma fase contendo 100 g de NaCl dissolvidos em 100 g de água é supersaturada, e 
qualquer perturbação do sistema fará com que os 63,5 g de NaCl em excesso precipitem.
Podemos verificar se uma solução é insaturada, saturada ou supersaturada adicionando-se uma 
pequena quantidade de soluto, denominada gérmen de cristalização, à solução.
• Caso o gérmen de cristalização se dissolva, trata-se de uma solução insaturada.
• Caso o gérmen de cristalização não se dissolva, trata-se de uma solução saturada.
• Caso o gérmen de cristalização não se dissolva, havendo ainda precipitação do excesso do soluto 
que estava em solução, trata-se de uma solução supersaturada.
Adição de uma pequena 
porção do soluto sólido 
(gérmen de cristalização)
Na solução não saturada 
o soluto se dissolve
Na solução saturada o 
soluto não se dissolve
Corpo de fundo 
ou 
corpo de chão
Na solução supersaturada 
há precipitação do soluto 
excedente
Figura 40 – Efeito da adição de um gérmen de cristalização a soluções instaurada, saturada e supersaturada
A maioria das soluções utilizadas em laboratório são insaturadas. Podemos dividi-las grosseiramente 
em duas categorias: as soluções diluídas são aquelas que apresentam pouco soluto em relação ao 
solvente, ou seja, a quantidade de soluto está distante do CS. As soluções concentradas, por sua vez, 
apresentam quantidade de soluto próxima ao CS.
70
Unidade II
 Observação
É comum o preparo de soluções concentradas, que devem ser diluídas no 
momento do uso. As soluções concentradas apresentam maior durabilidade, 
o que permite sua estocagem por mais tempo.
5.2 Preparo de soluções
O preparo correto das soluções é fundamental para que o resultado do procedimento laboratorial 
seja confiável. O conhecimento da proporção exata entre soluto e solvente é uma etapa importante do 
controle de qualidade laboratorial e garante que as condições experimentais estejam adequadas ao que 
se deseja aferir. A concentração da solução é o parâmetro que indica qual é a proporção entre soluto e 
solvente que deve ser seguida.
Existem vários modos de se expressar a concentração de uma solução como, por exemplo, gramas 
por litro (g/L, ou quantos gramas de soluto estão dissolvidos em um litro de solução); mol por litro 
(mol/L, ou quantos mol de soluto estão dissolvidos em um litro de solução). O cálculo da concentração 
das soluções será abordado a seguir.
Os procedimentos para o preparo de soluções variam de acordo com o estado físico do soluto 
e do solvente.
 Saiba mais
Aprenda a preparar soluções saturadas em:
MEDEIROS, A. C. S. Preparo de soluções salinas saturadas para a 
caracterização fisiológica de sementes florestais. Colombo: Embrapa 
Florestas, 2006. (Circular técnica, n. 125). Disponível em: <https://ainfo.
cnptia.embrapa.br/digital/bitstream/CNPF-2009-09/41217/1/circ-tec125.
pdf>. Acesso em: 12 mar. 2019.
5.2.1 Preparo de soluções de sólido em líquido
Após o cálculo da concentração da solução e da adequação da massa de soluto necessária para se 
preparar o volume desejado de solução, o procedimento é o seguinte:
• Pesa-se o soluto em balança analítica, tomando cuidado para que o valor de massa seja o mais 
próximo possível do necessário para o preparo da solução (erros de até 5%, para cima ou para 
baixo, são aceitáveis).
71
BASES ANALÍTICAS DO LABORATÓRIO CLÍNICO
• Transfere-se o soluto para um béquer, com cuidado para que não haja perda de material. Em seguida, 
adiciona-se um pequeno volume de solvente, somente o necessário para que haja dissolução. 
Para verter o solvente no béquer sem que haja formação de respingos, o líquido escorre por 
sobre um bastão ou baqueta de vidro colocada simultaneamente em contatocom o fundo do 
béquer e com o recipiente que contém o solvente.
 Observação
Lembre-se de que, na grande maioria das vezes, o solvente é a água. 
As soluções cujo solvente é a água são chamadas de soluções aquosas.
• A dissolução do soluto é feita utilizando-se o agitador magnético, com cuidado para que não 
haja a formação de respingos. É prudente tampar a boca do béquer com filme plástico e manter 
a velocidade magnética do agitador baixa, para evitar incidentes. Lembre-se de que a perda de 
material pode implicar erros significativos na concentração final da solução.
• Depois que o soluto estiver completamente dissolvido, a solução é transferida para um balão 
volumétrico ou para uma proveta, com o auxílio de um funil, e completa-se o volume com 
solvente, até que se atinja o volume final. Note que, se você precisa preparar 1 L de solução 
aquosa contendo 40 g de soluto, por exemplo, você não acrescentará essa quantidade de água, 
mas, sim, o volume que falta para se completar 1 L de solução (lembre-se de que o soluto também 
ocupa espaço, ou seja, parte do volume de 1 L será ocupado por ele).
 Observação
O balão volumétrico apresenta maior exatidão do que a proveta, porém 
nem sempre pode ser utilizado.
• A solução é armazenada em frasco fechado contendo as seguintes informações: soluto utilizado, 
concentração do soluto, data do preparo e responsável pelo preparo.
5.2.2 Preparo de soluções de líquido em líquido
Para o preparo de soluções de soluto líquido em volume líquido, basta misturar os volumes de soluto 
e de solvente necessários para que seja obtida a proporção correta. Sempre que necessário, deve-se 
utilizar as pipetas para que sejam coletados com exatidão.
O volume final da solução deve ser ajustado com o uso de balão volumétrico ou proveta, 
quando necessário, e após o preparo, a amostra fica acondicionada em frasco com todas as 
informações necessárias, conforme indicado anteriormente.
72
Unidade II
5.2.3 Preparo de soluções de gás em líquido
Quando o soluto se encontra no estado gasoso e o solvente é um líquido, o aumento da solubilidade 
do gás é conseguido aumentando-se a pressão do sistema. Como regra, temos que, se o gás não reage 
com o líquido e o sistema é mantido em temperatura constante, a sua solubilidade em um líquido é 
diretamente proporcional à pressão sobre ele. Ou seja, quanto maior a pressão exercida sobre o sistema, 
mais moléculas de gás conseguem se dissolver no solvente.
No laboratório, as soluções de gás em líquido não são muito utilizadas, mas as que são utilizadas no 
laboratório são preparadas a partir do bombeamento de ar diretamente na solução líquida, de maneira 
semelhante ao que é feito nos aquários. Essas soluções, ditas “aeradas”, são utilizadas principalmente 
quando se deseja estudar o funcionamento de um órgão ou tecido isolados, pois, para manter a 
integridade e a fisiologia do órgão quando ele é retirado do organismo de origem, é necessário fornecer 
os nutrientes e o oxigênio necessários para manter seu metabolismo.
 Observação
As bebidas gaseificadas nada mais são que soluções de gás em líquido. 
O seu preparo envolve a dissolução de gás carbônico (CO2) na bebida, sob 
pressão e em baixas temperaturas. Quando a garrafa é aberta, a pressão 
dentro da garrafa diminui e o CO2 escapa para o meio externo.
5.2.4 Preparo de soluções de gás em gás
Qualquer solução gasosa é considerada uma solução, pois a mistura de gases em diferentes proporções 
sempre constitui uma mistura homogênea. Estas não são corriqueiramente utilizadas no laboratório.
5.3 Concentração de soluções
É qualquer relação entre a quantidade do soluto e a quantidade do solvente ou da solução. 
Essas quantidades podem ser expressas em massa, em números de mol ou em volume, o que 
permite que esse parâmetro seja expresso de diferentes maneiras.
As principais maneiras de se expressar a concentração de uma solução são apresentadas a seguir:
• Concentração simples: refere-se à massa de soluto presente em determinado volume de solução. 
Geralmente, a concentração do soluto é expressa em g/L, g/mL, g/dL, mg/L, mg/mL ou mg/dL. 
Exemplo: uma solução de NaCl a 5 g/L apresenta 5 g de NaCl dissolvidos em cada litro de solução; 
uma solução de NaCl a 5 mg/L possui apenas 5 mg de NaCl dissolvidos em cada litro de solução.
• Concentração em quantidade de matéria: também conhecida como concentração molar ou 
molaridade, essa modalidade de concentração é muito utilizada na experimentação, pois permite 
que se saiba exatamente o número de partículas de soluto presentes em solução. Exemplo: uma 
73
BASES ANALÍTICAS DO LABORATÓRIO CLÍNICO
solução de CaCl2 a 1 mol/L apresenta um mol de CaCl2 (aproximadamente 6,02 × 10
23 unidades 
dessa espécie química) em cada litro de solução.
• Concentração molal ou molalidade: representa qual é o número de mol de soluto presente em um 
quilograma de solvente. A molalidade é a solução de escolha quando se deseja estudar como a 
presença de soluto altera as propriedades da solução (propriedades coligativas), pois, expressando-se 
a quantidade de solvente em unidade de massa, a expansão ou a retração do volume da solução em 
resposta à alteração da temperatura da amostra passa a não ser uma variável importante na análise. 
Exemplo: uma solução aquosa de NaCl 1 molal apresenta um mol de NaCl em cada kg de solvente.
• Título em massa: indica a massa (em gramas) de soluto presente em 100 mL ou em 100 g 
de solução (títulos m/v e m/m, respectivamente). Os títulos em massa são representados pela 
porcentagem de massa do soluto em relação à solução. Exemplo: uma solução de NaOH 5% (m/v) 
que apresente 5 g de NaOH em cada 100 mL de solução.
• Título em volume: indica o volume (em mL) de soluto presente em 100 mL ou em 100 g de 
solução (títulos v/v e v/m, respectivamente). Assim como os títulos em massa, os títulos em volume 
também são expressos como a porcentagem do volume do soluto em relação à solução. Exemplo: 
uma solução de etanol a 70% (v/v) apresenta 70 mL de etanol em cada 100 mL de solução.
• Partes por milhão (ppm): essa maneira de expressar a concentração é muito utilizada nas análises 
ambientais para indicar a concentração de solutos muito diluídos. Exemplo: se em uma amostra 
de água a concentração de determinado poluente é de 1 ppm, existe, em massa, uma parte de 
poluente para cada um milhão de partes de água, ou seja, 1 µg (micrograma) de soluto para cada 
grama de água.
A seguir, vamos aprender como são realizados os cálculos de cada modalidade de concentração.
5.3.1 Concentração simples
A concentração simples expressa a massa de soluto presente em determinado volume de solução. 
Ela pode ser calculada dividindo-se a massa do soluto pelo volume final da solução, conforme descrito 
a seguir.
m
C
V
=
Onde:
C = concentração da solução
m = massa do soluto (em g ou seus múltiplos e submúltiplos)
V = volume da solução (em L ou seus submúltiplos)
74
Unidade II
 Observação
Não confunda a densidade da solução com a sua concentração de soluto.
A massa do soluto usualmente é fornecida em gramas (g) ou miligramas (mg) (lembre-se de que 1 g 
corresponde a 1.000 mg), e o volume da solução, em litros (L) ou mililitros (mL) (sendo que 1 L corresponde 
a 1.000 mL). Para calcular a concentração simples, a partir dos valores da massa de soluto e do volume da 
solução, pode-se tanto utilizar a fórmula citada como calcular a proporção em regra de três.
Exemplo de aplicação
Considere a seguinte situação: um analista adiciona 30 g de NaCl à água, a fim de preparar 3 L de 
solução. Qual é a concentração da solução?
O enunciado do exercício nos fornece os seguintes dados:
m = 30 g
V = 3 L
C = x g/L → é o que devemos calcular
Resolução
O cálculo da concentração por regra de três deve ser feito da seguinte maneira:
30 g de soluto ----------------------- 3 L de solução
x g de soluto ------------------------ 1 L de solução
Vamos interpretar essa regra de três.
Na primeira linha, temos que a relação entre o soluto e o solventeé de 30 g de soluto para 3 L de 
solução, ou seja, cada 3 L de solução terão, dissolvidos, 30 g de soluto.
Na segunda linha, queremos calcular qual é a massa de soluto presente em 1 L de solução, afinal a 
sua concentração será dada em gramas por litro (g/L), ou seja, quantos gramas de soluto (x, na regra de 
três) estarão dissolvidos em 1L de solução.
Para resolver uma regra de três, basta multiplicar o primeiro valor da primeira linha pelo segundo 
valor da segunda linha (30 g . 1 L). Esse valor será igual ao produto do primeiro valor da segunda linha 
pelo segundo valor da primeira linha (x g . 3 L), conforme demonstrado:
75
BASES ANALÍTICAS DO LABORATÓRIO CLÍNICO
30 g de soluto ----------------------- 3 L de solução
x g de soluto ------------------------ 1 L de solução
Portanto:
30 . 1 = x . 3
Para resolver essa igualdade, procede-se da seguinte maneira:
3 . x = 30 . 1
A ordem da igualdade foi invertida para que a incógnita x fique à esquerda:
30
x
3
=
O número 3, que estava multiplicando x, passa para o outro lado da igualdade dividindo o número 30:
x = 10 g
Resultado da divisão de 30 por 3, se x = 10 g, temos que:
30 g de soluto ----------------------- 3 L de solução
10 g de soluto ----------------------- 1 L de solução
Assim, 10 g de soluto encontram-se dissolvidos em 1 L de solução. A concentração de NaCl na 
solução é, portanto, de 10 g/L.
Para resolver o mesmo exercício utilizando a fórmula da concentração, devemos proceder da 
seguinte maneira:
m
C
V
=
30 g
C
3 L
=
C = 10 g/L
Nas análises laboratoriais, é comum expressarmos a concentração dos analitos em miligramas por 
decilitros (mg/dL), sendo que 1 L corresponde a 100 dL. Observe os exemplos a seguir:
76
Unidade II
• O teor normal de glicose no sangue varia de 75 a 110 mg/dL.
• O teor normal de cálcio no sangue varia de 8,5 a 10,5 mg/dL.
Da observação, concluímos que é muito importante observar as unidades que estão sendo utilizadas 
para se expressar a massa de soluto e o volume da solução. Algumas vezes, é necessário realizar a 
conversão dessas unidades, a fim de expressar a concentração de maneira adequada.
Exemplo de aplicação
Imagine que você precisa preparar uma solução utilizando 1 g de soluto dissolvido em 5 mL de 
solução. Qual será a concentração da solução, em g/L?
O exercício fornece as seguintes informações:
m = 1 g
V = 5 mL
C = x g/L → é o que devemos calcular
Resolução
Conforme especificado no enunciado, o resultado deve ser expresso em g/L, não em g/mL. 
Por esse motivo, devemos converter o volume fornecido de mL para L antes de realizarmos o cálculo da 
concentração. Uma vez que 1 L corresponde a 1.000 mL, temos que:
1 L ----------------------- 1.000 mL
x L ----------------------- 5 mL
1 . 5 = 1000 . x
1000 . x = 5
5
x
1000
=
x = 0,005 L
Utilizando a fórmula da concentração simples, temos que:
m
C
V
=
77
BASES ANALÍTICAS DO LABORATÓRIO CLÍNICO
1
C
0,005
=
C = 200 g/L
Ou seja, se 5 mL de solução apresenta 1 g de soluto diluído, 1 L dessa solução apresentará 200 g 
de NaCl.
A situação mais comum, no laboratório, envolve o cálculo da massa de soluto necessária para se 
preparar determinado volume de solução cuja concentração já é conhecida, ou ainda o cálculo do 
volume de solução possível de ser preparada utilizando-se determinada massa de soluto. Em outras 
palavras, no preparo de soluções, normalmente a concentração já é conhecida, e devemos calcular a 
massa ou o volume necessário para o seu preparo.
Exemplo de aplicação
1) Cálculo da massa de soluto necessária para se preparar determinado volume de solução de 
concentração conhecida:
Um protocolo experimental de análise de DNA envolve o preparo de 10 mL de solução de KCl a 80 g/L. 
Qual é a massa de KCl necessária para se preparar 100 mL dessa solução?
Os dados fornecidos no exercício são:
V = 100 mL
C = 8 g/L
m = x g → é o que devemos calcular
Resolução
Para realizarmos o cálculo, é necessário que as unidades sejam compatíveis. Se a concentração é 
dada em g/L, o volume também precisa estar representado em L, portanto é necessário realizarmos 
a conversão:
1 L ----------------------- 1.000 mL
x L ----------------------- 100 mL
100 . x = 1 . 100
100 x = 100
78
Unidade II
100
x
1000
=
x = 0,1 L
Portanto 100 mL correspondem a 0,1 L.
Agora estamos prontos para calcular a massa de KCl necessária para se preparar 100 mL (0,1 L) de 
solução a 80 g/L.
Utilizando regra de três, temos que:
80 g ----------------------- 1 L (afinal, a concentração da solução é 80 g por litro)
x g ------------------------ 0,1 L (afinal, pretendemos preparar 0,1 L de solução)
1 . x = 800,1
x = 8 g
Portanto são necessários 8 g de KCl para se preparar 100 mL de solução a 80 g/L.
Utilizando a fórmula da concentração, chegamos ao mesmo resultado:
m
C
V
=
m
80
0,1
=
m
80
0,1
=
m = 80 . 0,1
m = 8 g
2) Cálculo do volume de solução possível de ser preparada a partir de determinada massa de soluto:
Você precisa preparar uma solução de iodeto de potássio (KI) a 25 g/L, porém só dispõe de 
250 mg desse sal. Qual é o volume de solução que é possível se preparar utilizando-se a massa 
de KI disponível?
79
BASES ANALÍTICAS DO LABORATÓRIO CLÍNICO
Os dados fornecidos no exercício são:
C = 25 g/L
m = 250 mg
v = x L → é o que devemos calcular
Resolução
Para realizarmos o cálculo, é necessário que as unidades sejam compatíveis. Se a concentração é 
dada em g/L, para realizarmos o cálculo, a massa precisa estar representada em g, portanto é necessário 
realizarmos a conversão:
1 g ----------------------- 1.000 mg
x g ----------------------- 250 mg
1000 . x = 1 . 250
250
x
1000
=
x = 0,25 g
Portanto 250 mg correspondem a 0,25 L.
Agora estamos prontos para calcular o volume de solução de KI a 25 g/L, que pode ser preparado 
com 250 mg (0,25 g) de KI. Utilizando regra de três, temos que:
25 g ----------------------- 1 L (afinal, a concentração da solução é 25 g por litro)
0,25 g ---------------------- x L (afinal, dispomos de 0,25 g de KI)
25 . x = 0,25 . 1
0,25
x
25
=
x = 0,01 L
Portanto é possível preparar 0,01 L (10 mL) de solução de KI a 25 g/L utilizando-se 250 mg desse sal.
Utilizando-se a fórmula da concentração, chegamos ao mesmo resultado:
80
Unidade II
m
C
V
=
0,25
25
V
=
25 . V = 0 ,25
0,25
V
25
=
V = 0,01 L
5.3.2 Concentração em quantidade de matéria (molaridade)
Também chamada de molaridade ou de concentração em mol/L, indica quantos mols de soluto estão 
presentes em 1 L de solução.
5.3.2.1 O conceito de mol e de massa molar
Antes de aprendermos como é feito o cálculo da concentração molar, vamos relembrar o conceito 
de mol.
O mol é uma unidade de medida que representa quantidade. Segundo o Sistema Internacional (SI), 
um mol de moléculas contém tantas unidades quanto há átomos de carbono em 0,012 kg de carbono-12. 
Embora sua definição pareça ser complicada, mol é tão somente uma medida de quantidade de matéria 
ligada a um número de partículas.
Vários estudos demonstraram que, em 0,012 kg de carbono-12, existem aproximadamente 
6,02 . 1023 átomos desse elemento químico. Representando-se esse número por extenso, teremos cerca 
de 602.000.000.000.000.000.000.000 (602 sextilhões) de átomos. Assim, um mol de partículas sempre 
corresponde a 6,02 . 1023 unidades dessa partícula.
Colocado dessa maneira, percebemos que o conceito de mol é tão simples quanto o conceito de 
dúzia (12 unidades), de dezena (10 unidades), de milheiro (1.000 unidades) etc., com o diferencial de se 
referir a um número muito elevado de unidades (da ordem do sextilhão).
O mol pode ser utilizado como medida de quantidade de átomos, moléculas, íons, ou outras espécies 
químicas. Por esse motivo, é sempre importante indicar a qual espécie química estamos nos referindo. 
Exemplo: 1 mol de glicose contém aproximadamente 6,02 . 1023 moléculas de glicose; 1 mol de Na+ 
contém aproximadamente 6,02 . 1023 mols desse íon etc.
81
BASES ANALÍTICAS DO LABORATÓRIO CLÍNICO
Contudo, por que utilizarum número de unidades tão grande para indicar a quantidade de 
partículas presentes em um sistema? A resposta é: porque os átomos e as moléculas são entidades 
extremamente diminutas, e é conveniente trabalhar com uma quantidade de partículas que seja 
suficientemente grande para ser manipulada, pesada etc. O número de partículas que corresponde 
a um mol foi escolhido pois a massa de um mol de substância corresponde a um valor que pode 
ser representado em gramas (g).
 Observação
Mol vem do latim mole, que significa “monte”, “amontoado”, “quantidade”.
Os átomos, as moléculas e os íons apresentam diferentes tamanhos e complexidade. Portanto 
esperamos que um mol de cada espécie química esteja relacionado com uma massa, em gramas, 
específica. Podemos fazer a seguinte analogia: uma dúzia de ovos de galinha pesa muito mais do que 
uma dúzia de ovos de codorna, afinal os ovos de galinha apresentam massa maior. Da mesma maneira, um 
mol de moléculas de sacarose (C12H22O11) apresenta massa, em gramas, maior do que um mol de moléculas 
de glicose (C6H12O6), pois a molécula de sacarose apresenta número maior de átomos de carbono (C), 
hidrogênio (H) e oxigênio (O) do que a molécula de glicose.
A massa atômica de um átomo é determinada pelo número de prótons e de nêutrons em seu núcleo, 
uma vez que os elétrons praticamente não possuem massa. A que corresponde a um mol de determinada 
espécie química é denominada massa molar, que é representada em gramas por mol (g/mol), ou seja, 
“quantos gramas apresenta um mol da substância”.
Cada espécie química apresenta sua massa molar, que varia conforme o número de partículas 
elementares (prótons e nêutrons) contidas no núcleo do(s) átomo(s) que constitui(em) a espécie química.
Saber o valor da massa molar de uma espécie química é fundamental, uma vez que não temos 
como contar as partículas de soluto uma a uma (seriam necessários equipamentos que permitissem a 
manipulação molécula a molécula e trilhões de anos de contagem ininterrupta para que conseguíssemos 
chegar a 602 sextilhões de partículas). Portanto, no laboratório, pesamos em balança analítica a massa 
correspondente ao número de mols que desejamos utilizar no experimento.
 Lembrete
A massa de um átomo (massa atômica) é determinada pelo número de 
prótons e de nêutrons em seu núcleo, uma vez que os elétrons praticamente 
não possuem massa.
Para sabermos qual é a massa molar de uma substância química, basta somar as massas atômicas de 
todos os átomos que constituem a espécie química e representar o valor numérico obtido em gramas. 
Assim, um mol de NaCl corresponde a 58,5 g, pois a massa atômica do elemento químico sódio (Na) é 
82
Unidade II
23 u.m.a. (unidades de massa atômica) e a massa atômica do elemento químico cloro (Cl) é 35,5 u.m.a. 
Uma vez que 23 + 35,5 = 58,5, a massa molar é 58,5 g/mol.
De maneira semelhante, um mol de glicose (C6H12O6) corresponde a 180 g, pois:
• A massa atômica do elemento químico carbono (C) é 12 u.m.a. e existem 6 átomos de carbono na 
molécula de glicose (C6). Logo, 12 . 6 = 72 u.m.a.
• A massa atômica do elemento químico hidrogênio (H) é 1 u.m.a. e existem 12 átomos de hidrogênio 
na molécula de glicose (H12). Logo, 1 . 12 = 12 u.m.a.
• A massa atômica do elemento químico oxigênio (O) é 16 u.m.a. e existem 6 átomos de oxigênio 
na molécula de glicose (O6). Logo, 16 . 6 = 96 u.m.a.
Somando-se os valores obtidos, temos que a massa molecular da glicose é de 72 + 12 + 96 = 180 u.m.a. 
e, portanto, a massa molar da glicose é de 180 g/mol.
 Saiba mais
A massa atômica (número de massa ou A) é à somatória dos prótons e dos 
nêutrons de um elemento químico e consta da tabela periódica. Consulte-a 
e identifique esse parâmetro. A tabela periódica pode ser consultada em:
INTERNATIONAL UNION OF PURE AND APPLIED CHEMISTRY (IUPAC). 
Periodic table of elements. EUA, 2018. Disponível em: <https://iupac.org/
what-we-do/periodic-table-of-elements/>. Acesso em: 11 mar. 2019.
Dizer que a massa molar da glicose é de 180 g/mol significa que 180 g de glicose contêm 
aproximadamente 6,02 . 1023 moléculas de glicose (um mol).
Afinal, qual é a importância de expressarmos a concentração de uma solução em mol/L? A 
concentração molar é muito utilizada, pois expressar o número de partículas de soluto presentes em 
uma solução simplifica muito os cálculos relativos às futuras reações químicas que porventura o soluto 
venha a participar.
Fazendo uma analogia, imagine que você precisa preparar um bolo de banana, e a receita pede 
que seja utilizada uma dúzia de ovos para cada duas dúzias de banana. Se você pretende preparar essa 
receita, a proporção entre ovos e banana será de 1:2 (um para dois):
1 dúzia de ovos ----------------------- 2 dúzias de banana (uma receita)
83
BASES ANALÍTICAS DO LABORATÓRIO CLÍNICO
Da mesma maneira, imagine que você precisa preparar duas soluções, a primeira com o soluto A, e 
a segunda com o soluto B, na proporção de 1:2. Isso significa que, para cada mol de A, são necessários 
2 mols de B:
1 mol de A ----------------------- 2 mols de B
Assim, a maneira mais prática de se misturar A e B mantendo-se a proporção indicada, seria preparar 
uma solução de A a 1 mol/L e uma solução de B a 2 mol/L e misturar volumes iguais das duas soluções.
Caso tanto a solução de A quanto a de B tenham a concentração de 1 mol/L, será necessário misturar 
uma parte de solução de A para duas partes de solução de B a fim de se alcançar a proporção de 1:2.
A relação entre o número de mols e a massa da amostra é dada por:
m
n
MM
=
Onde:
n = número de mols
m = massa da substância (g)
MM = massa molar da substância (g/mol)
Exemplo de aplicação
Imagine que você precisa preparar uma solução utilizando 0,5 mol de hidróxido de sódio (NaOH). 
Sabendo que a massa molar do NaOH é 40 g/mol, qual é a massa de NaOH que contém 0,5 mol desse sal?
Os dados fornecidos no exercício são:
n = 0,5 mol
MM = 40 g/mol
m = x g → é o que devemos calcular
Resolução
O exercício pode ser resolvido utilizando regra de três:
40 g NaOH ----------------------- 1 mol (afinal, a massa molar é 40 g/mol)
x g NaOH ------------------------ 0,5 mol
84
Unidade II
Assim,
40 . 0,5 = 1 . x
x = 40 . 0,5
x = 20 g
Portanto, se 1 mol de NaOH tem massa de 40 g, 0,5 mol de NaOH tem massa de 20 g.
Podemos também utilizar a fórmula apresentada anteriormente:
m
n
MM
=
m
0,5
40
=
m
0,5
40
=
m = 40 . 0,5
m = 20 g
5.3.2.2 Cálculo da molaridade
Uma vez apresentado o conceito de mol, fica fácil de entender o que significa dizer que “a molaridade 
de uma solução é 1 mol/L”: significa que cada litro de solução contém um mol de soluto.
Dessa maneira, temos que:
n
M
V
=
Onde:
M = molaridade, em mol/L
n = número de mols
V = volume da solução, em L
85
BASES ANALÍTICAS DO LABORATÓRIO CLÍNICO
 Observação
Para se calcular a molaridade, o volume da solução sempre deve ser 
expresso em litros (L).
De acordo com o Sistema Internacional de Unidades, a molaridade é expressa em mol/L, no entanto, 
a nomenclatura antiga, na qual uma solução 1 mol/L era denominada 1 M (lê-se “um molar”), ainda é 
utilizada por alguns pesquisadores. Portanto lembre-se de que:
1 mol/L = 1 M = 1 molar
Exemplo de aplicação
Você misturou 0,5 mol de glicose em água, até perfazer 250 mL de solução. Qual é a molaridade 
dessa solução?
Os dados fornecidos no exercício são:
n = 0,5 mol
V = 250 mL
Resolução
Conforme discutido anteriormente, o volume precisa ser expresso em L. Portanto, levando-se em 
consideração que 1 L = 1.000 mL, temos que:
1 L ----------------------- 1.000 mL
x L ----------------------- 250 mL
1000 . x = 250
250
x
1000
=
x = 0,25 L
Aplicando-se regra de três para calcular o número de mols, temos que:
0,5 mol ----------------------- 0,25 L
x mol ------------------------ 1 L
86
Unidade II
0,25 . x = 0,5
0,5
x
0,25
=
x = 2 mols
Portanto a molaridade da solução é de 2 mol/L.
Aplicando-se os dados na fórmula, chegamos ao mesmo resultado:
n
M
V
=
0,5
M
0,25
=
M =2 mol/L
O exemplo torna a compreensão do conceito de molaridade mais fácil, porém não reflete os 
procedimentos laboratoriais que são necessários para se preparar uma solução. Afinal, conforme 
discutido anteriormente, a única maneira de se isolar determinada quantidade de mols de soluto para 
se preparar uma solução é, de sua posse, pesar a massa correspondente à quantidade de mols que se 
deseja utilizar.
Assim, no cálculo da concentração molar, usualmente as duas fórmulas apresentadas anteriormente 
são utilizadas de maneira sequencial, a fim de se relacionar o número de mols de soluto com a massa 
molar, utiliza-se a igualdade (1):
m
n
MM
=
Para realizar o cálculo da concentração molar, utiliza-se a igualdade (2):
n
M
V
=
Essas duas fórmulas podem ser fundidas em uma única igualdade, o que facilita enormemente os 
cálculos de molaridade. Podemos substituir a incógnita “n”, na igualdade (2), pela igualdade (1):
87
BASES ANALÍTICAS DO LABORATÓRIO CLÍNICO
m
MMM
V
=
Rearranjando-se as incógnitas, temos que:
( )
m
M
MM . V
=
Exemplo de aplicação
Qual é a molaridade de uma solução preparada utilizando-se 360 g de glicose em água suficiente 
para se obter 4 L de solução? A massa molar da glicose é 180 g/mol.
Os dados fornecidos no exercício são:
m = 360 g
V = 4 L
MM = 180 g/mol
M = x mol/L → é o que devemos calcular
Resolução
Existem três maneiras de se resolver esse exercício: (1) utilizando-se regra de três; (2) utilizando-se 
a fórmula que permite o cálculo do número de mols e, em seguida, a fórmula da molaridade; ou (3) 
utilizando-se a fórmula integrada.
1) Cálculo da molaridade por regra de três:
Primeiramente, temos que calcular o número de mols contidos em 360 g do soluto:
180 g ----------------------- 1 mol (afinal, a MM é 180 g/mol)
360 g ----------------------- x mol
180 . x = 360 . 1
360
x
180
=
x = 2 mols
88
Unidade II
Portanto 360 g correspondem a 2 mols de glicose.
De posse do número de mols da amostra, calcula-se a molaridade:
2 mols ----------------------- 4 L
x mol ------------------------ 1 L
2 . 1 = 4 . x
4 . x = 2
2
x
4
=
x = 0,5 mol
Portanto a concentração de glicose na solução é de 0,5 mol/L.
2) Cálculo da molaridade utilizando-se as duas fórmulas:
Primeiramente, temos que calcular o número de mols contidos em 360 g do soluto:
m
n
MM
=
360
n
180
=
x = 2 mols
De posse do número de mols da amostra, calcula-se a molaridade:
n
M
V
=
2
M
4
=
M = 0,5 mol/L
89
BASES ANALÍTICAS DO LABORATÓRIO CLÍNICO
3) Cálculo da molaridade utilizando-se a fórmula integrada:
( )
m
M
MM . V
=
( )
360
M
180 . 4
=
360
M
720
=
M = 0,5 mol/L
A partir de agora, devido à facilidade de utilização, iremos resolver os exercícios sempre utilizando 
a fórmula integrada.
Conforme já discutido anteriormente, a situação mais comum no laboratório envolve o cálculo da 
massa de soluto necessária para se preparar determinado volume de solução cuja concentração já é 
conhecida, ou então o cálculo do volume de solução que pode ser preparada a partir de determinada 
massa de soluto. Vamos acompanhar os exemplos a seguir.
Exemplo de aplicação
1) Cálculo da massa de soluto necessária para se preparar determinado volume de solução de 
concentração conhecida.
Para preparar 50 mL de solução de NaOH a 2,5 mol/L, qual é a massa necessária de soluto? A massa 
molar do NaOH é 40 g/mol.
Os dados fornecidos no exercício são:
V = 50 mL
M = 2,5 mol/L
MM = 40 g/mol
m = x g → é o que devemos calcular
90
Unidade II
Resolução
Para o cálculo da molaridade, o volume sempre deve estar indicado em litros. Portanto é necessário 
realizar a conversão:
1 L ----------------------- 1.000 mL
x L ----------------------- 50 mL
100 . x = 1 . 50
50
x
1000
=
x = 0,05 L
Aplicando-se os valores na fórmula da molaridade, temos que:
( )
m
M
MM . V
=
( )
m
2,5
40 . 0,05
=
m
2,5
2
=
m = 2,5 . 2
m = 5 g
Portanto 5 g de NaOH são necessários para se preparar 50 mL de solução a 2,5 mol/L.
2) Cálculo do volume de solução possível de ser preparada a partir de determinada massa de soluto.
Imagine que você precisa preparar a solução de NaOH 2,5 mol/L, mas dispõe de apenas 1 g de 
soluto. Qual é o volume de solução possível de ser preparado? Lembre-se de que a massa molar do 
NaOH é 40 g/mol.
Os dados fornecidos no exercício são:
M = 2,5 mol/L
91
BASES ANALÍTICAS DO LABORATÓRIO CLÍNICO
m = 1 g
MM = 40 g/mol
V = x L → é o que devemos calcular
Resolução
Substituindo-se os valores na fórmula, temos que:
( )
m
M
MM . V
=
( )
1
2,5
40 . V
=
2,5(40 . V) = 1
2,5 . 40 . V = 1
100 . V = 1
1
V
100
=
V = 0,01 L
Portanto 0,01 L (10 mL) de solução de NaOH a 2,5 mol/L podem ser preparados a partir de 1 g do soluto.
Assim como as unidades de massa e de volume apresentam subdivisões (exemplo: L, mL, µL etc.), o 
mesmo acontece com a molaridade.
• 1 mol = 1.000 mmol (milimol).
• 1 mmol = 1.000 µmol (micromol).
Portanto pode-se estabelecer a seguinte relação:
• 1 mol/L = 1.000 mmol/L (milimol por litro) = 1.000 mM (milimolar).
• 1 mmol/L = 1.000 µmol/L (micromol por litro) = 1.000 µM (micromolar).
92
Unidade II
Soluções de concentração milimolar e micromolar são muito utilizadas nos ensaios de biologia 
molecular e de bioquímica.
Para calcularmos a concentração de uma solução em mmol/L, devemos converter a massa para mg 
e, para calcularmos a concentração em µmol/L, a massa do soluto deve estar em µg. Em ambos os casos, 
o volume continua sendo expresso em L.
De maneira alternativa, podemos calcular a concentração em mol/L e procedermos com a conversão 
após o cálculo, obedecendo-se a proporção descrita.
Exemplo de aplicação
Você precisa preparar 100 mL de uma solução a 5 mmol/L. Qual é a massa de soluto que deve ser 
utilizada na dissolução, considerando-se que sua massa molar é de 100 g/mol?
Os dados fornecidos no exercício são:
V = 100 mL
M = 5 mmol/L
MM = 100 g/mol
m = x mg → é o que devemos calcular
Resolução
No cálculo da molaridade, o volume sempre precisa estar em L. Portanto, efetuando-se a conversão, 
temos que:
1 L ----------------------- 1.000 mL
x L ----------------------- 100 mL
1000 . x = 1 . 100
100
x
1000
=
x = 0,1 L
Substituindo-se os valores na fórmula da molaridade, temos que:
( )
m
M
MM . V
=
93
BASES ANALÍTICAS DO LABORATÓRIO CLÍNICO
( )
m
5
100 . 0,1
=
m
5
10
=
5 . 10 = m
m = 50 mg
Note que, como a molaridade foi indicada em mmol/L, a massa resultante é obtida em mg.
Uma outra maneira de se calcular a molaridade é a partir da concentração simples, em g/L. Observe 
a dedução a seguir.
Considerando:
m
C
V
=
E
( )
m
M
MM . V
=
Podemos substituir o quociente entre a massa e o volume, presente na segunda igualdade, pela 
fórmula da concentração simples, obtendo-se:
C
M
MM
=
Onde:
M = molaridade, em mol/L
C = concentração simples, em g/L
MM = massa molar, em g/mol
94
Unidade II
Exemplo de aplicação
Qual é a molaridade de uma solução de cloreto de cálcio (CaCl2) de concentração 10 g/L? (A massa 
molar do CaCl2 é 111 g/mol.)
Os dados fornecidos no exercício são:
C = 10 g/L
MM = 111 g/mol
M = x mol/L → é o que devemos calcular
Resolução
Substituindo-se os valores na fórmula, temos que:
C
M
MM
=
10
M
111
=
M = 0,09 mol/L
Lembre-se de que a concentração deve ser expressa em g/L para se proceder com o cálculo.
5.3.3 Concentração molal ou molalidade
Se a molaridade da solução expressa o número de mols do soluto em um litro de solução, a molalidade (W), 
por sua vez, expressa o número de mols de soluto em um quilograma (kg) de solvente. Portanto:
n
W
m'
=
Onde:
W = molalidade (mol/kg)
n = número de mols do soluto
m’ = massa do solvente (kg)
95
BASES ANALÍTICAS DO LABORATÓRIO CLÍNICO
Pode-se ainda utilizar a fórmula alternativa a seguir, que relaciona a molalidade com a massa do 
soluto e a massa do solvente, ambas em gramas (g):
( )
1000 . m
W
MM . m'
=
Onde:
W = molalidade (mol/kg)
m = massa do soluto (g)
MM = massa molar do soluto (g/mol)
m’ = massado solvente (g)
 Observação
Ao contrário dos outros modos de se expressar a concentração, a 
molalidade relaciona a quantidade de soluto com a massa do solvente, 
apenas, e não da solução.
A molalidade é utilizada no estudo das propriedades coligativas, que serão estudadas a seguir. 
Esse estudo envolve o aquecimento e o resfriamento das amostras para demonstrar de que maneira 
a presença de soluto altera as temperaturas de ebulição e de solidificação do solvente. Como já 
sabemos, o volume de uma amostra sofre expansão quando é aquecida, e retração quando é resfriada. 
Tal variação de volume tornaria inviável o estudo quantitativo dessas alterações. Ao representar a 
quantidade de solvente em massa, não há variação, uma vez que a massa não é alterada em resposta 
à alteração de temperatura.
Exemplo de aplicação
Para realizar um estudo de ebuliometria, uma solução foi preparada utilizando-se 500 g de água e 
11,7 g de NaCl (massa molar = 58,5 g/mol). Qual é a molalidade da solução?
Os dados fornecidos no exercício são:
m’ = 500 g
m = 11,7 g
MM = 58,5 g/mol
96
Unidade II
W = x mol/kg → é o que devemos calcular
Resolução
Substituindo-se os valores na fórmula, temos que:
( )
1000 . m
W
MM . m'
=
( )
1000 .11,7
W
58,5 . 500
=
11700
W
29250
=
W = 0,4 mol/kg
Portanto cada quilograma de solvente apresenta 0,4 mol de NaCl dissolvido.
5.3.4 Título em massa e título em volume
Título em massa é o quociente entre a massa do soluto e a massa total da solução.
( ) ( )
m1
 m / m
m1 m2
τ =
+
Onde:
τ(m/m) = título em massa (relação entre a massa do soluto e a massa da solução)
m1 = massa do soluto
m2 = massa do solvente
m1 + m2 = massa da solução
Seguindo o mesmo raciocínio, o título em volume é quociente entre o volume do soluto e o volume 
total da solução.
97
BASES ANALÍTICAS DO LABORATÓRIO CLÍNICO
( ) ( )
v1
 v / v
v1 v2
τ =
+
Onde:
τ(v/v) = título em volume (relação entre o volume do soluto e o volume da solução)
v1 = volume do soluto
v2 = volume do solvente
v1 + v2 = volume da solução
Note que, em ambos os casos, deseja-se determinar a proporção de soluto na solução, seja em 
massa, seja em volume. É possível também calcular a proporção da massa de soluto em relação ao 
volume total da solução:
( ) m1 m / v
V
τ =
τ(m/v) = título (m/v)
m1 = massa do soluto (em g)
V = volume da solução (em mL)
Geralmente, os valores dos títulos em massa e em volume são expressos como a porcentagem 
do total. Para se obter as porcentagens, basta multiplicar o resultado dos cálculos por 100. Assim, 
considerando-se τ(m/m) = 0,4, temos que τ% = 4 . 100 = 40%(m/m).
O uso dos indexadores (m/m), (v/v) e (m/v) é obrigatório, pois indica que grandezas estão sendo 
comparadas. Por exemplo, uma solução 40% (m/m) de etanol em água contém 40 g de etanol em 100 g de 
solução, e não em 100 mL. Logo, o preparo dessa solução é feito adicionando-se 40 g de etanol puro a 
60 g de água pura, totalizando 100 g de solução. Quando não se especifica, assume-se que o indexador 
é m/m.
O título em massa e em volume são valores relativos e, como tal, não dependem das unidades 
de massa ou volume utilizadas, sempre que ambos, numerador e denominador, tenham as mesmas 
unidades. Para o cálculo de T% (m/v), assume-se a massa em g e o volume, em mL.
98
Unidade II
Exemplo de aplicação
Preciso preparar 200 mL de uma solução a 20% (m/v) de fenol em clorofórmio. Como devo proceder?
Os dados fornecidos no exercício são:
τ%(m/v) = 20%
(v1 + v2) = 200 mL
m1 = x g → é o que devemos calcular
Os exercícios de título em massa e volume são mais facilmente entendidos se resolvidos utilizando 
regra de três. Assim:
20 g fenol ------------------ 100 mL solução (pois a proporção é de 20% ou 20 em 100)
x g ----------------------- 200 mL
100 . x = 20 . 200
100 . x = 4000
4000
x
100
=
x = 40 g
Portanto são necessários 40 g de fenol para se preparar 200 mL de uma solução a 20% (m/v) de fenol 
em clorofórmio.
Substituindo os valores na fórmula, chegamos ao mesmo resultado:
( ) m1% m / v .100
V
τ =
Lembre-se de que, para obter o valor em porcentagem do volume total, deve-se multiplicar o 
resultado por 100.
m1
20 .100
200
=
m1.100
20 
200
=
99
BASES ANALÍTICAS DO LABORATÓRIO CLÍNICO
20 = 0,5m1
20
m1
0,5
=
m1 = 40 g
Esse tipo de concentração é muito utilizado no preparo de soluções de uso hospitalar, pois facilita 
os procedimentos de diluição que são realizados antes de se aplicar as soluções e as medicações aos 
pacientes. Um exemplo é a solução salina fisiológica, ou soro fisiológico, constituído de NaCl 0,9% (m/v). 
A solução fisiológica é isotônica em relação aos líquidos corporais e, portanto, é utilizada para repor 
líquidos em pacientes desidratados, como veículo para a administração de medicamentos etc. Também 
é muito utilizado na experimentação e na rotina laboratorial.
Exemplo de aplicação
Você precisa preparar 2 litros de solução fisiológica (NaCl 0,9% m/v). Qual é a massa de NaCl e de 
água que devem ser utilizados?
Os dados fornecidos no exercício são:
τ%(m/v) = 0,9%
V = 2 L
m1 = 0,9% → é o que devemos calcular
Resolução
No título m/v, o volume é expresso em mL, portanto é necessário realizar a conversão das unidades:
1 L ----------------------- 1.000 mL
2 L ----------------------- x mL
1 . x = 2 . 1000
x = 2000 mL
Vamos agora resolver o exercício utilizando regra de três:
0,9 g NaCl ----------------------- 100 mL (ou 0,9%)
x g ---------------------------- 2.000 mL
100
Unidade II
100 . x = 0,9 . 200
100 . x = 1800
1800
x
100
=
x = 18 g
Portanto são necessários 18 g de NaCl para se preparar 2 L de soro fisiológico.
Substituindo-se os valores na fórmula, chegamos ao mesmo resultado:
( ) m1% m / v .100
V
τ =
m1
0,9 .100
2000
=
m1.100
0,9 
2000
=
0,9 . 2000
m1
100
=
m1 = 18 g
5.3.5 Partes por milhão (ppm)
Os poluentes presentes no meio ambiente e as substâncias tóxicas muitas vezes encontram-se muito 
diluídos no meio que as contém, e mesmo assim podem impactar o ambiente. A concentração dessas 
substâncias costuma ser expressa em partes por milhão (ppm).
Uma parte por milhão significa que existe uma de soluto para cada um milhão de partes de solvente. 
Por exemplo, dizer que a concentração de monóxido de carbono (CO) em uma amostra de ar atmosférico 
é de 1 ppm significa dizer que existe uma parte de CO, em massa, em cada 1.000.000 partes de ar 
atmosférico. Portanto existe 1 g de CO em cada 1.000.000 g de ar atmosférico.
Como 1.000.000 g é igual a 1 t (uma tonelada), podemos concluir que:
• 1 ppm de CO corresponde a 1 g de CO em 1 t de ar atmosférico.
101
BASES ANALÍTICAS DO LABORATÓRIO CLÍNICO
É comum se relacionar a massa de soluto em µg (microgramas) com a massa da amostra em g, uma 
vez que, no laboratório, não se trabalha com massas tão grandes como a tonelada.
Como 1 µg corresponde a 1/1.000.000 g ou 10−6 g, temos que 1 ppm corresponde a 1 µg de soluto 
em cada 1.000.000 µg de solvente.
Uma vez que que 1.000.000 µg é igual a 1 g, chegamos à seguinte conclusão:
• 1 ppm corresponde a 1 µg de soluto em 1 g de solução, ou ainda;
• 1 ppm corresponde a 1 g de soluto em 1 t de solução.
Exemplo de aplicação
Determinada substância tóxica é solúvel em água e letal para alguns organismos aquáticos em 
concentrações acima de 10 ppm. Em um rio, determinou-se que existem 5 µg dessa substância em cada 
grama de água analisada. Essa substância encontra-se acima ou abaixo da concentração letal?
Os dados fornecidos no exercício são:
Massa do soluto = 5 µg
Massa do solvente = 1 g (5 µg de substância em cada grama de água analisada)
Limite de concentração = 10 ppm
Resolução
De acordo com os dados fornecidos, temos que:
10 ppm = 10 µg de soluto ----------------------- 1 g de água
Porém, na amostra experimental, foram encontrados:
5 µg de soluto ----------------------- 1 g de água
Portanto a concentração do soluto na amostra de água é de 5 ppm, valor abaixo do limite, que é de 
10 ppm.
5.4 Diluição de soluções
Na práticalaboratorial, é muito frequente o preparo de soluções estoque, que são soluções mais 
concentradas do que aquelas que necessitam utilizar nos protocolos experimentais. Nesses casos, é 
necessário diluir a solução no momento do uso, a fim de se atingir a concentração desejada.
102
Unidade II
A diluição nada mais é do que a adição de mais solvente à solução, o que diminui a concentração 
do solvente na solução final.
Existem muitas vantagens no preparo de soluções estoque na rotina laboratorial. Entre elas, destacam-se:
• A possibilidade de obter soluções diluídas de diferentes concentrações, bastando adicionar um 
volume diferente de solvente (exemplo: se tenho uma solução estoque a 5 mol/L de NaCl, posso 
preparar soluções diluídas de qualquer concentração que seja inferior a 5 mol/L; quanto maior o 
volume de soluto adicionado, menor será a concentração da solução obtida).
• É possível preparar pequenos volumes de solução estoque e, mesmo assim, obter um ótimo 
rendimento (exemplo: 10 litros de solução a 0,5 mol/L podem ser preparados a partir de um único 
litro de solução estoque a 5 mol/L). O armazenamento de volumes menores de solução otimiza o 
uso do espaço do laboratório.
• As soluções estoque geralmente apresentam uma durabilidade maior do que as soluções diluídas, 
uma vez que a alta concentração de soluto é capaz de inibir o crescimento de bactérias e fungos.
5.4.1 Diluição única
Imagine a seguinte situação: você precisa preparar 0,3 L de solução de ácido sulfúrico a 3 mol/L a 
partir de um estoque a 10 mol/L. Para se realizar essa diluição, será necessária a adição de determinada 
quantidade de estoque a determinada quantidade de água, a fim de se obter a solução diluída no volume 
final de 0,3 L. Mas como calcular qual é a proporção de solução estoque e de água necessárias para se 
realizar a diluição?
As grandezas concentração e volume da solução são inversamente proporcionais. Isso significa que, 
quanto mais água adicionarmos à solução, menor será sua concentração. Portanto, se dobrarmos o volume 
da solução, sua concentração reduz-se pela metade; se triplicarmos seu volume, a concentração reduz-se a 
um terço da concentração original, e assim sucessivamente. Logo, podemos estabelecer a seguinte relação:
C1 ----------------------- V1
C2 ----------------------- V2
Na representação anterior, temos o que segue:
C1: a concentração inicial da solução estoque.
C2: a concentração da solução após a diluição.
V1: o volume da solução estoque antes da diluição (ou seja, o volume de solução estoque a partir do 
qual a solução diluída será preparada).
V2: o volume da solução estoque após a diluição.
103
BASES ANALÍTICAS DO LABORATÓRIO CLÍNICO
O percurso das setas indica o maior e o menor valor dentro de cada categoria (ou seja, C2 é menor 
do que C1, e V1 é menor do que V2).
Uma vez que as grandezas concentração e volume são inversamente proporcionais, chegamos à 
equação a seguir. Observe que os dados foram rearranjados obedecendo ao sentido das setas.
C1 ----------------------- V2
C2 ----------------------- V1
Portanto:
C1 . V1 = C2 . V2
Ou seja, o produto da concentração inicial (C1) pelo volume inicial (V1) da solução (C1 . V1) é igual 
ao produto da concentração final (C2) pelo volume final (V2) da solução (C2 . V2).
Devemos certificar-nos de que, na aplicação da igualdade C1 . V1 = C2 . V2, as unidades utilizadas 
sejam compatíveis, ou seja, as duas concentrações, inicial e final, devem ser expressas na mesma unidade, 
o mesmo em relação aos volumes.
Exemplo de aplicação
Você precisa preparar 5 L de uma solução a 40 g/L de NaOH a partir de um estoque a 2 mol/L desse 
soluto. Qual é o volume de solução estoque e de água que devem ser utilizados? A massa molar do NaOH 
é 40 g/mol.
Os dados fornecidos no exercício são:
1) Dados referentes à solução diluída:
V2 = 5 L
C2 = 4 g/L
2) Dados referentes à solução concentrada (estoque):
V1 = x L . é o que devemos calcular
C1 = 2 mol/L
3) Outros dados:
MM = 40 g/mol
104
Unidade II
Resolução
Conforme comentado anteriormente, as unidades de concentração inicial e final precisam ser 
compatíveis, portanto vamos converter a concentração C2 de g/L para mol/L:
C
M
MM
=
(A relação entre a molaridade e a concentração em g/L foi explicada inicialmente neste livro-texto.)
4
M
40
=
M = 0,1 mol/L
Portanto a concentração de 4 g/L de NaOH corresponde à molaridade de 0,1 mol/L.
Substituindo-se os valores na fórmula da diluição, temos que:
C1 . V1 = C2 . V2
2 . V1 = 0,1 . 5
2 . V1 = 0,5
0,5
V1
2
=
V1 = 0,25 L
Portanto o volume de solução estoque utilizada na diluição é de 0,25 L. A esse volume, adiciona-se 
água até o volume final de 5 L. O volume de água a ser adicionado será de 5 L − 0,25 L = 4,75 L.
5.4.2 Diluição seriada
A diluição seriada é realizada quando se pretende preparar diluições de concentração decrescente 
a partir de uma solução estoque, sendo que todas as soluções foram diluídas a partir de um fator de 
diluição. O objetivo desse tipo de diluição é ir diminuindo progressivamente a quantidade de soluto 
(amostra) em relação ao diluente.
 Observação
O fator de diluição é um parâmetro que indica quantas vezes cada 
solução deve ser diluída para se obter a próxima.
105
BASES ANALÍTICAS DO LABORATÓRIO CLÍNICO
Na diluição seriada, um mesmo fator é aplicado a todas as diluições na série, e a amostra da anterior 
é usada para fazer a diluição subsequente.
Imagine que você tem uma solução, de concentração 5 mol/L e precisa obter cinco soluções diluídas 
de maneira seriada a partir desta, obedecendo-se ao fator de diluição 10. Isso significa que cada solução 
será dez vezes mais diluída do que a anterior, conforme representado a seguir:
Tabela 1 
Estoque Diluição 1 Diluição 2 Diluição 3 Diluição 4 Diluição 5
5 mol/L 5 . 10−1 mol/L 5 . 10−2 mol/L 5 . 10−3 mol/L 5 . 10−4 mol/L 5 . 10−5 mol/L
No quadro, a primeira diluição irá originar uma solução dez vezes mais diluída (0,5 mol/L ou 
5 . 10−1 mol/L), a diluição 2 irá originar uma solução dez vezes mais diluída do que a primeira 
diluição (0,05 mol/L ou 5 . 10−2 mol/L) e assim sucessivamente. Portanto, se a diluição 1 é dez vezes 
mais diluída que o estoque, a diluição 2 é cem vezes mais diluída (aplicou-se o fator de diluição 
duas vezes); a diluição 3, mil vezes mais diluída (aplicou-se o fator de diluição três vezes); e assim 
sucessivamente. Então podemos representar as diluições da seguinte maneira:
Tabela 2 
Estoque Diluição 1 Diluição 2 Diluição 3 Diluição 4 Diluição 5
5 mol/L 5 . 10−1 mol/L 5 . 10−2 mol/L 5 . 10−3 mol/L 5 . 10−4 mol/L 5 . 10−5 mol/L
1 1:10 1:100 1:1.000 1:10.000 1:100.000
Na diluição 1:10, por exemplo, entende-se que a uma parte de solução estoque adicionou-se nove 
partes de solvente. Na diluição 1:100, adiciona-se uma parte da solução 1:10 a nove partes de solvente, 
e assim sucessivamente, conforme indicado na figura a seguir.
1:10 1:100 1:1000
9 mL
H2O H2O H2O
9 mL
1 mL1 mL
1 mL
Solução 
estoque
9 mL
Figura 41 – Diluição seriada de fator 10
106
Unidade II
Para se realizar a diluição seriada, deve-se, em primeiro lugar, determinar qual é o volume final 
de cada diluição que se deseja preparar. Depois, determinar qual é a proporção entre a solução mais 
concentrada e o solvente em cada tubo e proceder com as pipetagens seriadas.
Exemplo de aplicação
Um experimentador precisa preparar uma diluição seriada com quatro pontos de diluição, a partir de 
uma solução aquosa estoque a 100 g/L e fator de diluição 2. O volume que se deseja preparar de cada 
solução é de, no mínimo, 10 mL. Explique como deve ser feita essa diluição.
Os dados fornecidos no exercício são:
4 pontos de diluição, ou seja, 4 soluções diluídas a partir do estoque
Solução estoque: 100 g/L
Fator de diluição: 2
Volume das soluções diluídas: 10 mL, no mínimo
Resolução
Aplicando-se o fator de diluição fornecido a cada concentração, teremos:
Tubo 1: 100/2 = 50 g/L
Tubo 2: 50/2 = 25 g/L
Tubo 3: 25/2 = 12,5 g/L
Tubo 4: 12,5/2= 6,25 g/L
Se precisamos de 10 mL de cada solução, deve-se adicionar 10 mL de água em cada tubo. 
Em seguida, adiciona-se 10 mL da solução estoque no tubo 1. Após agitação, adiciona-se 10 mL da 
solução do tubo 1 no tubo 2, e assim sucessivamente.
A diluição seriada é muito utilizada nos estudos com fármacos, pois permite avaliar se os efeitos 
decorrentes da administração de uma substância farmacologicamente ativa são dependentes de sua 
concentração. Além disso, é utilizada na contagem de bactérias em amostras que apresentam grande 
número desses microrganismos.
107
BASES ANALÍTICAS DO LABORATÓRIO CLÍNICO
5.5 Mistura de soluções
Nas rotinas laboratoriais, é comum termos que misturar duas ou mais soluções. Em geral, as 
soluções misturadas apresentam o mesmo solvente e solutos diferentes, que podem ou não reagir 
entre si. No entanto, em algumas situações, duas soluções de um mesmo soluto, com concentrações 
diferentes, são misturadas.
Na disciplina de Bases Analíticas do Laboratório Clínico, iremos estudar as misturas de soluções cujos 
solutos não reagem entre si, uma vez que as reações químicas serão estudadas durante o curso.
5.5.1 Mistura de soluções de um mesmo soluto
Quando duas soluções de um mesmo soluto são misturadas, a concentração final é a média 
ponderada das concentrações iniciais. Nesse tipo de mistura, a concentração final sempre terá um valor 
intermediário em relação às concentrações das soluções originais.
 Observação
Todas as unidades de concentração, assim como todas as unidades de 
volume, precisam ser compatíveis entre si.
O cálculo da média aritmética ponderada é similar ao da comum (na qual os valores são 
somados e, logo em seguida, divididos pelo número de observações), com a diferença que, na 
média ponderada, leva-se em conta o “peso” ou a contribuição de cada termo. No caso da mistura 
de soluções de um mesmo soluto, o “peso” refere-se ao volume de cada solução: ao se misturar 
100 mL da solução A a 200 mL da solução B, o peso ou contribuição da solução B é maior, pois o 
volume de B adicionado é maior.
Portanto, para calcular a concentração final da solução obtida após mistura de soluções do mesmo 
soluto, denominadas A e B, utilizamos a seguinte fórmula:
CA . VA CB . VB
C
VA VB
+
=
+
Onde:
C = concentração final
CA = concentração da solução A
VA = volume da solução A
108
Unidade II
CB = concentração da solução B
VB = volume da solução B
Exemplo de aplicação
Misturou-se 500 mL de solução de HCl 1 mol/L a 200 mL de solução desse mesmo soluto a 0,5 mol/L. 
Qual é a concentração final da solução obtida?
Os dados fornecidos no exercício são:
1) Dados referentes à solução de HCl 1 mol/L:
CA = 1 mol/L
VA = 500 mL
2) Dados referentes à solução de HCl 0,5 mol/L:
CB = 0,5 mol/L
VB = 200 mL
3) Dado referente à solução final:
C = x mol/L → é o que devemos calcular
Resolução
Aplicando-se a fórmula, temos que:
( ) ( )
( )
CA . VA CB . VB
C
VA VB
+
=
+
( ) ( )
( )
1. 500 0,5 . 200
C
500 200
+
=
+
500 100
C
700
+
=
109
BASES ANALÍTICAS DO LABORATÓRIO CLÍNICO
600
C
700
=
C = 0,86 mol/L
Portanto a concentração final da solução de HCl após a mistura será de 0,86 mol/L.
5.5.2 Mistura de soluções de solutos diferentes que não reagem entre si
Quando as soluções A e B, a serem misturadas, foram preparadas com solutos diferentes, as 
concentrações de cada um dos solutos, após a mistura, são calculadas separadamente, levando-se em 
conta o volume final da solução (VA + VB). Na prática, considera-se que cada uma das soluções sofreu 
uma diluição, partindo de seu volume inicial e atingindo o volume da mistura.
A fórmula que deve ser aplicada, nesses casos, é a seguinte:
• Para a solução A:
( )
( )
CA . VA
C 'A
VA VB
=
+
Onde:
C’A = concentração final do soluto A
VA = volume da solução A usada na mistura
CA = concentração inicial da solução A
VB = volume da solução B usado na mistura
• Para a solução B:
( )
( )
CB . VB
C 'B
VA VB
=
+
Onde:
C’B = concentração final do soluto B
VB = volume da solução B usada na mistura
110
Unidade II
CB = concentração inicial da solução B
VA = volume da solução A usado na mistura
Exemplo de aplicação
Quais as concentrações finais de glicose e de sacarose em uma solução preparada misturando-se 
10 mL de solução de glicose e 10 g/L a 40 mL de solução de sacarose 20 g/L?
Os dados fornecidos no enunciado do exercício são:
1) Solução de glicose:
CA = 10 g/L
VA = 10 mL
C’A = x g/L → é o que devemos calcular
2) Solução de sacarose:
CB = 20 g/L
VB = 40 mL
C’B = x g/L → é o que devemos calcular
Resolução
Em relação à glicose, temos que:
( )
( )
CA . VA
C 'A
VA VB
=
+
( )
( )
10 .10
C 'A
10 40
=
+
100
C 'A
50
=
C’A = 2 g/L
111
BASES ANALÍTICAS DO LABORATÓRIO CLÍNICO
Portanto a concentração de glicose na nova solução será de 2 g/L.
Em relação à sacarose, temos que:
( )
( )
CB . VB
C 'B
VA VB
=
+
( )
( )
20 . 40
C 'B
10 40
=
+
800
C 'B
50
=
C’B = 16 g/L
Portanto a concentração de sacarose na nova solução será de 16 g/L.
6 PROPRIEDADES COLIGATIVAS DAS SOLUÇÕES
Conforme estudamos anteriormente, as substâncias puras apresentam propriedades físicas bem 
definidas, como, por exemplo, as temperaturas nas quais ocorrem as mudanças de estado.
É de se esperar que as propriedades do solvente puro sejam diferentes das de uma solução 
preparada a partir dele, uma vez que a composição do sistema passa a ser diferente. Mas quais são 
essas propriedades?
Sabe-se que, com a adição do soluto:
• ocorre diminuição da pressão de vapor em relação à observada no solvente puro (efeito 
tonoscópico negativo);
• ocorre aumento da temperatura de ebulição em relação à observada no solvente puro (efeito 
ebulioscópico positivo);
• ocorre diminuição da temperatura de congelamento em relação à observada no solvente puro 
(efeito crioscópico negativo);
• ocorre aumento da pressão osmótica da solução.
As propriedades coligativas dependem do número de partículas de soluto (moléculas ou íons) 
presentes em uma solução, mas não da massa molar ou do tamanho das partículas, ou seja, podemos 
112
Unidade II
dizer que o aumento da temperatura de ebulição da água causada pela adição de 1 mol de soluto não 
iônico e não volátil é sempre o mesmo, independentemente da natureza do soluto adicionado.
Por outro lado, mesmo que as propriedades coligativas se apliquem a todos os solventes, a extensão 
das alterações da pressão de vapor, da temperatura de ebulição e da temperatura de congelamento 
dependem do solvente utilizado.
Essas alterações nos parâmetros físico-químicos das soluções ocorrem devido a alterações na entropia 
da solução quando se dissolve o soluto, alterações estas que dependem somente da concentração de 
suas partículas, mas não de sua estrutura química.
A entropia mensura o grau de irreversibilidade de um sistema, ou seja, a parcela da energia térmica 
que não pode mais ser convertida em trabalho à temperatura de equilíbrio. Em outras palavras, é a 
energia dissipada de um sistema após um processo.
 Lembrete
Entropia estuda a energia que não pode ser transformada em trabalho 
(energia dissipada). Não confunda com entalpia, que estuda a energia total 
de um sistema.
Embora, como comentado anteriormente, as propriedades coligativas se apliquem a todos os 
solventes, iremos focar o estudo dessas propriedades na água, uma vez que é o solvente mais utilizado.
Imagine uma amostra de água pura. Conforme já visto, as moléculas de água interagem entre si 
por meio de forças intermoleculares denominadas ligações (pontes) de hidrogênio, cuja incidência é 
inversamente proporcional ao grau de agitação das moléculas (energia cinética). Dizemos que as forças 
intermoleculares são um tipo de energia química que mantém as moléculas próximas umas das outras.
As mudanças de estado acontecem à medida que a proporção de interações intermoleculares e o 
grau de agitação das moléculas é alterado, pela adição ou retirada da energia térmica (calor) do sistema: 
a adiçãode calor a uma amostra de água líquida diminui a frequência de interações intermoleculares e 
aumenta o grau de agitação das moléculas, que, quando atinge o limiar (temperatura de ebulição), faz com 
que a amostra de água passe do estado líquido para o estado de vapor. A retirada de calor de uma amostra de 
água líquida tem o efeito oposto: ocorre aumento da frequência de interações intermoleculares e diminuição 
da energia cinética das partículas, que, quando atinge o limiar, faz com que a amostra sofra solidificação.
Com a adição de soluto, as moléculas de água passam agora a interagir não somente entre si, mas 
também com as partículas de soluto, afinal é essa interação entre soluto e solvente que caracteriza 
a dissolução. Portanto será necessária uma quantidade de energia térmica maior para desfazer não 
só as interações entre as moléculas de água, mas também as interações entre as moléculas de água 
e as partículas de soluto. Como consequência, haverá mais energia dissipada durante o processo, daí 
o aumento da entropia.
113
BASES ANALÍTICAS DO LABORATÓRIO CLÍNICO
Em outras palavras, o soluto “estabiliza” as moléculas de água, dificultando o processo de evaporação 
e as mudanças de estado.
6.1 Solutos moleculares e iônicos
Os solutos podem ou não dissociar, gerando íons, quando dissolvidos em água. Observe os 
exemplos a seguir:
• A molécula da glicose tem fórmula C6H12O6 e não gera íons quando em solução aquosa. Portanto, 
ao se adicionar 1 mol de moléculas de glicose em água, teremos um mol de partículas de soluto 
em solução:
C6H12O6 → C6H12O6
1 mol 1 mol
• O composto cloreto de sódio (NaCl), por sua vez, dissocia-se em íons Na+ e Cl− quando em contato 
com a água. Portanto, ao se adicionar 1 mol de NaCl em água, teremos 2 mols de partículas de 
soluto em solução (1 mol de Na+ e 1 mol de Cl−):
NaCl → Na+ + Cl−
1 mol 1 mol 1 mol
Portanto o efeito coligativo de um mol de NaCl é maior do que o efeito coligativo de um mol de 
glicose, afinal esses efeitos dependem do número de partículas em solução.
Exemplo de aplicação
Duas soluções (A e B) foram preparadas da seguinte maneira: a solução A foi preparada utilizando 
80 g de hidróxido de sódio (NaOH) em volume final de 1 L de solução, enquanto a solução B foi 
preparada utilizando 166,5 g de cloreto de cálcio (CaCl2) em 3 L de água. Qual das duas soluções 
apresentará a maior temperatura de ebulição, considerando-se a pressão do sistema constante e 
dissociações de 100%?
Dados:
Massa molar do NaOH = 40 g/mol
Massa molar do CaCl2 = 111 g/mol
Dissociação do NaOH em água: NaOH → Na+ + Cl−
Dissociação do CaCl2 em água: CaCl2 → Ca
2+ + 2 Cl−
114
Unidade II
Resolução
Em primeiro lugar, vamos calcular a molaridade das soluções A e B. Isso é necessário pois o 
aumento da temperatura de ebulição de uma solução depende do número de partículas do soluto, 
e essa correlação é dada pela molaridade. Para calcular as molaridades, vamos utilizar os seguintes 
dados, fornecidos no exercício:
1) Solução A:
m = 80 g
V = 1 L
MM = 40 g/mol
Substituindo os valores na fórmula da molaridade, temos que:
( )
m
M
MM . V
=
( )
80
M
40 .1
=
M = 2 mol/L
2) Solução B:
m = 166,5 g
V = 3 L
MM = 111 g/mol
Substituindo os valores na fórmula da molaridade, temos que:
( )
m
M
MM . V
=
( )
166,5
M
111. 3
=
M = 0,5 mol/L
115
BASES ANALÍTICAS DO LABORATÓRIO CLÍNICO
Portanto as soluções A e B tem molaridade de, respectivamente, 2 mol/L e 0,5 mol/L.
Para sabermos qual solução apresenta maior temperatura de ebulição, temos que calcular a 
concentração final de partículas de soluto na solução. Aquela solução que apresentar maior concentração 
de partículas, após dissociação, será aquela com maior temperatura de ebulição. Para isso, vamos observar 
as dissociações iônicas fornecidas pelo exercício e a quantidade de íons presentes em 1 L de solução:
NaOH → Na+ + OH−
2 mols 2 mols 2 mols
Temos, portanto, 4 mols de partículas de soluto por litro da solução de NaOH (2 mols de Na+ mais 
2 mols de OH−).
 CaCl2 → Ca
2+ + 2Cl−
0,5 mol 0,5 mol 2 . 0,5 mol
Temos, portanto, 1,5 mol de partículas de soluto por litro da solução de CaCl2 (0,5 mol de Ca
2+ mais 
1 mol de Cl−).
Uma vez que, quanto maior a concentração de partículas de soluto, maior o efeito coligativo, a 
solução A será aquela que apresentará a maior temperatura de ebulição.
Para que possamos entender de que maneira a adição de soluto afeta a pressão de vapor, a 
temperatura de ebulição, a temperatura de congelamento e a pressão osmótica da solução, vamos 
primeiramente entender o que são e como se comportam esses parâmetros em líquidos puros.
6.2 Pressão de vapor, temperatura de ebulição e temperatura de 
congelamento de líquidos puros
6.2.1 Pressão de vapor de líquidos puros
A evaporação é um fenômeno que acontece na superfície de líquidos. Assim como ocorre na ebulição, 
na evaporação as moléculas de água passam do estado líquido para o estado de vapor. Ao contrário da 
ebulição, no entanto, na evaporação a transição do estado líquido para o vapor é gradual, e não abrupta. 
Trata-se de um fenômeno que ocorre na superfície do líquido.
O fenômeno de evaporação ocorre pois, qualquer temperatura, as moléculas de qualquer líquido estão 
sempre em movimento, fenômeno também conhecido como energia cinética. Esta, no entanto, é maior em 
algumas moléculas do que outras e, por isso, conseguem se desfazer das interações da fase aquosa e passam 
para a fase de vapor. Lembrando que, quanto maior a temperatura, maior é a energia cinética.
A evaporação de um líquido implica em uma força, ou pressão, que é exercida sobre as paredes do 
recipiente que as contém, se o considerarmos fechado. A essa força, damos o nome de pressão máxima 
de vapor. Por definição, pressão máxima de vapor é aquela exercida por seus vapores quando eles estão 
em equilíbrio dinâmico com a fase líquida.
116
Unidade II
Imagine um recipiente fechado contendo água até a metade. Com o tempo, há formação de vapor a 
partir da água líquida e, como o recipiente está fechado, as moléculas de água que se encontram nessa 
fase acabam chocando-se entre si ou se chocam com as paredes do recipiente, retornando para a fase 
líquida, em um fenômeno denominado condensação. Quando o número de moléculas de água líquida 
que passam para a fase vapor é igual ao número de moléculas de vapor de água que passam para a 
fase líquida, em um determinado espaço de tempo, dizemos que se estabeleceu um equilíbrio dinâmico 
entre os líquidos e seus vapores, ou seja, os vapores estão saturados e, consequentemente, foi alcançada 
a pressão máxima de vapor.
 Observação
A pressão máxima de vapor independe do volume de líquido no recipiente. 
Quando comparamos recipientes contendo diferentes volumes de água, 
observamos que esse parâmetro é numericamente igual em ambos os sistemas.
Diferentes líquidos apresentam diferentes pressões máximas de vapor: quanto maior ela for em um 
líquido, mais volátil ele é, ou seja, maior sua tendência a evaporar. A pressão de vapor de um líquido 
depende da intensidade das forças intermoleculares que unem uma molécula à outra: as ligações de 
hidrogênio, que são as interações que ocorrem entre as moléculas de água, são mais intensas que as 
forças de Van der Waals, que unem fracamente as moléculas de éter umas às outras. Portanto o éter é 
mais volátil do que a água.
A temperatura influi na pressão máxima de vapor. Quanto maior a temperatura do sistema, maior 
o grau de agitação das moléculas e, portanto, maior a tendência de o líquido passar para a fase vapor. 
Assim, quanto maior a temperatura do sistema, maior a pressão máxima de vapor, como pode ser 
observado no gráfico a seguir:
20
200
Temperatura (ºC)
Pr
es
sã
o 
m
áx
im
a 
de
 v
ap
or
 (m
m
Hg
)
400
600
800
1.000
1.200
1.400
40 60 80 100 120
Figura 42 – Gráfico da pressão máxima de vapor da água em relação à temperatura
117
BASES ANALÍTICAS DO LABORATÓRIO CLÍNICO
O gráfico mostra a variação da

Continue navegando